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Abstract

We study some existing techniques for solving mean-payoff games (MPGs), im-

prove them, and design a randomized algorithm for solving MPGs with currently

the best expected complexity.

Introduction

A Mean-Payoff Game (MPG) [7, 8, 14] is a two-player infinite game on a finite weighted

directed graph. The game is given by a graph G = (V, E, w) with integer edge-weights

and a partition of the set of vertices V into the sets VMax and VMin. The two players,

named Max and Min, move a token along the edges of G ad infinitum. If the token is on

a vertex v ∈ VMax, Max chooses an edge (v, u) ∈ E and the token goes to u. If the token

is on a vertex v ∈ VMin, it is Min’s turn to choose an outgoing edge. This way an infinite

path is formed. Max wants to maximize the average edge weight of the path and Min

wants to minimize it. It was proved [7] that each vertex v ∈ V has a value, denoted

by ν(v), which each player can secure by a positional strategy, i.e. strategy that always

chooses the same outgoing edge in the same vertex. To solve a MPG is to find the values

of all vertices and, optionally, also optimal strategies for both players, i.e. strategies that

secure the values.

∗This work has been partially supported by the Grant Agency of the Czech Republic grant No.

201/09/1389.
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MPGs have many applications, especially in the synthesis, analysis and verification

of reactive (non-terminating) systems. Many natural models of such systems include

quantitative information, and the corresponding question requires the solution of quan-

titative games, like MPGs. Quantities may represent, for example, the power usage of

an embedded component, or the buffer size of a networking element [4].

Examples of applications include various kinds of scheduling, finite-window online

string matching, or more generally, analysis of online problems and algorithms, and

selection with limited storage [14]. Moreover, µ-calculus model-checking is polynomial-

time reducible to MPGs via parity games [9]. MPGs can even be used for solving the

max-plus algebra Ax = Bx problem, which in turn has further applications [6].

MPGs are also important from a theoretical point of view. The problem whether the

value of a certain vertex is greater or less than a certain threshold is in the complexity

class NP ∩ co–NP and it is not known whether the problem is in P.

Because of their importance, MPGs have attracted many researchers, especially in

the last decade, and several algorithms for solving MPGs have been proposed. They

can be roughly divided into two categories. In the first category are algorithms based on

linear programming [2, 13]. This category also includes algorithms based on reduction

to discounted payoff games [11] and simple stochastic games [5]. In the second category

are pure combinatorial graph algorithms [14, 3, 10, 6, 8, 12].

The best complexity attained by a deterministic algorithm for solving MPGs is

pseudo-polynomial, namely O(|V |3·|E|·W), where |V | and |E| are numbers of vertices and

edges, respectively, and W is the maximal absolute edge-weight. It is the complexity of

the algorithm of Zwick and Paterson [14] (ZP).

In this paper, we design a deterministic combinatorial algorithm with the complex-

ity O(|V |2 · |E| · W · log(|V | · W)), which is better for W up to 2O(|V|). To get an algorithm

which is better for all values of W, we combine our algorithm with the randomized al-

gorithm of Andersson and Vorobyov [1], and get an algorithm with currently the best

expected complexity. We note that in typical applications, where the edge-weights rep-

resent, for example, the energy consumption of a physical device, W is usually small

in comparison with |V |, in which case our deterministic algorithm is significantly better

than ZP without the need to combine it with any other algorithm.
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1 Preliminaries

A Mean-Payoff Game (MPG) [7, 8, 14] is given by a triple (G, VMax, VMin), where G =

(V, E, w) is a finite weighted directed graph such that V is a disjoint union of the sets

VMax and VMin, w : E → Z is the weight function, and each v ∈ V has out-degree at least

one. The game is played by two opposing players, named Max and Min. A play starts

by placing a token on some given vertex and the players then move the token along

the edges of G ad infinitum. If the token is on vertex v ∈ VMax, Max moves it. If the

token is on vertex v ∈ VMin, Min moves it. This way an infinite path p = (v0, v1, v2, . . .)

is formed. Max’s aim is to maximize his gain: lim infn→∞
1
n

∑n−1

i=0 w(vi, vi+1), and Min’s

aim is to minimize her loss: lim sup
n→∞

1
n

∑n−1

i=0 w(vi, vi+1). For each vertex v ∈ V , we

define its value, denoted by ν(v), as the maximum gain that Max can ensure if the play

starts at vertex v. It was proved that it is equal to the minimum loss that Min can ensure.

