

Aalborg Universitet

Verification of Continuous Dynamical Systems by Timed Automata

Sloth, Christoffer; Wisniewski, Rafael

Published in:
Formal Methods in System Design

DOI (link to publication from Publisher):
10.1007/s10703-011-0118-0

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Sloth, C., & Wisniewski, R. (2011). Verification of Continuous Dynamical Systems by Timed Automata. Formal
Methods in System Design, 39(1), 47–82. https://doi.org/10.1007/s10703-011-0118-0

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2024

https://doi.org/10.1007/s10703-011-0118-0
https://vbn.aau.dk/en/publications/fae965d4-b0cd-4626-8d38-e8fb85c6a932
https://doi.org/10.1007/s10703-011-0118-0

Form Methods Syst Des
DOI 10.1007/s10703-011-0118-0

Verification of continuous dynamical systems by timed
automata

Christoffer Sloth · Rafael Wisniewski

© Springer Science+Business Media, LLC 2011

Abstract This paper presents a method for abstracting continuous dynamical systems by
timed automata. The abstraction is based on partitioning the state space of a dynamical
system using positive invariant sets, which form cells that represent locations of a timed
automaton. The abstraction is intended to enable formal verification of temporal properties
of dynamical systems without simulating any system trajectory, which is currently not pos-
sible. Therefore, conditions for obtaining sound, complete, and refinable abstractions are set
up.

The novelty of the method is the partitioning of the state space, which is generated uti-
lizing sub-level sets of Lyapunov functions, as they are positive invariant sets. It is shown
that this partition generates sound and complete abstractions. Furthermore, the complete
abstractions can be composed of multiple timed automata, allowing parallelization of the
verification process. The proposed abstraction is applied to two examples, which illustrate
how sound and complete abstractions are generated and the type of specification we can
check. Finally, an example shows how the compositionality of the abstraction can be used
to analyze a high-dimensional system.

Keywords Timed automata · Verification · Reachability · Lyapunov functions

1 Introduction

The verification of properties such as safety is important for any system. Such verification
involves reachability calculations or approximations. The reachable sets of continuous and

This work was supported by MT-LAB, a VKR Centre of Excellence.

C. Sloth (�)
Department of Computer Science, Aalborg University, Aalborg, Denmark
e-mail: csloth@cs.aau.dk

R. Wisniewski
Section for Automation & Control, Aalborg University, Aalborg, Denmark
e-mail: raf@es.aau.dk

mailto:csloth@cs.aau.dk
mailto:raf@es.aau.dk

Form Methods Syst Des

hybrid systems are in general incomputable [6]. Therefore, much research effort has been
spent on the approximation of especially reachable sets for continuous systems [16]. Yet,
reachability is decidable for discrete systems such as automata and timed automata; con-
sequently, there exists a rich set of tools aimed at verifying properties of such systems.
Therefore, abstracting dynamical systems by discrete systems would enable the verification
of dynamical systems using the tools for discrete systems.

There are basically two methods for verifying continuous and hybrid systems. The first
is to over-approximate the reachable states by convex sets as in [14, 20, 31]. The second
method is to abstract the original system by a system of reduced complexity. Both methods
rely on reach set computations, which according to [16] limits the capabilities of automatic
analysis, due to their complexity. An abstraction method for continuous systems is presented
in [21], and an abstraction method for hybrid systems is presented in [27]. The models
used in these methods are called symbolic models if equivalence classes of states are used
instead of individual states [1]; for more insight in symbolic dynamics see [24]. To reduce
the computational effort, the verification process is often accomplished by first choosing a
coarse partitioning and then refining it until the system can be verified. One such algorithm
is proposed in [13], where piecewise affine systems with real eigenvalues are considered.

The goal of this paper is to abstract continuous systems by timed automata, since effi-
cient tools such as UPPAAL can verify this type of models [7]. The verification of temporal
requirements with a bounded time horizon is well known and studied in computer science,
via checking if some model satisfies, e.g., a Timed Computation Tree Logic (TCTL) spec-
ification [2], but not in control theory. In control theory almost all requirements are related
to convergence, i.e., system properties when time goes to infinity. This implies that the for-
mal verification of temporal requirements of dynamical systems would replace the need for
simulations to verify the transient behavior of the systems. Hence, the proposed method has
relevance for even the most simple dynamical system models.

The concept of the abstraction is inspired by [21], where slices are introduced to improve
the accuracy of abstractions of continuous systems. In short, the aim of [21] is to abstract
autonomous continuous systems by timed automata via partitioning their state spaces into
cubes along the coordinate axis as shown in Fig. 1. As a result, each cube is associated
with a discrete location of the timed automaton. Slices are used in addition to the cells in
the generation of the abstraction, to increase the precision of the abstraction. A slice is a
collection of cells, as illustrated in Fig. 1 by the collection of shaded cells.

Previous abstraction techniques are based on over-approximations, where the upper
bound on the error in general is unknown. This implies that the quality of the abstrac-
tion is unknown and that falsification of safety is not possible unless refinements or under-
approximations are considered. However, this is not considered in this paper.

In this paper, which is an extension of [26], continuous systems are abstracted by timed
automata by considering both cells and slices for generating the abstractions. A new parti-
tioning is proposed, where the functions used for the partitioning are chosen in accordance
with the vector field of the dynamical system. By this, we mean that the vector field cannot
be tangent to a boundary of a cell. This requirement is not satisfied in the partition illus-
trated in Fig. 1, as some of the blue arrows (illustration of the vector field) are tangent to
the boundaries of cells. This approach is different from most previous work on abstractions
of continuous systems; however, this may reduce the size of the symbolic models, which
is currently the focus of other research [15]. Additionally, model checking can be done in
a compositional manner using the proposed method, due to the use of slices. This may re-
duce the computational complexity for high-dimensional systems. Our objective is to show
that by partitioning the state space in accordance with the vector field of the dynamical

Form Methods Syst Des

Fig. 1 The figure illustrates a
vector field of a dynamical
system (arrows) and a partition
of its state space into cubes. The
shaded cubes represent a slice

system, it is possible to prove safety of Morse-Smale systems using the proposed abstrac-
tion and additionally to falsify safety for linear systems. Remark that falsification of safety
properties may also be possible by, e.g., refining the abstraction or doing analysis based on
under-approximations. Furthermore, for linear systems, it is possible to calculate an a priori
upper bound of the size of the over-approximation of the reachable set and reduce this upper
bound to an arbitrary small value, by refining the partitioning. Hence, we can obtain an ab-
straction with arbitrary precision of the reachable set. In conclusion, the following problem
is formulated.

Problem 1 Given an autonomous dynamical system, find a partition of its state space, which
allows over-approximation with arbitrary accuracy of its reachable set by a timed automaton.

To ease the flow of the article, some definitions and the proofs of the presented proposi-
tions are located in Appendices A and B.

This paper is organized as follows. Section 2 contains preliminary definitions utilized
throughout the paper. Then the general idea of the abstraction is explained in Sect. 3 and
Sect. 4. First, we determine how a partition of a state space can be generated by positive
invariant sets, and then we show how a timed automaton is generated from this partition. In
Sect. 5, properties of the generated timed automaton are derived. In Sect. 6, conditions for
the partition are deduced, and LMI conditions for their satisfaction are provided. Afterwards,
a method for synthesizing such a partition is proposed in Sect. 7. Examples are provided in
Sect. 8; and Sect. 9 comprises conclusions.

1.1 Notation

The set {1, . . . , k} is denoted k. BA is the set of maps A → B . The power set of A is
denoted 2A. Given a vector a ∈ R

n, a(j) denotes the j th coordinate of a. Given a set A,
the cardinality of the set is denoted |A|. We consider the Euclidean space (Rn, 〈, 〉), where
〈, 〉 is the scalar product. Whenever f : X → R is a function and a ∈ R, we write f −1(a) to
shorten the notation of f −1({a}). Xr (M) is the space of Cr vector fields.

2 Preliminaries

The purpose of this section is to provide definitions related to dynamical systems and timed
automata. Especially, we give a detailed description of the considered class of dynamical
systems.

Form Methods Syst Des

2.1 Dynamical systems

This subsection provides a definition of an autonomous dynamical system and its solution.
This is followed by definitions of reachable set and Lyapunov function used for the parti-
tioning. Finally, explanations of the considered class of systems are provided.

Definition 1 (Autonomous dynamical system) An autonomous dynamical system � =
(X,f), with state space X ⊆ R

n and f : X → R
n a continuous map, has dynamics described

by ordinary differential equations

ẋ = f (x). (1)

Let φ� : [0, ε] × X0 → X, ε > 0 be the flow map satisfying

dφ�(t, x0)

dt
= f (φ�(t, x0)) (2)

for all t ∈ [0, ε]. In other words, φ�(t, x0) is the solution of (1), from an initial state x0 ∈
X0 ⊆ X for t ∈ [0, ε].

It is assumed that (1) has a solution for each x0 ∈ X0 and for all time t ∈ R, and that this
solution is unique. Hence, the function f is continuous, locally Lipschitz, and has linear
growth [11].

The reachable set of a dynamical system is defined in the following.

Definition 2 (Reachable set of dynamical system) The reachable states of a system � from
a set of initial states X0 ⊆ X on the time interval [t1, t2] is defined as

Reach[t1,t2](�,X0) = {x ∈ X|∃t ∈ [t1, t2], ∃x0 ∈ X0, such that x = φ�(t, x0)} (3)

We define Lyapunov function in the following, as these are used in the partitioning [23].