Moreover, both players can ensure ν(v) by using positional strategies defined below [7].

A strategy that ensures ν(v), for all v ∈ V is called an optimal strategy. To solve an MPG

is to find the values of all vertices and, optionally, also optimal positional strategies for

both players.

A positional strategy for Max is a function σ : VMax → V such that (v, σ(v)) ∈ E, for

each v ∈ VMax (Recall that each vertex has out-degree at least one). A positional strategy

for Min is defined analogously, except that it is usually denoted by π. We define Gσ, the

restriction of G to σ, as the graph (V, Eσ, wσ), where Eσ = {(u, v) ∈ E | u ∈ VMin ∨ σ(u) =

v}, and wσ = w|Eσ
. That is, we get Gσ from G by deleting all the edges emanating from

Max’s vertices that do not follow σ. Let now σ be a strategy of Max and let π be a

strategy of Min. Gσ has just been defined, Gπ is defined analogously, and Gσ∪π is the

intersection of Gσ and Gπ, i.e., Gσ∪π = (V, Eσ∪π, wσ∪π), where Eσ∪π = {(u, v) ∈ E | (u ∈
VMin ∧ π(u) = v) ∨ (u ∈ VMax ∧ σ(u) = v)}, and wσ∪π = w|Eσ∪π

.

From the existence of optimal positional strategies it follows that ν(v) for each v ∈ V

is a a fraction with denominator at most |V |. It is because the ν values are the mean-

weights of certain cycles, namely the cycles in Gσ∪π, where σ and π are optimal po-

sitional strategies for Max and Min, respectively. In Gσ∪π, each vertex has out-degree

exactly one, and so for each v ∈ V , there is a unique cycle reachable from v, and

ν(v) is equal to the mean-weight of that cycle. The fact that the ν values of vertices

are mean-weights of cycles also implies that ν(v) ∈ [−W, W], for each v ∈ V , where

W = maxe∈E |w(e)|.
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2 Algorithm

Our algorithm solves only the 0-mean partition problem. That is, it divides the vertices

of the graph into those with ν ≥ 0 and those with ν < 0. How to use the algorithm to

compute the exact ν values will be described later in this section.

Our algorithm computes, for each vertex v ∈ V , the value d≥0(v) – the minimum

value such that Max can ensure that the sum of traversed edges in a play starting from

v, plus d≥0(v), never goes below 0. The d≥0 value is finite only for vertices with ν ≥ 0,

because for plays starting from vertices with negative ν value, Min has a strategy that

ensures that all traversed cycles are negative, and so Max is unable to keep the sum

of traversed edges nonnegative forever, no matter how high his starting “energy” is.

Therefore, for each vertex v ∈ V such that ν(v) < 0, the algorithm sets d≥0(v) = ∞.

Chakrabarti et al. [4] proposed a simple algorithm based on value iteration that

solves a similar problem. The difference is that the weights are on vertices, not edges.

The complexity of their algorithm is O(|V |2 · |E| · W). We adjusted the algorithm so that

it works with weights on edges and improved its complexity to O(|V | · |E| · W).

Our algorithm proceeds in iterations. It starts with d0(v) = 0, for each v ∈ V , and

then computes d1, d2, . . . according to the following rules.

di+1(v) =

{
min(v,u)∈E max(0, di(u) − w(v, u)) if v ∈ VMax

max(v,u)∈E max(0, di(u) − w(v, u)) if v ∈ VMin

(1)

It is easy to see that for each v ∈ V and k ∈ N0, dk(v) is the minimum amount

of Max’s starting energy, that enables him to keep the sum of traversed edges, plus

dk(v), greater or equal to zero in a k-step play. The computation continues until two

consecutive d vectors are equal. The last d vector is then the desired vector d≥0. Please

note that the d value of each vertex is non-decreasing, that is, for each v ∈ V , d0(v) ≤
d1(v) ≤ d2(v) ≤ · · ·.

This works well if all vertices have ν ≥ 0. If some vertex has ν < 0, then its d value

never stops increasing and the value iteration does not terminate. Fortunately, there is

an upper bound on the d values of vertices with ν ≥ 0 and if for some vertex v, d(v)

goes past that bound, we know that ν(v) < 0. The said bound is (|V |−1) ·W. The reason

is the following.

Max has a positional strategy σ such that for each vertex v ∈ V such that ν(v) ≥ 0,

all cycles reachable from v in Gσ are non-negative. For the sake of contradiction, let’s

suppose that Min has a strategy π, not necessarily positional, that for a play starting
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from some vertex v0 such that ν(v0) ≥ 0 guarantees that at some point the traversed

path has weight less than −(|V | − 1) · W. Let Max use the strategy σ against π and let

p = (v0, . . . , vk) be a path agreeing with σ and π such that w(p) < −(|V | − 1) · W. Recall

that since Max uses the strategy σ, all traversed cycles must be non-negative. Since

w(p) < −(|V | − 1) · W, the number of vertices in p must be greater than |V |. Therefore,

we can apply the following transformation on p. Start from v0 and go along the path

until an already visited vertex is encountered, then remove the found cycle from p.

Since the cycle is non-negative, we get a shorter path p ′ such that w(p ′) ≤ w(p) <

−(|V | − 1) · W. We can continue in this fashion until the path has less than |V | vertices

and get a contradiction with the fact than no path with less than |V | vertices can have

weight less than −(|V | − 1) · W. Therefore, if ν(v) ≥ 0, then (|V | − 1) · W is a sufficient

amount of starting energy to keep the energy level non-negative ad infinitum.

Based on the facts above, we complete the algorithm by adding a test, for each vertex

v ∈ V , whether d(v) is greater than (|V | − 1) · W or not. If it is, we set d(v) to ∞, which

is then handled in the usual way: ∞ − a = ∞, where a ∈ Z. This guarantees the

termination of the algorithm. It follows that the d value of each vertex can be improved

at most O(|V | · W) times, so the algorithm makes at most O(|V |2 · W) iterations. Since

the complexity of one iteration is O(|E|), we get the overall complexity O(|V |2 · |E| · W).

However, this can be improved to O(|V | · |E| ·W). The key ingredients are the following.

The first is to keep track of the vertices that increase their d values, so that vertices that

cannot bring any improvement are not explored. The second is, for each vertex v ∈ VMax,

to keep track of the number of successors of v that give it the minimum from (1) to be

able to quickly determine whether the d value of v has to be improved.

In Figure 1 is a pseudo-code of our improved algorithm. It works with three vec-

tors of size |V |, dpre, d, d ′ ∈ N
V
0 . The vector d contains the current iteration d values

of vertices, while dpre and d ′ contain the previous and the next iteration d values, re-

spectively. The initialization is on lines 2–14. It initializes all the vectors to vectors of

zeros, except for the elements of d ′ that correspond to Max’s vertices. For these ele-

ments, the algorithm already computes the next iteration d values using (1). For each

Max’s vertex, it also computes the number of “optimal” edges, the edges which give the

vertex the minimum. These numbers are stored in the vector nopt. There are also two

queues maintained by the algorithm. The queue q contains the vertices with improved

(increased) d value. Initially, the queue contains all vertices of the graph. The other

queue is q ′ and it accumulates the vertices with improved d value for the next iteration.
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The main loop of the algorithm is on lines 15–43. The termination criterion of the

loop is the queue of vertices with improved d values being empty. Each iteration per-

forms the following steps. It loops over the vertices with improved distance on lines 16–

35 and for each improved vertex v, it explores all of its predecessors. The following steps

depend on whether the predecessor u is Max’s or Min’s vertex. For u ∈ VMin, we check

if the improvement of the d value of v yields also an improvement of the d value of u. If

yes, we update d ′(u) and if it is the first improvement of u’s d value in this iteration of

the main loop, we also put u into the queue of improved vertices for the next iteration,

q ′. If u is Max’s vertex, things are a little bit more complicated.

Since according to (1), minima are computed at Max’s vertices, it isn’t that easy to

determine whether the improvement of v’s d value yields an improvement of u’s value.