Definition 3 (Lyapunov function) Let X be an open connected subset of R
n. Suppose

f : X → R
n is continuous and let Cr(f) be the set of critical points of f . Then a real

non-degenerate (see [22, p. 1]) differentiable function ϕ : X → R is said to be a Lyapunov
function for f if

p is a critical point of f ⇔ p is a critical point of ϕ,

ϕ̇(x) ≡
n∑

j=1

∂ϕ

∂xj

(x)f j (x), (4a)

ϕ̇(x) = 0 ∀x ∈ Cr(f), (4b)

ϕ̇(x) < 0 ∀x ∈ X\Cr(f), (4c)

and there exists α > 0 and an open neighborhood of each critical point p ∈ Cr(f), where

‖ϕ̇(x)‖ ≥ α‖x − p‖2. (5)

Notice that we only require the vector field to be transversal to the level curves of a Lyapunov
function ϕ, i.e., ϕ̇(x) = 〈∇ϕ(x), f (x)〉 < 0 for all x ∈ X\Cr(f), and does not use Lyapunov

Form Methods Syst Des

functions in the usual sense, where the existence of a Lyapunov function implies stability,
but uses a more general notion from [23]. Assume that a Lyapunov function ϕ(x) is positive
definite, then its sub-level sets generate positive invariant sets.

Definition 4 (Positive invariant set) Given a system � = (X,f), a set X ⊆ X is said to be
positively invariant if for all x0 ∈ X and for all t ≥ 0

φ�(t, x0) ∈ X . (6)

2.1.1 Considered class of systems

In this subsection we describe the considered class of systems and motivate why this class
of systems is sufficient for this work.

The most general class of systems considered in this work is Morse-Smale systems, de-
fined formally in Definition 32. However, some of the results only apply for linear systems.
A linear system � = (X,f) is a system with linear f , i.e.,

ẋ = Ax, (7)

where A is an n × n non-singular matrix.
To explain Morse-Smale systems we first explain topological equivalence of systems and

structural stability of systems.
Two systems (or vector fields) are topological equivalent, see Definition 33, if there exists

a correspondence between their solution trajectories, given by a continuous deformation
(homeomorphism, i.e., a continuous bijection with continuous inverse). Hence, the exists
a homeomorphism h such that the solution of a vector field η from some initial state can
be described by a solution of a topologically equivalent vector field ξ as h ◦ φξ (R, x0) =
φη(R, h(x0)).

Next, we define structural stability of a vector field, which is an important property of
Morse-Smale systems.

Definition 5 (Structurally stable vector field [19]) A vector field ξ ∈ Xr (M) is structurally
stable if there exists a neighborhood V of ξ in Xr (M) such that every η ∈ V is topologically
equivalent to ξ .

A vector field is structurally stable if its quantitative behavior does not change after the
vector field has been slightly perturbed. In the following, we provide some intuition in struc-
turally stable systems, by showing an example of a system that is not structurally stable.

Consider the linear system with purely complex eigenvalues {−i, i}, i.e., the real parts of
the eigenvalues are zero

ẋ =
[

0 −1
1 0

]
x. (8)

Two trajectories of the system are drawn in the left subplot of Fig. 2. If we slightly per-
turb the system (this perturbation is given by a smooth map, see Theorem 2.1 in [17]), the
eigenvalues of the system may become positive (trajectory in the middle subplot) or negative
(trajectory in the right subplot). As a consequence, it is no longer possible to describe the
solution trajectories of the middle or right subplot by a continuous deformation (homeomor-
phism) of solution trajectories of the left subplot. Therefore, the system shown in (8) is not
structurally stable.

Form Methods Syst Des

Fig. 2 Trajectories of three dynamical systems

In relation to numerical simulation of systems that are not structurally stable, even the
smallest rounding error in the representation of the system may significantly alter its behav-
ior.

Two important restrictions of Morse-Smale systems are exploited in this paper. First, the
vector field has a finite number of singular points, each hyperbolic. A hyperbolic singu-
lar point is a singular point such that in local coordinates the matrix of partial derivatives
of the vector field has eigenvalues with nonzero real parts (the eigenvalues of (8) are not
hyperbolic). This property allows the system to be split up into a stable and an unstable
subsystem, which can be analyzed separately. Second, the stable and unstable manifolds as-
sociated with a singular point have transversal intersection. This restriction is necessary to
obtain a structurally stable vector field.

Remark 1 To the best of authors’ knowledge, there exists no method to check if a system is
Morse-Smale. However, if the system is second order and one finds a Lyapunov function, it
is Morse-Smale. For a system of dimension greater than two, if there is a Lyapunov function
then it can be approximated arbitrary closely by a Morse-Smale vector field [23]. For linear
systems, it is necessary and sufficient to check if all eigenvalues are hyperbolic.

To summarize, it is chosen to only consider Morse-Smale systems in this paper, as they
are structurally stable, and there exists an open set of Lyapunov functions for all Morse-
Smale systems, which is important for the partitioning.

In the following, we reason about the size of the class of Morse-Smale systems (or vector
fields).

Morse-Smale systems are dense in systems of less than or equal to two dimensions ac-
cording to the following two theorems.

Theorem 1 (See [25]) In order that the vector field ξ be structurally stable on the compact
2-dimensional manifold M it is necessary and sufficient that the vector field is Morse-Smale.

Theorem 2 (See [25]) The set of all structurally stable systems is open and dense in the
space of all systems defined on a 2-dimensional manifold M .

From Theorem 1 we conclude that Morse-Smale systems are robust in the sense that
its behavior does not change dramatically after being perturbed slightly, as it is structurally
stable (explained next). This also implies that the partitioning will be insensitive to small
perturbations. This is a desirable property, as small perturbations always exist for physical

Form Methods Syst Des

systems. From Theorem 2 we conclude that for two dimensions all dynamical systems can
be approximated by the Morse-Smale system with arbitrary accuracy.

We are of course interested in studying systems having dimension greater than two;
however, note that we want to verify control systems. Control systems are almost always
designed using some Lyapunov-based method, i.e., there exists a Lyapunov function for the
considered system, which implies that it is Morse-Smale. Therefore, we conclude that it is
reasonable to only study Morse-Smale systems in this analysis.

2.2 Timed automata

We abstract dynamical systems by timed automata. Therefore, a definition of a timed au-
tomaton is provided in the following Alur et al. [4]. Before defining it, a set of diagonal-free
clock constraints
(C) for the set C of clocks is defined.
(C) contains all invariants and
guards of the timed automaton; consequently, it is described by the following grammar

ψ ::= c �� k|ψ1 ∧ ψ2, (9a)

where

c ∈ C, k ∈ R≥0, and ��∈ {≤,<,=,>,≥}. (9b)

Note that the clock constraint k should usually be a rational number, but in this paper, no ef-
fort is done to convert the clock constraints into rational numbers. However, any real number
can be approximated by a rational number with an arbitrary small error ε > 0.

Definition 6 (Timed automaton) A timed automaton A is a tuple (L,L0,C,�, I,
),
where

– L is a finite set of locations, and L0 ⊆ L is the set of initial locations.
– C is a finite set of clocks.
– � is the input alphabet.
– I : L →
(C) assigns invariants to locations, where
(C) is the set of all clock con-

straints in (9).
–
 ⊆ L ×
(C) × � × 2C × L is a finite set of transition relations. A transition relation

is a tuple (l,Gl→l′ , σ,Rl→l′ , l′) which assigns an edge between two locations, where l is
the source location, l′ is the destination location, Gl→l′ ∈
(C) is the guard set, σ is a
symbol in the alphabet �, and Rl→l′ ⊆ C is a subset of clocks.

The semantics of a timed automaton is defined in the following, adopting the notion of [12].

Definition 7 (Clock valuation) A clock valuation on a set of clocks C is a mapping v : C →
R≥0. The initial valuation v0 is given by v0(c) = 0 for all c ∈ C. For a valuation v, d ∈ R≥0,
and R ⊆ C, the valuations v + d and v[R] are defined as

(v + d)(c) = v(c) + d, (10a)

v[R](c) =
{

0 for c ∈ R,

v(c) otherwise.
(10b)

Form Methods Syst Des

Definition 8 (Semantics of clock constraint) A clock constraint in
(C) is a set of clock
valuations {v : C → R≥0} given by

[[c �� k]] = {v : C → R≥0|v(c) �� k}, (11a)

[[ψ1 ∧ ψ2]] = [[ψ1]] ∩ [[ψ2]]. (11b)

For convenience we denote v ∈ [[ψ]] by v |= ψ .

Definition 9 (Semantics of timed automaton) The semantics of a timed automaton A =
(L,L0,C,�, I,
) is the transition system [[A]] = (S,S0,� ∪ R≥0, Ts ∪ Td) given by

S = {(l, v) ∈ L × R
C
≥0|v |= I (l)},

S0 = {(l, v) ∈ L0 × 0C},
Ts = {(l, v)

σ→ (l′, v′)|∃(l,Gl→l′ , σ,Rl→l′ , l
′) ∈
 : v |= Gl→l′ , v′ = v[Rl→l′]},

Td = {(l, v)
d→ (l, v + d)|∀d ′ ∈ [0, d] : v + d ′ |= I (l)}.

Analog to the solution of (1), shown in (2), is a run of a timed automaton, which is
defined in the following.

Definition 10 (Run of timed automaton) A run of a timed automaton A is a possibly infinite
sequence of alternations between time steps and discrete steps on the following form

(l0, v0)
d1−→ (l0, v1)

σ1−→ (l1, v2)
d2−→ · · · , (12)

where di ∈ R≥0 and σi ∈ �. The multifunction describing runs of a timed automaton
φA : R≥0 × L0 → 2L, defined by l ∈ φA(t, l0) if and only if there exists a path in [[A]]
initialized in (l0, v0) that reaches the location l at time t = ∑

i di .

We use the notation of the run of a timed automaton, to define its reachable locations.

Definition 11 (Reachable set of timed automaton) The reachable set of a timed automaton
A with initial locations L0 on the time interval [t1, t2] is defined by

Reach[t1,t2](A,L0) = {l ∈ L|∃t ∈ [t1, t2],∃l0 ∈ L0, such that l ∈ φA(t, l0)}. (13)

This concludes the preliminary definitions. The next section explains how the state space
of a dynamical system should be partitioned.