This is where the vector nopt helps. The d value of u is improved only if all the suc-

cessors giving it the current minimum increase their d value. The vector nopt holds,

for each Max’s vertex, the number of successors that give the vertex the current mini-

mum. Therefore, if v is one of the vertices that give u its current minimum (condition

on line 20), we decrease nopt(u) by one, but only if it no longer gives u the current

minimum (condition on line 21). If nopt(u) drops to zero, we recompute the minimum

at u, compute the value of nopt(u) for the new minimum, and put u to the queue of

improved vertices for the next iteration (lines 22–26). When all vertices from q are ex-

plored, we prepare the algorithm for the next iteration of the main loop.

On lines 36–41, we move all the elements from q ′ to q and update the vectors dpre

and d. The current d values of the improved vertices become their previous d values

(line 39) and the new d values of these vertices become their current d values (line 40).

If a new value is greater than the bound, it becomes infinity. After the queue q ′ is

processed, we increase i and start another iteration, but only if there are some improved

vertices.

The complexity analysis of the algorithm is quite simple. The d value of each ver-

tex can be improved at most O(|V | · W) times, so let’s determine what is the com-

plexity of one improvement of one vertex. For definiteness, let’s denote the vertex

by v. If v is improved, we explore it’s predecessors in the next iteration and that’s

O(indegree(v)) operations. For v ∈ VMax, we also have to compute the actual value

of the improvement if we detect that v’s d value has to be improved. The computa-

tion explores all of the successors of v which takes O(outdegree(v)) time. So the overall
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1 proc VI(G = (V,E,w),VMax,VMin)

2 foreach v∈ V do

3 dpre(v) := 0

4 d(v) := 0

5 if v∈ VMax then

6 d′(v) := max(0,min(v,z)∈E(0−w(v,z)))

7 nopt(v) :=| {(v,z) ∈ E | d′(v) = max(0,0−w(v,z))} |

8 if d′(v) > 0 then q′.enqueue(v) fi

9 else

10 d′(v) := 0

11 fi

12 q.enqueue(v)

13 od

14 i := 0

15 while ¬q.empty() do

16 while ¬q.empty() do

17 v := q.dequeue()

18 foreach (u,v) ∈ E do

19 if u∈ VMax then

20 if i > 0 ∧ d(u) ≥ dpre(v)−w(u,v) then

21 if d(v)−w(u,v) > 0 then nopt(u) := nopt(u) −1 fi

22 if nopt(u) = 0 then

23 d′(u) := min(u,z)∈E(d(z)−w(u,z))

24 nopt(u) :=| {(u,z) ∈ E | d′(u) = d(z)−w(u,z)} |

25 q′.enqueue(u)

26 fi

27 fi

28 else

29 if d′(u) < d(v) −w(u,v) then

30 if d′(u) = d(u) then q′.enqueue(u) fi

31 d′(u) := d(v)−w(u,v)

32 fi

33 fi

34 od

35 od

36 while ¬q′.empty() do

37 v := q′.dequeue()

38 q.enqueue(v)

39 dpre(v) := d(v)

40 if d′(v) > (|V|−1) · W then d′(v) := ∞ fi; d(v) := d′(v)

41 od

42 i := i+1

43 od

44 return ({v∈ V | d(v) < ∞},{v∈ V | d(v) = ∞})

45 end

Figure 1: Improved value iteration for solving the zero-mean partition problem
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complexity of the algorithm is O(|V |·|W|·
∑

v∈V(indegree(v)+outdegree(v))), and since
∑

v∈V(indegree(v) + outdegree(v)) = 2 · |E|, the overall complexity is O(|V | · |E| · W).

Our algorithm solves only the 0-mean partition problem. It divides the vertices of G
into those with ν ≥ 0 (the vertices with finite d values after the termination of the algo-

rithm) and those with ν < 0 (the vertices with infinite d values after the termination).

The algorithm can also be used to solve the p-mean partition problem for arbitrary ra-

tional number p, because if we subtract p from all edge-weights, then the ν values of all

vertices also decrease by p. The exact ν values of all vertices can then be computed by

binary search. The complexity analysis of the resulting algorithm follows.