3 Generation of finite partition

The main idea of this work is to design an abstraction procedure, which exploits the knowl-
edge of the flow of the dynamical system. Therefore, it is proposed to partition the state
space into a finite number of cells by intersecting slices defined as the set-difference of pos-
itive and negative invariant sets. This ensures a unidirectional flow through the boundaries
of the cells, see Definition 4. Another approach to partitioning the state space of a hybrid

Form Methods Syst Des

Fig. 3 Illustration of a phase plot of a dynamical system (arrows), two positive invariant sets, A1 and A2
(shaded disks), and a slice S = cl(A2\A1) to the right

system by a family of functions is developed in [10]. In this work, the state space is par-
titioned by a family of immersed submanifolds, so called leafs of the foliation. Each leave
is of codimension 1, and it is transversal to the studied vector field. Such a foliation can
be generated as an inverse image of a regular value under a function. Consequently, a col-
lection of foliations defines a partitioning. A regular point of a map f is a point where the
differential of f is surjective. A point v, in the image of f , is a regular value if its pre-image
contains regular points only (i.e. no critical points), see Definition 34.

In most previously proposed methods for abstracting dynamical systems, the partitioning
of the state space is done without considering the dynamics of the system. In contrast to this,
the proposed method is mainly concerned with the partitioning of the state space according
to the system dynamics.

Definition 12 (Slice) A nonempty set S is a slice if there exist two open sets A1 and A2

such that

1. A1 and A2 are positively or negatively invariant,
2. A1 is a proper subset of A2, and
3. S = cl(A2\A1).

The slices are defined to be set-differences of positive or negative invariant sets to ensure
that the vector field is transversal, see Definition 15, to the boundaries of the slices. Figure 3
illustrates a slice and the two positive invariant sets, A1 and A2, which generate it. This
construction of slices ensures a nonzero minimum time for staying in each slice unless it
contains an equilibrium point. We know from the definition of the Lyapunov function that
there are no limit cycles in the set A2\A1. If there was a limit cycle and a and b were
two points on it, then the system would first reach a, then b and a again. However, as the
Lyapunov function is strictly decreasing it would imply that ϕ(a) > ϕ(b) > ϕ(a), which
cannot be true.

To devise a partition of a state space, we need to define finite collections of slices. These
collections are called slice-families.

Definition 13 (Slice-family) A slice-family S is a finite collection of slices generated by the
positive or negative invariant open sets A1 ⊂ A2 ⊂ · · · ⊂ Ak covering the entire state space
of the system � = (X,f). Thereby, S1 = cl(A1), S2 = cl(A2\A1), . . . , Sk = cl(Ak\Ak−1),
and X ⊆ Ak .

For convenience |S| is defined to be the number of slices in the slice-family S .

Form Methods Syst Des

We say that the slice-family S is generated by the sets {Ai |i ∈ k}. We address the exis-
tence and generation of these sets in Sect. 7.

A function is associated to each slice-family S to provide an easy way of describing the
boundary of a slice. Such a function is called a partitioning function.

Definition 14 (Partitioning function) Let S be a slice-family, then a continuous function
ϕ : R

n → R smooth on R
n\Cr(f) is a partitioning function associated to S if for any positive

or negative invariant set Ai generating S there exist ai, a
′
i ∈ R ∪ {−∞,∞} such that

ϕ−1([ai, a
′
i]) = cl(Ai) (14)

and ai, a
′
i are regular values of ϕ, see Definition 34. By regular level set theorem, the bound-

ary ϕ−1(ai) of Ai is an embedded smooth submanifold of R
n [28]. We index the regular

values such that ai < aj if and only if i < j .

The proposed method heavily relies on transversal intersections; therefore, a formal def-
inition of transversal intersection is provided in the following. After the definition, it is
geometrically interpreted to clarify.

Definition 15 (Transversal intersection [17]) Suppose that N1 and N2 are embedded sub-
manifolds of M . We say that N1 intersects N2 transversally if, whenever p ∈ N1 ∩ N2, we
have Tp(N1) + Tp(N2) = Tp(M). (The sum is not direct, just the set of sums of vectors, one
from each of the two subspaces of the tangent space Tp(M).)

In the left subplot of Fig. 4, level sets of two partitioning functions (hence two embedded
submanifolds of R

2) are illustrated. They intersect in the point p; however, their tangents
(black lines) are identical. This implies that their tangent vectors only span one dimension
at p, i.e., Tp(N1) + Tp(N2) �= Tp(M). Therefore, this intersection is not transversal. Note
that with an arbitrary small perturbation, the intersection of the two level sets will be empty,
as shown in the middle subplot (this perturbation is given by a smooth map, see Theorem 2.1
in [17]).

In the right subplot Fig. 4, two level sets intersecting at point p are illustrated. Their
tangent vectors (black lines) span R

2, i.e., the level sets intersect transversally. Note that
two manifolds that do not intersect are also transversal.

It is desired to obtain cells from the slices, and this is done by intersecting slices.

Definition 16 (Transversal intersection of slices) We say that the slices S1 and S2 intersect
each other transversally and write

S1 � S2 = S1 ∩ S2 (15)

if their boundaries, bd(S1) and bd(S2), intersect each other transversally.

Remark 2 A partition is robust, if any two slices intersect each other transversally, since they
still intersect each other transversally after an arbitrary small perturbation. Hence, robustness
is the reason for considering only transversal intersections in the proposed partitioning.

Form Methods Syst Des

Fig. 4 Illustration of two manifolds N1 (red dashed line) and N2 (green dash-dot line). In the left subplot
N1 and N2 intersect; however, not transversally. In the middle subplot N1 and N2 do not intersect, but are
transversal. In the right subplot N1 and N2 intersect transversally

Fig. 5 Phase plot (arrows) of a
two-dimensional system and a
partition generated utilizing two
slice-families. The shaded area
illustrates one extended cell,
which consists of 4 connected
components

Definition 17 (Extended cell) Let S = {S i |i ∈ k} be a collection of k slice-families and let
G(S) ≡ {1, . . . , |S 1|} × · · · × {1, . . . , |S k|}.
Denote the j th slice in S i by Si

j and let g ∈ G(S). Then

eex,g =�k
i=1 Si

gi
, (16)

where gi is the ith element of the vector g. Any nonempty set eex,g is called an extended
cell.

The set G(S), defined above, is used in the remainder of the paper.
The cells in (16) are denoted by extended cells, since the transversal intersection of slices

may form multiple disjoint sets in the state space. This is illustrated in Fig. 5, where a two-
dimensional state space is partitioned utilizing two slice-families (red and green).

The next example clarifies the indexing of the extended cells shown in Definition 17.

Example 1 (Indexing extended cells) Given three slice-families {S i |i ∈ {1,2,3}}, an ex-
tended cell is indexed according to the ordering of the slices defining it, as shown below

eex,(9,5,27) = S1
9 � S2

5 � S3
27. (17)

The vector g from Definition 17 equals (9,5,27) in this example, since eex,(9,5,27) is gener-
ated from slice number 9 in S 1, slice number 5 in S 2, and slice number 27 in S 3.

Form Methods Syst Des

Fig. 6 (Color online) Phase plot (arrows) of a two-dimensional state space. The state space is partitioned
utilizing two slice-families, generated by the partitioning functions ϕ1 (red) and ϕ2 (green). Each cell of the
partition is numbered according to Definition 17 and Definition 18

It is desired to have cells, which are connected. Therefore, the following is defined.

Definition 18 (Cell) A cell is a connected component of an extended cell

⋃

h

e(g,h) = eex,g, (18a)

where

e(g,h) ∩ e(g,h′) = ∅ ∀h �= h′. (18b)

We say that the slices S1
g1

, . . . , Sk
gk

generate the cell e(g,h).
Figure 6 illustrates a two-dimensional state space partitioned using two slice-families

and provides a geometric interpretation of the definitions related to the partitioning of a
state space. The symbols of cells and level-sets of partitioning functions from the previous
definitions are added to clarify their meaning. Note that subscript of ai

j refers to the number
in the slice families, whereas the superscript is the number of slice family, i.e., ai

j is the j th
regular value associated with partitioning function ϕi .

A finite partition based on the transversal intersection of slices is defined in the following.

Definition 19 (Finite partition) Let S be a collection of slice-families, S = {S i |i ∈ k}. We
define a finite partition K(S) by

e ∈ K(S) (19)

if and only if e is a connected component of an extended cell.

Form Methods Syst Des

Based on the definitions provided in this section, a procedure for obtaining a timed au-
tomaton from a finite partition of a state space is presented in the next section.

4 Generation of timed automaton from finite partition

The purpose of this section is to explain how a timed automaton A is generated from a finite
partition K(S) of the state space of a system �. For this, we use the abstraction procedure
presented in [21]; nevertheless, we exclude the clock and constraints related to the time of
traversing a cell. However, these can be added to improve accuracy. The reason why these
clocks are removed is that they destroy the compositional structure of the timed automaton
and requires computation of more guards and invariants.

First, we define an abstraction function associating each cell of the partition K(S) to a
location of a timed automaton.

Definition 20 (Abstraction function) Let K(S) = {ei |i ∈ m} for some m ∈ N be a finite par-
tition of the state space X ∈ R

n and L(S) = {li |i ∈ m} be the locations of a timed automaton.
Then an abstraction function for (X,K(S)) is a multifunction αK : X → 2L(S) defined by

αK(x) = {li ∈ L(S) | x ∈ ei}. (20)

We use this abstraction function and generate a timed automaton according to the fol-
lowing procedure.

Procedure 1 (Generation of a timed automaton) Let S = {S i |i ∈ k} be a finite collection of
slice-families. Then the timed automaton A = (L,L0,C,�, I,
) generated by the partition
K(S) is defined by

Locations: The locations of A are given by

L = L(S) (21)

This means that a location l(g,h) is associated with the cell e(g,h) = α−1
K (l(g,h)) of the

partition K(S), see Definition 20.
Clocks: The number of clocks equals the number of slice-families, i.e., C = {ci |i ∈ k}.
Invariants: In each location l(g,h), there are up to k invariants. We impose an invariant,

whenever there is an upper bound for the time of staying in a slice generating the cell
e(g,h)

I (l(g,h)) =
k∧

i=1

ci ≤ tSi
gi

(22)

where tSi
gi

∈ R≥0 is an upper bound on the time for staying in Si
gi

.

Input Alphabet: The input alphabet � consists of k symbols {σ i |i ∈ k}. Note that σi is
associated with transitions between two slices in the slice-family S i .

Transition relations: If a pair of locations l(g,h) and l(g′,h′), associated with the cells e(g,h)

and e(g′,h′), satisfy the following two conditions

1. e(g,h) and e(g′,h′) are adjacent, that is e(g,h) ∩ e(g′,h′) �= ∅, and

Form Methods Syst Des

2. g′
i ≤ gi for all i ∈ k.

Then there is a transition relation

δ(g,h)→(g′,h′) = (l(g,h),G(g,h)→(g′,h′), σ,R(g,h)→(g′,h′), l(g′,h′)), (23a)

where

G(g,h)→(g′,h′) =
k∧

i=1

{
ci ≥ tSi

gi
if gi − g′

i = 1,

ci ≥ 0 otherwise
(23b)

and tSi
gi

∈ R≥0 is a lower bound on the time for staying in Si
gi

. Note that gi − g′
i = 1

whenever a transition labeled σ i is taken. If gi − g′
i = 0, we stay in the slice from the ith

slice-family generating cell e(g,h); hence, no active guards are on ci .
Note that there is only constraints on the i clock if gi − g′

i = 1, since otherwise we do
not exit a slice from the ith slice-family.
Let i ∈ k. We define R(g,h)→(g′,h′) by

ci ∈ R(g,h)→(g′,h′) (23c)

iff gi − g′
i = 1.

The calculation of tSi
gi

and tSi
gi

can be accomplished in multiple ways, yielding different

properties of the abstraction. This is explained in details in Sect. 6, where conditions for
generating sound and complete abstractions are provided.

For convenience the following notion is introduced.

Definition 21 Let S be a finite collection of slice-families S = {S i |i ∈ k}. Then A (S) is
the timed automaton generated by S according to Procedure 1.

Definition 22 A timed automaton Aex(S) has locations given by

L = Lex(S) (24)

where a location lex,g ∈ Lex(S) is associated with the extended cell eex,g generated by the
slice-family S ; hence, eex,g = α−1

Kex
(lex,g).

5 Properties of the generated timed automaton

A timed automaton generated from the presented procedure possesses some salient proper-
ties, due to the way state spaces are partitioned. Some of these properties are presented in
this section. The section consists of four subsections, each explaining one of the properties.

5.1 Determinism of abstractions

The considered systems have unique maximal solutions, see Definition 1. Therefore, we also
determine when a partition generates a deterministic timed automaton.

Form Methods Syst Des

Fig. 7 (Color online) Partition of a two-dimensional state space using two slice-families S 1 (red) and S 2

(green), and an illustration of the resulting nondeterministic timed automaton (for simplicity only the names
of the locations and symbols on the transitions are shown in the figure). The set e((2,2),1) ∩ (ϕ2)−1(a2

1)

is illustrated with a bold green line, to emphasize that Proposition 1 is not satisfied, as the set (25) is not
connected

Proposition 1 (Deterministic timed automaton) The timed automaton A(S) is determinis-
tic, if and only if for each cell e(g,h) ∈ K(S) and for all i ∈ k the set

e(g,h) ∩ (ϕi)−1(ai
gi−1) (25)

is connected.

We show how to check if an abstraction is deterministic in Proposition 3; however, first
we present an example to clarify Proposition 1.

Example 2 Consider the partition of a two-dimensional state space shown in Fig. 7 gener-
ated using two slice-families S 1 (red) and S 2 (green). A timed automaton generated from
the partition is shown in the bottom of the figure, excluding time information.

From the figure it is seen that the symbol σ 2 determines two transitions in the timed au-
tomaton from l((2,2),1): A transition to l((2,1),1) and a transition to l((2,1),2). The reason for this
is that two cells are reachable from e((2,2),1) by crossing (ϕ2)−1(a2

1), as e((2,2),1) ∩ (ϕ2)−1(a2
1)

(bold green line) consists of two connected components. This implies that Proposition 1 is
not satisfied; hence, a timed automaton generated by this partition is nondeterministic.

For linear systems, it is possible to check if Proposition 1 is satisfied when quadratic
Lyapunov functions are used as partitioning functions. This is explained in the following,
using a proposition from [8] that determine when two quadratic forms intersect.

Form Methods Syst Des

Fig. 8 Illustration of a level set
(ϕ1)−1(a1) (dashed red) and the
level sets (ϕ2)−1(a1γ), and

(ϕ2)−1(a1γ) (solid green)
intersecting (ϕ1)−1(a1)

Proposition 2 (See [8]) Suppose P 1 = (P 1)T > 0, P 2 = (P 2)T > 0, and let ϕ1(x) = xTP 1x

and ϕ2(x) = xTP 2x. Define γ to be the solution to the following optimization problem

minimize γ (26a)

subject to P 2 − γP 1 ≤ 0, γ > 0 (26b)

and define γ to be the solution to the following optimization problem

maximize γ (27a)

subject to P 1γ − P 2 ≤ 0, γ > 0. (27b)

Then the level set (ϕ2)−1(a2) generated for a regular value a2 intersects (ϕ1)−1(a1) if and
only if a2 ∈ [a1γ , a1γ], and (ϕ2)−1(a2) intersects (ϕ1)−1(a1) transversally if and only if
a2 ∈ (a1γ , a1γ).

This is illustrated in Fig. 8, where the level sets (ϕ1)−1(a1), (ϕ2)−1(a1γ), and (ϕ2)−1(a1γ)

are drawn.
From Fig. 7 it is seen that the timed automaton becomes nondeterministic, when a level

set only intersects some, but not all level sets from the other slice families. Using this fact,
the following proposition follows directly from Proposition 2, and is left without proof.

Proposition 3 Let A(S) be an abstraction of a linear system � = (X,f). Let S = {S i |i ∈ k}
be a collection of slice-families. Associate to each slice-family S i a quadratic partition-
ing function ϕi(x) = xTP ix, and let S i be generated using the regular values {ai

k|k ∈
{1, . . . , |S i |}}. For all i, j ∈ k, define γ ij to be the solution to the following optimization
problem

minimize γ ij (28a)

subject to P j − γ ijP i ≤ 0, γ ij > 0 (28b)

and define γ ij to be the solution to the following optimization problem

maximize γ ij (29a)

subject to P iγ ij − P j ≤ 0, γ ij > 0. (29b)

Form Methods Syst Des

Then A(S) is deterministic if and only if for all i �= j ∈ k and for all aj ∈ {aj

k |k ∈
{1, . . . , |S j |}}

aj ∈ (aiγ ij , aiγ ij) ∀ai ∈ {ai
k|k ∈ {1, . . . , |S i |}} or (30a)

aj /∈ (aiγ ij , aiγ ij) ∀ai ∈ {ai
k|k ∈ {1, . . . , |S i |}}. (30b)

Remark that the optimization problems used in Proposition 3 can be solved using stan-
dard tools for solving linear optimization problems.

5.2 Compositionality of abstractions

Under certain conditions it is possible to generate the timed automaton as a parallel compo-
sition of multiple timed automata.

Definition 23 (Parallel composition of timed automata) The parallel composition of
two timed automata, Ai = (Li,L0,i ,Ci,�i, Ii,
i) for i = 1,2 with transition relations
(li ,Gi,li→l′

i
, σ i,Ri,li→l′

i
, l′i), is denoted A = A1‖A2 and is a timed automaton (L,L0,C,�,

I,
), where:

• L = L1 × L2.
• L0 = L0,1 × L0,2.
• C = C1 ∪ C2.
• � = �1 ∪ �2.
• I : L →
(C), where I (l1, l2) = I1(l1) ∧ I2(l2).
•
 ⊆ L ×
(C) × � × 2C × L is a finite set of transition relations, where (l,Gl→l′ , σ,

Rl→l′ , l′) is defined by the following

1. If σ ∈ �1 ∩ �2 then l = (l1, l2), Gl→l′ = G1,l1→l′1 ∧ G2,l2→l′2 , Rl→l′ = R1,l1→l′1 ∪
R2,l2→l′2 , and l′ = (l′1, l

′
2).

2. If σ ∈ �1 and σ �∈ �2 then l = (l1, l2), Gl→l′ = G1,l1→l′1 , Rl→l′ = R1,l1→l′1 , and l′ =
(l′1, l2).

3. If σ �∈ �1 and σ ∈ �2 then l = (l1, l2), Gl→l′ = G2,l2→l′2 , Rl→l′ = R2,l2→l′2 , and l′ =
(l1, l

′
2).

Proposition 4 Let Aex(S) be a timed automaton and let the slices of S be generated such
that for each pair (Si

gi
, S

j
gj

), with i, j ∈ k, gi ∈ {1, . . . , |S i |}, gj ∈ {1, . . . , |S j |}, we have

Si
gi

� Sj
gj

�= ∅ ∀i �= j. (31)

Then, Aex(S) is isomorphic to the parallel composition of k timed automata each generated
by one slice-family S i having an alphabet �i = {σ i}.