Since the ν values are fractions with denominators at most |V |, we have to solve the

p-mean partition problems only for ps with denominators at most |V |. This increases the

complexity of the 0-mean partitioning algorithm to O(|V |2 · |E| ·W), because the smallest

possible increase of a d value of a vertex is not 1 but 1/|V |. To be able to determine the

ν values exactly, we run each branch of the binary search until the size of the search

interval is at most 1/|V |2. In such a small interval there can be only one rational number

with denominator at most |V |, and this is the ν value of the vertices in that branch of the

binary search. Since the ν value of each vertex is in the interval [−W, W], the depth of

the binary search is in O(log(|V |2 ·W)) = O(log(|V | ·W)), and so the overall complexity

of the algorithm is O(|V |2 · |E| · W · log(|V | · W)).

To obtain an algorithm with currently the best complexity we combine our algorithm

with the randomized algorithm of Andersson and Vorobyov [1]. It has the complexity

|V |2 · |E| · e2·

q

|V|·ln(|E|/
√

|V|)+O(
√

|V|+ln |E|), which is better than the complexity of our algo-

rithm for large W. If we interleave the two algorithms and add a stopping criterion

which terminates the computation when either of the two algorithms finishes, we get a

randomized algorithm with the expected complexity min(O(|V |2·|E|·W·log(|V |·W)), |V |2·
|E| · e2·

q

|V|·ln(|E|/
√

|V|)+O(
√

|V|+ln |E|)), which is currently the best expected complexity of an

algorithm for solving mean-payoff games. This deserves a little more comments.

The algorithm of Zwick and Paterson [14] (ZP) has the complexity O(|V |3 · |E| · W),

which is better than the first term of the complexity of our algorithm for very large W.

However, it is not better for W up to 2O(|V|), and for W in 2O(|V|), the second term of our

algorithm is already better. Therefore, our algorithm has better complexity than ZP.

We must also compare with the algorithm of Björklund and Vorobyov [3] (BV). It

has the complexity min(O(|V |3 · |E| · W · log(|V | · W)), (log W) · 2O(
√

|V|·log |V|)). This can

be improved to min(O(|V | · (|V | · log |V | + |E|) · W · log(|V | · W)), (log W) · 2O(
√

|V|·log |V|))
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by the following modifications to the algorithm. The first is to use Dijkstra’s algorithm

instead of Bellman-Ford’s algorithm, which is one of the subroutines of BV. This is made

possible by a potential transformation of the edge-weights as described by Schewe [12].

The second modification is to use a technique similar to the key technique of our al-

gorithm that improves its complexity by a factor of |V |. However, the first term of the

complexity of BV exceeds the first term of the complexity of our algorithm, and the

second term of the complexity of BV exceeds the second term of the complexity of our

algorithm, even for small W. Therefore, BV is worse. We stress that the improvement of

BV outlined above is not straightforward and it is an interesting result per se, but since

we achieved better complexity with our algorithm, we decided not to give the details of

the improvement here.

The algorithm of Svensson and Vorobyov [13] based on linear programming has the

complexity O(|V | · |E| · W). However, it solves only the 0-mean partition problem for

bipartite games with no zero cycles. The 0-mean partition problem for general games

can be reduced to the special case, but the reduction increases edge-weights by a factor

of |V |. The exact ν values of all vertices can be computed by binary search, but, as al-

ready mentioned, it requires solving p-mean partition problems for rational ps, which

increases the complexity by another factor of |V |. All in all, computation of the exact ν

values using the algorithm of Svensson and Vorobyov and binary search has the com-

plexity O(|V |3 · |E| · W · log(|V | · W)), which exceeds the complexity of our algorithm.

All the other algorithms for solving MPGs we know of have either the same or worse

complexity than the algorithms we have already compared our algorithm with.

3 Conclusion

We designed a deterministic algorithm for solving mean-payoff games with the com-

plexity O(|V |2 · |E| · W · log(|V | · W)). In combination with the randomized algorithm

of Andersson and Vorobyov [1], it is a randomized algorithm with currently the best

expected complexity, namely:

min(O(|V |2 · |E| · W · log(|V | · W)), |V |2 · |E| · e2·

q

|V|·ln(|E|/
√

|V|)+O(
√

|V|+ln |E|))
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