Note that case 1 in Definition 23, where σ ∈ �i ∩ �j is never satisfied in this work, as
�i ∩ �j = ∅ for all i �= j .

Remark 3 A parallel composition of timed automata Ai (S i) for i ∈ k is similar to the in-
tersection of slices in the slice-families S i . Therefore, the intersection of slices should be
nonempty to let the locations of the timed automaton Aex(S) be such a parallel composition,
as stated in Proposition 4.

Form Methods Syst Des

The satisfaction of Proposition 4 can be checked using the following proposition.

Proposition 5 Let A(S) be an abstraction of a linear system � = (X,f). Let S = {S i |i ∈ k}
be a collection of slice-families. Associate to each slice-family S i a quadratic partition-
ing function ϕi(x) = xTP ix, and let S i be generated using the regular values {ai

k|k ∈
{1, . . . , |S i |}}. For all i, j ∈ k, define γ ij to be the solution to the following optimization
problem

minimize γ ij (32a)

subject to P j − γ ijP i ≤ 0, γ ij > 0 (32b)

and define γ ij to be the solution to the following optimization problem

maximize γ ij (33a)

subject to P iγ ij − P j ≤ 0, γ ij > 0. (33b)

Then Proposition 4 is satisfied if and only if for all i �= j ∈ k and for all aj ∈ {aj

k |k ∈
{1, . . . , |S j |}}

aj ∈ (aiγ ij , aiγ ij) ∀ai ∈ {ai
k|k ∈ {1, . . . , |S i |}}. (34a)

The property that Aex(S) is isomorphic to the parallel composition of k timed automata is
very important for computations, since it allows parallel verification of the k timed automata
each with only one clock. Furthermore, it makes it possible to sequentially add slice-families
to the abstraction, to replace, and to refine slice-families to improve the accuracy of the
abstraction.

The parallel composition of timed automata also allows the sequential verification of the
abstraction. We show this in terms of safety in the following.

Definition 24 (Safety) Given a timed automaton A(S) and a set of unsafe locations LUS.
The timed automaton A(S) is said to be safe if

Reach[0,∞)(A(S),L0) ∩ LUS = ∅. (35)

Proposition 6 Let Aex(S) = A1(S 1)‖ . . .‖Ak(S k) be a timed automaton and let the timed
automaton A1(S 1)‖ . . .‖Aj (S j) be safe, for some j ∈ k. Then, Aex(S) is also safe.

This proposition is quite intuitive, when considering how the timed automaton is gener-
ated from positive invariant sets as shown in the following example.

Example 3 Consider a timed automaton Aex(S) generated by two slice-families abstracting
a two-dimensional system as shown in Fig. 9 (left subplot). Its initial states are illustrated as
gray areas and the unsafe states are illustrated as black areas.

We compose Aex(S) into A(S 1) (middle subplot) and A(S 2) (right subplot). We observe
that A(S 2) is safe; hence, Aex(S) is also safe, which is seen in the left subplot.

Form Methods Syst Des

Fig. 9 (Color online) Illustration of partition associated with Aex(S) (left subplot), A(S 1) (middle subplot),
and A(S 2) (right subplot). The gray areas illustrate initial states and the black are illustrates unsafe states

5.3 Bisimilarity of abstractions generated from cells and extended cells

Under certain conditions, the timed automaton Aex(S) is bisimilar to the timed automaton
A(S), bisimilarity is defined in Definition 35. In the next proposition we say that the timed
automata A(S) and Aex(S) are related by bisimulation.

Proposition 7 Let S = {S i |i ∈ k} be a collection of slice-families, and ϕi be a partitioning
function for S i . A timed automaton Aex(S) generated by extended cells is bisimilar to a
timed automaton A(S) generated by cells if for each cell e(g,h) and each i ∈ k

e(g,h) ∩ (ϕi)−1(ai
gi−1) �= ∅ ∀h or (36a)

e(g,h) ∩ (ϕi)−1(ai
gi−1) = ∅ ∀h. (36b)

If (36) holds, then all cells in each extended cell have the same symbols on their outgo-
ing transitions; hence, A(S) and Aex(S) are bisimilar. The following example clarifies this
proposition.

Example 4 To illustrate the use of Proposition 7 three different partitions of a two-
dimensional state space are shown in Fig. 10.

In the partitions shown in the left and right side of Fig. 10, the conditions shown in (36)
are satisfied for all g and h. In the partition shown in the middle side of Fig. 10, the con-
straints shown in (36) are not satisfied for e.g. g = (2,2,2) (shaded region), as (ϕ3)−1(a3

1)

(inner black line) does not intersect all cells in eex,(2,2,2).

5.4 Convergence check via partial order

We can define a partial order for the locations of a timed automaton Aex(S) generated by
Procedure 1 as follows. Recall that a partial order on a set X, denoted �, is a relation on X

that is reflexive, transitive, and anti-symmetric.
We define the partial order on the set of locations abstracting extended cells as follows.

Definition 25 (Partial order of locations) Given a timed automaton Aex(S) = (L,L0,C,�,

I,
). Let Rpar ⊆ L × L be a relation defined by

(lex,g, lex,g′) ∈ Rpar iff (37a)

Form Methods Syst Des

Fig. 10 (Color online) Illustration of three different partitions of a two-dimensional state space. The left
and right partitions satisfy Proposition 7. The middle partition does not satisfy Proposition 7, as, e.g., the
extended cell shaded with gray consists of cells, which have either two or three reachable cells

gi ≤ g′
i ∀i ∈ k. (37b)

We write lex,g � lex,g′ when (lex,g, lex,g′) ∈ Rpar.

The relation Rpar is a partial order relation, and (L,�) is a partially ordered set, which
justifies its name.

From the partial order, we can provide a rough estimate of whether a location is reachable
or not according to the following.

Proposition 8 Given a timed automaton Aex(S), a partially ordered set (L,�) of its loca-
tions, and an initial location lex,g . Let lex,g � lex,g′ , then

Reach[0,∞)(A, lex,g) ∩ lex,g′ = ∅. (38)

We define a lattice according to the following.

Definition 26 (Lattice) A partially ordered set (X,�) is said to be a lattice if for any finite
set X′ ⊆ X, the supremum and infimum of X′ exist and belong to X.

Proposition 9 Let Aex(S) = (L,L0,C,�, I,
) be a timed automaton generated from Pro-
cedure 1, and let � be the partial order from Definition 25. Then the partially ordered set
(L,�) is a lattice.

We see that (L,�) is a lattice by construction, as whenever, e.g., lex,(a,b), lex,(b,a) ∈ L,
then also lex,(a,a), lex,(b,b) ∈ L, and lex,(a,a) < lex,(a,b), lex,(a,a) < lex,(b,a) and lex,(a,b) < lex,(b,b),
lex,(b,a) < lex,(b,b). Therefore, both supremum and infimum are defined for all L′ ⊆ L.

Additionally, it is seen that almost all solutions of the system converge towards the loca-
tion inf(L). By this we mean that the solutions end in the location inf(L). This can happen
when a system with saddle points is abstracted. Consider a two-dimensional linear system
with a saddle point. For this system all solutions initialized on one of the eigenaxis converge
to the saddle point, which will not be abstracted by the location inf(L). However, in R

n for
n > 1 this eigenaxis has Lebesgue measure zero. Therefore, we say that almost all solutions

Form Methods Syst Des

diverge from the saddle point. This also means that the analysis of convergence using inf(L)

is “blind” to solutions of measure zero.

6 Conditions for the partitioning

The purpose of this section is to set up necessary and sufficient conditions for the partition
of the state space to generate sound, complete, and refinable abstractions.

6.1 Sound and complete abstractions

A useful abstraction shall preserve safety. Therefore, we introduce sound and complete ab-
stractions in the following [3]. A sound abstraction can verify safety, and a complete ab-
straction can both verify and falsify safety.

Definition 27 (Sound abstraction) Let � = (X,f) be a dynamical system and suppose its
state space X is partitioned by K(S) = {ei |i ∈ k}. Let the initial states X0 = ⋃

i∈I ei with
I ⊆ k. Then a timed automaton A = (L,L0,C,�, I,
) with L0 = {li | i = I} is said to be
a sound abstraction of � on [t1, t2] if for all t ∈ [t1, t2]

ei ∩ Reach[t,t](�,X0) �= ∅ implies (39a)

∃l0 ∈ L0 such that

αK(ei) ∈ φA(t, l0). (39b)

If a sound abstraction A is safe then � is also safe, as the abstraction reaches all locations
reached by � = (X,f).

Definition 28 (Complete abstraction) Let � be a dynamical system and suppose its state
space X is partitioned by K(S) = {ei |i ∈ k} and let the initial states be X0 = ⋃

i∈I ei with
I ⊆ k. Then a timed automaton A = (L,L0,C,�, I,
) with L0 = {li | i = I} is said to be
a complete abstraction of � on [t1, t2] if it is a sound abstraction and for all t ∈ [t1, t2] and

for each li ∈ Reach[t,t](A,L0) (40a)

∃x0 ∈ X0 such that

φ�(t, x0) ∈ α−1
K (li). (40b)

If a complete abstraction A is safe (unsafe) then � is also safe (unsafe).
A sound and a complete abstraction of a dynamical system is illustrated in Fig. 11.

Remark 4 It is not sufficient to demand that an abstraction is complete, since an abstraction
with only one location abstracting the entire state space is always complete.

Proposition 10 A timed automaton Aex(S) = A1‖ . . .‖Ak is a sound (complete) abstraction
of the system �, if and only if A1, . . . , Ak are sound (complete) abstractions of �.

Sufficient conditions for soundness and completeness of an abstraction are formulated in
the following.

Form Methods Syst Des

Fig. 11 Illustration of the reachable set of a dynamical system (gray) from initial set X0 and a sound ap-
proximation of this (cells within bold black lines) on the left and a complete abstraction on the right. Note
that the lowest right cell is not reached by the dynamical system, but is reached by the sound abstraction

Proposition 11 (Sufficient condition for soundness) A timed automaton A(S) is a sound
abstraction of the system �, if its invariants and guards satisfy

tSi
gi

≤ |ai
gi

− ai
gi−1|

sup{|ϕ̇i (x)| ∈ R≥0|x ∈ Si
gi

} , (41a)

tSi
gi

≥ |ai
gi

− ai
gi−1|

inf{|ϕ̇i (x)| ∈ R≥0|x ∈ Si
gi

} (41b)

where ϕ̇i (x) is defined as shown in (4a).

The values of guards of tSi
gi

and tSi
gi

can be algorithmically generated. The invariant tSi
gi

can be generated from Algorithm 1 and the guard can be generated from Algorithm 2.

Algorithm 1 Suppose � = (X,f) is a linear system, {ϕi |i ∈ k} is a family of quadratic
Lyapunov functions, where ϕi = xTP ix is associated with S i , and S i is generated using the
regular values {ai

j |j = 1, . . . , |S i |}. Let ϕ̇i = −xTQix, and define γ i as the solution to the
following optimization problem

maximize γ i (42a)

subject to γ iP i − Qi ≤ 0, γ i > 0. (42b)

Then for any location l(g,h) ∈ L, the invariant is

I (l(g,h)) =
k∧

i=1

ci ≤ tSi
gi

,where (43a)

tSi
gi

≥ |ai
gi

− ai
gi−1|

ai
gi−1γ

i
. (43b)

Algorithm 2 Suppose � = (X,f) is a linear system, {ϕi |i ∈ k} is a family of quadratic
Lyapunov functions, where ϕi = xTP ix is associated with S i , and S i is generated using the
regular values {ai

j |j = 1, . . . , |S i |}. Let ϕ̇ = −xTQix and define γ i to be the solution to the
following optimization problem

min γ i (44a)

Form Methods Syst Des

subject to Qi − γ iP i ≤ 0 (44b)

γ i > 0. (44c)

Then for every pair of locations, l(g,h), l(g′,h′) ∈ L, where g′
i − 1 = gi there is a transition

relation

δ(g,h)→(g′,h′) = (l(g,h),G(g,h)→(g′,h′), σ,R(g,h)→(g′,h′), l(g′,h′)), (45a)

where

G(g,h)→(g′,h′) =
k∧

i=1

{
ci ≥ tSi

gi
if gi − g′

i = 1

ci ≥ 0 otherwise
(45b)

and

tSi
gi

≤ |ai
gi

− ai
gi−1|

ai
gi

γ i
. (45c)

The sufficient condition states that the abstraction is sound if tSi
gi

is less than or equal to

the time it takes to traverse Si
gi

maintaining a constant speed equal to the largest possible
speed within Si

gi
. Similarly, tSi

gi
should be greater than or equal to the time it takes to traverse

Si
gi

maintaining a constant speed equal to the smallest possible speed within Si
gi

. In the next
example of a one-dimensional system, we calculate these sufficient conditions.

Example 5 Consider the system � = (X,f), where f is

ẋ = x (46)

and X = [0,3]. Let ϕ = 1
2x2 be a partitioning function for the system. Then ϕ̇ = −x2 ac-

cording to (4a). An illustration of the partitioning function ϕ and its derivative ϕ̇ is shown in
Fig. 12. We partition X into three slices utilizing the set of values (a1

1, a
1
2, a

1
3) = (1/2,2,9/2)

such that S1
1 = [0,1], S1

2 = [1,2], and S1
3 = [2,3], as shown in Fig. 13.

Now, it is possible to calculate the sufficient conditions for soundness shown in (41).
These are

tS1
2
≤ |a1

2 − a1
1 |

| − (a1
2)

2| = 3/2

4
s, tS1

2
≥ |a1

2 − a1
1 |

| − (a1
1)

2| = 3/2 s, (47a)

tS1
3
≤ |a1

3 − a1
2 |

| − (a1
3)

2| = 5/2

9
s, tS1

3
≥ |a1

3 − a1
2 |

| − (a1
2)

2| = 5/2

4
s. (47b)

Note that neither guards nor invariants for S1
1 are calculated, as the location associated with

this slice has no outgoing transitions and we can stay in this location forever.

Proposition 12 (Sufficient condition for completeness) Let S = {S i |i ∈ k} be a collection
of slice-families, and let

Si
gi

= (ϕi)−1([ai
gi−1, a

i
gi

]). (48)

A deterministic timed automaton A(S) is a complete abstraction of � if

Form Methods Syst Des

Fig. 12 Plot of the partitioning function and its derivative

Fig. 13 Illustration of a one-dimensional state space divided into three slices

1. for any g ∈ G(S), recall the definition of G(S) from Definition 17, with gi ≥ 2 there exists
a time t igi

such that for all x0 ∈ (ϕi)−1(ai
gi

)

φ�(t igi
, x0) ∈ (ϕi)−1(ai

gi−1) (49)

and
2. tSi

gi
= tSi

gi
= t igi

.

Equation (49) states that it takes the time t igi
for all trajectories of � to propagate from

(ϕi)−1(ai
gi

) to (ϕi)−1(ai
gi−1) (i.e., t igi

is the time to travel through slice Si
gi

). Utilizing this
time for both the invariant and guard conditions (i.e., tSi

gi
= tSi

gi
= t igi

) implies that the ab-

straction is complete. Recall that t is used for invariants, while t is used for guard conditions.

Example 6 Consider the system defined in Example 5 and partition it into the same slices
S1

1 , S1
2 , and S1

3 .
The condition shown in (49) is automatically satisfied, as there is only one solution from

each level surface of ϕ. Therefore, t = t , i.e.,

tS1
2
= tS1

2
= ln(4) s, (50a)

tS1
3
= tS1

3
= ln(9/4) s. (50b)

This finalizes the explanation of sound and complete abstractions, but as stared in Re-
mark 4 another condition, called refinability, should also be considered.

6.2 Refinable abstraction

To ensure that an abstraction can get any desired accuracy, it should be refinable according
to the following definitions.

Form Methods Syst Des

Definition 29 (Refinement of partition) Let the partition K(S) be generated by the slice-
families S = {S i |i ∈ k}. Then the partition K(S̃) is a refinement of K(S) if and only if for
any e ∈ K(S) there is a cell ẽ ∈ K(S̃) such that

ẽ ⊆ e. (51)

Definition 30 (Refinable abstraction) An abstraction A(S) of a system � is said to be refin-
able if for all ε > 0 there exists an abstraction A(S̃), where K(S̃) is a refinement of K(S),
such that for all ẽ ∈ K(S̃)

ẽ ⊆ B(ε), (52)

where B(ε) is a ball with radius ε.

The least ε that satisfies (52) for all ẽ ∈ K(S̃) is called the radius of the partition. We see
that combining Definition 28 and Definition 30 yields the following corollary.

Corollary 1 If the system � is abstracted with a complete and refinable abstraction A(S),
then for all ε > 0 there exists a partition A(S̃) such that for all t ∈ [t1, t2]

α−1
K (Reach[t,t](A(S̃),L0)) ⊆ Reach[t,t](�,X0) + B(ε). (53)

We say that the accuracy of the abstraction is the smallest ε such that (53) is satisfied.
Corollary 1 states that a complete and refinable abstraction can approximate the reachable
states of a system � arbitrarily close; hence, this type of abstraction solves Problem 1 in
Sect. 1. In conclusion, to get any desired radius of the partition, all cells of its partition
K(S) should converge towards points. In the next proposition, we answer the question of
minimal number of slice-families necessary to construct a refinable abstraction.

Proposition 13 (Necessary condition for refinable abstraction) If A(S) is a refinable ab-
straction of a system �, then S is a collection of n slice-families.

To clarify this proposition the following example is provided.

Example 7 Consider a partition of the state space of a two-dimensional system generated
utilizing one slice-family shown in Fig. 14.

Imagine that level curves are added to improve the accuracy of the partition. It is seen
that the smallest cells that can be created utilizing only one slice-family are level curves of

Fig. 14 Partition of a
two-dimensional state space
utilizing one slice-family

Form Methods Syst Des

the partitioning function. Therefore, the radius of the partition cannot converge to zero, as
required by Definition 30. However, partitioning the same state space utilizing two slice-
families would allow the radius of the partition to go to zero.

Now, the conditions for obtaining sound, complete, and refinable abstractions have been
set up. In the next section, a method for synthesizing such abstractions using Lyapunov
functions is provided.

7 Partitioning the state space using Lyapunov functions

To synthesize the partitioning presented in this paper, we need to generate partitioning func-
tions. As partitioning functions, we use Lyapunov functions since their sub-level sets are
positive invariant sets. It is beneficial to use Lyapunov functions as partitioning functions, as
this enables the use of existing methods for generating Lyapunov functions used in controller
design. This is possible even though Lyapunov functions are usually associated to systems
with stable equilibria, but recall from Definition 3 that in this context they are associated to
dynamical systems with hyperbolic equilibria. This is done to allow Lyapunov functions to
be partitioning functions for both stable and unstable systems.

In the following, we provide existence results for refinable, sound, and complete abstrac-
tions.

7.1 Refinable abstraction

The use of continuous partitioning functions, see Definition 14, for generating the parti-
tion gives a natural and easy way to describe the boundaries of slices and cells. This also
automatically makes partitions generated by n slice-families refinable.

A partition generated by continuous partitioning functions can be refined, since for any
slice ϕ−1([a1, a2]) the regular values a1 and a2 can be chosen arbitrarily close to each other.
Therefore, if n such functions exist, the abstraction generated from the partition is refinable.
The existence of n Lyapunov functions for a Morse-Smale system is provided in Proposi-
tion 14.

7.2 Sound abstraction

In this subsection we show that there exists a sound abstraction of any Morse-Smale system.
We do this by showing the existence of Lyapunov functions for Morse-Smale systems, ac-
tually we show that there exists n Lyapunov functions for any Morse-Smale system; hence,
they are sound and refinable abstractions.

Definition 31 Let a ∈ CrV(f) if and only if there is p ∈ Cr(f) such that f (p) = a and
suppose � = (X,f). Then two Lyapunov functions ϕ1, ϕ2 : R

n → R are transversal if the
level sets (ϕ1)−1(a) and (ϕ2)−1(a) are transversal for any a ∈ R\{CrV(f)}.

Proposition 14 Let n > 1. For any Morse-Smale system on R
n, there exists n transversal

Lyapunov functions.

From this, the following theorem follows easily.

Theorem 3 Let � = (X,f) be a Morse-Smale system and let n > 1. Then there exists a
sound and refinable abstraction A(S) of � generated by n transversal Lyapunov functions.

Form Methods Syst Des

7.3 Complete abstraction

To generate complete abstractions, we set up a proposition that gives an easy testable con-
dition for completeness. A complete abstraction of (1) can be obtained by constructing a
partition generated by Lyapunov functions, which satisfies Proposition 12.

Proposition 15 Let each slice-family of S = {S i |i ∈ k} be associated with a Lyapunov func-
tion ϕi(x) for the system �, such that Si

j = (ϕi)−1([ai
j−1, a

i
j]) and let

ϕi(x) = αϕ̇i(x) ∀x ∈ R
n. (54)

Then A(S) is a complete abstraction of �.

The existence of such Lyapunov functions is addressed in the following proposition.

Proposition 16 For any hyperbolic linear system � there exists n transversal Lyapunov
functions ϕi(x) each satisfying

ϕi(x) = αϕ̇i(x) ∀x ∈ R
n. (55)

Theorem 4 For any hyperbolic linear system � there exists a complete abstraction given
by n transversal Lyapunov functions.

8 Examples

To illustrate the use of the proposed abstraction method, three examples are provided in
this section. In the first example, we provide the reachable sets of a sound and a complete
abstractions of a simple dynamical system are provided. In the second example, we demon-
strate what type of questions we can answer using the proposed abstraction. Note that these
requirements cannot be verified using conventional technics from control theory; however,
using some existing simulation-based verification tools the verification is possible. In the
third example, we demonstrate that the method is applicable for high-dimensional systems,
by verifying a 100 dimensional system.

In the following, we compare the reachable sets of a sound and a complete abstraction
and see how their different partitions look. It is chosen to utilize a two-dimensional linear
system in the example, since it is possible to visualize its state space, but the method applies
for systems of arbitrary dimension. The considered linear system is specified in the following

ẋ = Ax (56)

with X = [−10,10] × [−10,10]

A =
[−3 −1

−2 −5

]
and X0 = [1.5,2] × [−10,−9.5].

In both cases of the sound and the complete abstraction, the state space is partitioned
utilizing two different Lyapunov functions, i.e., two slice-families. Furthermore, each slice-
family consists of 10 sub-level sets, which are equally distributed on the considered state

Form Methods Syst Des

Fig. 15 (Color online) Illustration of a sound abstraction (left subplot), a complete abstraction (middle sub-
plot), and a comparison of their reachable sets (right subplot). The black area in the right subplot is the
reachable state space of (56), the green area is the reachable state space of the complete abstraction, and the
gray area is the reachable states of the sound abstraction

space Fig. 15. Both abstractions are timed automata with 361 locations (100 extended loca-
tions).

To simplify Fig. 15, we have chosen to only depict the partitions of the state space, not
the timed automata.

In the figure, the reachable states of the two abstractions are shaded gray and are com-
pared with the reachable space of the considered system in the right subplot. Notice that no
effort is done to make the initial states (black box) fit with the cells of the partitions; hence,
this introduces some over-approximation of the abstractions. In conclusion, the reachable
state space for the sound abstraction is larger than the reachable state space for the complete
abstraction, as expected.

When we look at the shape of the cells of the two partitions, it is seen that the cells
of the complete abstraction look more complicated than the shape of the sound partition.
Additionally, more computations are necessary for generating the complete abstraction, as
it is generated via conjugate transformation, as explained in the proof of Proposition 16.
Hence, the increased accuracy comes at a price—increased computational complexity.

The next example shows what type of specifications we are capable of checking using the
proposed abstraction. In the example, we consider a slightly more complicated example, and
a very complicated specification. The system is given by the following three-dimensional
system (again the dimensionality is kept low to allow visualization of the example)

ẋ =
⎡

⎣
−0.1 −1 0

1 −0.1 0
0 0 −0.15

⎤

⎦x. (57)

Now, we check if the system satisfies the following specification, which is illustrated in
Fig. 16: Does all trajectories of the system (57) initialized in X0 = [−0.1, 0.1] × [0.8, 1] ×
[0.9, 1] (blue box)

– avoid the unsafe region (red box),
– reach the bottom half of the state space (below the gray surface) within 10 s,
– and reach the goal set (green box) within 20 s and stay there.

Form Methods Syst Des

Fig. 16 (Color online) State space of the considered system. The blue box illustrates the initial states of the
system, the red box illustrates the unsafe states, and the green box illustrated the goal states. The plane given
by x3 = 0.5 is illustrated with gray and finally a set of system trajectories are drawn with black lines

To verify this specification, we partition the state space using three quadratic Lyapunov
functions ϕi(x) = xTP ix, for i ∈ {1,2,3} and

P 1 =
⎡

⎣
0.0050 0 0

0 0.0050 0
0 0 3.3333

⎤

⎦ , (58a)

P 2 =
⎡

⎣
4.3069 0.0693 0
0.0693 4.6931 0

0 0 0.0033

⎤

⎦ , (58b)

P 3 =
⎡

⎣
5.2475 −0.0248 0

−0.0248 4.7525 0
0 0 0.0033

⎤

⎦ . (58c)

The partition is not shown in the figure; whereas, both the requirements and a set of trajec-
tories of (57) are illustrated.

The analysis of the system says that the requirements are satisfied, as no trajectories reach
the red box, all trajectories go below x3 = 0.5 within 7 s and stay inside the green box after
12.7 s. This also complies with the simulated trajectories shown in Fig. 16.

Now, we verify a 100-dimensional system, by checking if all trajectories initialized in
the unit hypercube centered at xinit avoid the unit hypercube centered at xavoid. We do not
want to write all the 10,000 elements of the system matrix and the 100 coordinates of xinit

and xavoid. Therefore, we provide the MATLAB code necessary to reproduce the setup in the
following:

Form Methods Syst Des

1 rand (’ s t a t e ’ , 1) ; \% S e t s t a t e o f random g e n e r a t o r
2 randn (’ s eed ’ , 1) ; \% S e t seed o f random g e n e r a t o r
3 SYS = r s s (1 0 0 , 0) ; \% Genera te 100 d i m e n s i o n a l random s t a t e space model
4 rand (’ s t a t e ’ , 2) ; \% S e t s t a t e o f random g e n e r a t o r
5 randn (’ s eed ’ , 2) ; \% S e t seed o f random g e n e r a t o r
6 x _ i n i t = 10∗ rand (1 , 1 0 0) ; \% Pick 100 random numbers from u n i f o r m d i s t .
7 rand (’ s t a t e ’ , 3) ; \% S e t s t a t e o f random g e n e r a t o r
8 randn (’ s eed ’ , 3) ; \% S e t seed o f random g e n e r a t o r
9 x_avo id = 8∗rand (1 , 1 0 0) ; \% Pick 100 random numbers from u n i f o r m d i s t .

Before verifying a system of this size, it would be appropriate to apply some model order
reduction techniques [5] to obtain a lower order model. However, to demonstrate that it is
possible to verify such systems by the proposed method, the dimension is kept at 100; hence,
we use 100 Lyapunov functions.

It is not reasonable to just generate one automaton with a location for each cell of the par-
tition, as the automaton would have billions of locations. Therefore, we generate one timed
automaton per Lyapunov function (i.e. 100 timed automata). The automata are analyzed
separately, giving a time interval in which a solution may be in xavoid. If the conjunction of
all these time intervals is empty, then no trajectory reaches xavoid. In the considered example,
this time interval is empty; hence, all trajectories avoid xavoid.

9 Conclusion

In this paper, a method for abstracting dynamical systems by timed automata is proposed.
The abstraction is based on partitioning the state space of the dynamical systems by set-
differences of positively invariant sets.

To enable both verification and falsification of safety of the considered system based on
the abstraction, conditions for soundness, completeness, and refinability are derived. Fur-
thermore, it has been demonstrated that the abstraction can be obtained as a parallel compo-
sition of multiple timed automata under certain conditions.

Via algorithms, based on LMI-based optimization problems, it is shown how the condi-
tions for the abstraction can be checked and how time information for the timed automaton
can be generated for linear systems.

It is shown that there exist sound and refinable abstractions for hyperbolic Morse-Smale
systems and complete and refinable abstractions for all hyperbolic linear systems. Finally,
an example of a sound and a complete abstraction is provided and their reachable sets are
compared.

In the presented work, it is seen that abstractions generated by partitioning the state space
of a system with the use of Lyapunov functions can be designed to be sound, complete, and
refinable. Furthermore, a priori an upper bound on the over-approximation of the reach-
able set introduced by the abstraction can be calculated. Finally, an example shows that the
method is applicable for high-dimensional systems, due to its compositionality.

Appendix A: Definitions

Definition 32 (Morse-Smale system [29]) A smooth vector field X ∈ Xr (M) will be called
a Morse-Smale system (or field) provided it satisfies the following conditions:

1. X has a finite number of singular points, say β1, . . . , βk , each hyperbolic. A hyperbolic
singular point is a singular point such that in local coordinates the matrix of partial deriva-
tives of X has eigenvalues with nonzero real parts.

Form Methods Syst Des

2. X has a finite number of closed orbits (periodic solutions), say βk+1, . . . , βn, each hyper-
bolic.

3. For any p ∈ M , α(p) = βi and ω(p) = βj for some i and j .
4. Let �(X) be the nonwandering1 points for X, then �(X) = {β1, . . . , βN }.
5. The stable and unstable manifolds associated with the βi have transversal intersection.

Definition 33 (Topologically equivalent vector fields [30]) Two vector fields ξ, η ∈ Xr (M)

are topologically equivalent if there exists a homeomorphism h : M → N (h is continuous
and has continuous inverse) such that

1. h ◦ φξ (R, x0) = φη(R, h(x0)) for each x0 ∈ M ,
2. h preserves the orientation, that is if x0 ∈ M and δ > 0 there exists ε > 0 such that, for

0 < t < δ, h ◦ φξ (t, x0) = φη(τ,h(x0)) for some 0 < τ < ε.

Remark 5 Two vector fields are topologically conjugate if t = τ in the previous definition.

From Definition 33, we see that the solution of a vector field η from some initial state
can be described by a continuous deformation (the homeomorphism h) of the solution to a
topologically equivalent vector field ξ . For a more formal explanation, see Proposition 4.1
in [19].

Definition 34 (Regular value [28]) Let f : N → M be a smooth map. A point p in N is a
regular point if the differential

f∗,p : TpN → Tf (p)M (59)

is surjective. A point in M is a regular value if it is the image of a regular point.

Definition 35 (Timed-abstracted bisimulation [12]) Let A = (L,L0,C,�, I,
) be a
timed automaton. A reflexive and symmetric relation R ⊆ L × R

C × L × R
C is a time-

abstracted bisimulation if for all (l1, v1)R(l2, v2), (Note that we denote (l1, v1, l2, v2) ∈ R by
(l1, v1)R(l2, v2))

• for all (l1, v1)
d→ (l′1, v

′
1) there exists (l′1, v

′
1)R(l′2, v

′
2) for which (l2, v2)

d→ (l′2, v
′
2), and

• for all (l1, v1)
σ→ (l′1, v

′
1), σ ∈ �, there exists (l′1, v

′
1)R(l′2, v

′
2) for which (l2, v2)

σ→ (l′2, v
′
2).

We say A1 and A2 are bisimilar if there exists a time-abstracted bisimulation R for (A1, A2).

Appendix B: Proofs

Proof of Proposition 1 If e(g,h) ∩ (ϕi)−1(ai
gi−1) is not connected for some i, then σ i is the

label of multiple outgoing transitions from the location e(g,h), i.e., there exist multiple tran-
sitions in
, where e(g,h) is the source location and σ i is the label. Therefore, the timed
automaton A(S) is nondeterministic. �

1We say that p ∈ M is a wandering point for X if there exists a neighborhood V of p and a number t0 such
that φX(t,V) ∩ V = ∅ for |t | > t0.

Form Methods Syst Des

Proof of Proposition 4 Consider the timed automaton A‖(S) = A1(S 1)‖ . . .‖Ak(S k)

where Ai (S i) = (Li,L0,i ,Ci,�i, Ii ,
i) and Li = {li1, . . . , li|Si |}, abstracting the slices
Si

1, . . . , S
i
|Si |. Then the timed automaton A‖(S) is given by

Locations: L = L1 × · · · × Lk , which according to Definition 17 represents extended cells,
if the transversal intersection of all slices is nonempty i.e. (31) is satisfied.

Clocks: C = {ci, . . . , ck}, where ci monitors the time for being in a slice of S i .
Invariants: The invariant for location lex,g = (l1

g1
, . . . , lkgk

) is identical to (22) and is

I (lex,g) =
k∧

i=1

Ii(l
i
gi

). (60)

Input Alphabet: � = {σ 1, . . . , σ k}.
Transition relations: �i is disjoint from �j for all i �= j ; hence, item (1) in Definition 23

never happens.

This implies that A‖(S) = A1(S 1)‖ . . .‖Ak(S k) and Aex(S) are isomorph. �

Proof of Proposition 6 If the locations of Aex are extended cells, then soundness of Aex can
be reformulated to the following.

A timed automaton Aex with L0 = {eex,g|g ∈ G0 ⊆ G} is said to be a sound abstraction of
� with X0 = ⋃

g∈G0
eex,g on [t1, t2] if for all t ∈ [t1, t2] and for all g ∈ G

k⋂

i=1

Si
gi

∩ Reach[t,t](�,X0) �= ∅ implies (61a)

∃l0 ∈ L0 such that

k⋂

i=1

Si
gi

∈ α−1
K (φAex(t, l0)) (61b)

which is equivalent to: For all i ∈ k, all g ∈ G , and for all t ∈ [t1, t2]
Si

gi
∩ Reach[t,t](�,X0) �= ∅ implies (62a)

∃l0,i ∈ L0,i such that

α−1
K (φAi

(t, l0,i)) = Si
gi

. (62b)

From (62) it is seen that Aex = A1‖ . . .‖Ak is sound if and only if Ai is sound for i ∈ k.
Similar arguments can be used to prove the completeness part of Proposition 10. �

Proof of Proposition 7 Let e(g,h) with h ∈ m be the cells which union is the extended
cell eex,g . Then

I (e(g,h)) = I (e(g,k)) ∀h, k ∈ m (63)

as the invariants are calculated based on slices (22).
If the partition satisfies (36), then the same outgoing transitions exist for all cells within

the same extended cell. Furthermore,

G(g,h)→(g′,h′) = G(g,k)→(g′,k′) ∀h, k ∈ m (64)

Form Methods Syst Des

since the guards are also calculated based on slices (19b) in [26]. This implies that all pos-
sible behaviors from each cell in an extended cell are the same; hence, A(S) is bisimilar to
a timed automaton Aex(S). �

Proof of Proposition 11 Let A(S) be a timed automaton with L0 = {ei |i ∈ I}, be an ab-
straction of � with initial set X0 = ⋃

i∈I ei . If guards and invariants of A(S) satisfy (41),
then

Reach[t1,t2](�,X0) ⊆ α−1
K (Reach[t1,t2](A,L0)) (65)

since for all x0 ∈ (ϕi)−1(ai
gi

) there exists t ∈ [tSi
gi

, tSi
gi

] such that

φ�(t, x0) ∈ (ϕi)−1(ai
gi−1). (66)

�

Proof of Proposition 12 The proposition states that it takes the same time for all trajecto-
ries of � to propagate between any two level sets of ϕi . From this it follows that A(S) is
complete if tSi

gi
and tSi

gi
are equal to t igi

. �

Proof of Proposition 13 If A(S) is a refinable abstraction, then for any ε > 0 there exists a
partitioning K(S) such that (30) in [26] holds for cells in K(S). Therefore,

Si
gi

⊂ (ϕi)−1(ai
gi

) + B(ε) (67)

where ε > 0. Note that ai
gi

is a regular value of ϕi , i.e., the dimension of the level set
(ϕi)−1(ai

gi
) is n − 1. The locations of A(S) are cells for which

⋃

h

e(g,h) =�k
i=1 Si

gi
(68a)

⊂�k
i=1

(
ϕ−1

i (ai
gi

) + B(ε)
)

(68b)

⊂�k
i=1 ϕ−1

i (ai
gi

) + B(2ε). (68c)

But (68c) is true for any ε, thus it is enough to prove that

dim
(
�k

i=1 (ϕi)−1(ai
gi

)
) = 0. (69)

Using Theorem 7.7 in [9] the dimension of an extended cell is given by

dim
(
�k

i=1 (ϕi)−1(ai
gi

)
) = [[(n − 1) + (n − 1) − n] + (n − 1) − n] + (n − 1) − n · · · (70a)

= k(n − 1) − (k − 1)n. (70b)

We see that if k �= n then dim(�k
i=1 (ϕi)−1(ai

gi
)) �= 0, thus we have contradiction. We con-

clude that k = n. �

Proof of Proposition 14 Let S(n,R) be a set of n × n symmetric matrices. S(n,R) is a
subspace of M(n,R) of dim(S(n,R)) = n(n + 1)/2. Consider the map ϕA : S(n,R) →
S(n,R) and let

P �→ ATP + PA. (71)

Form Methods Syst Des

Now consider the map det : M(n,R) → R and let

A �→ det(A). (72)

Then (det ◦ ϕA)−1({0}) is a closed set. Therefore,

UA ≡ {P ∈ S(n,R)|det ◦ ϕA(P) �= 0} (73)

is an open set. VA ≡ V ∩ UA is open, where

V = {P ∈ S(n,R)|det(P) �= 0} (V is open). (74)

Let � = {Q ∈ S(n,R)|Q > 0} by Proposition 2.18 in [19] the map

M(n,R) → Cn/Sn defined by (75)

L �→ diag([λ1, . . . , λn]) is continuous. (76)

Thus � is an open set in S(n,R).
We pick an open neighborhood around Q = ATP + PA and denote it U . Then for every

Q′ ∈ U there exists a (unique) P , thus ϕ−1
A (U) is a nonempty open set in S(n,R).

We can pick n linear independent matrices P1, . . . ,Pn ∈ ϕ−1
A (U). This is possible because

ϕ−1
A (U) is open in S(n,R) and dim(S(n,R)) is n(n + 1)/2. Then for any a ∈ R\{0} and

i �= j

{x ∈ R
n|xTPix = a} � {x ∈ R

n|xTPjx = a}. (77)

Extending this to Morse-Smale systems follows directly from Theorem 1 in [23]. �

Proof of Proposition 15 Let ϕ(x) be a Lyapunov function for the system � and let x, x ′ ∈
ϕ−1(am). According to Proposition 12 the abstraction is complete if there exists a tm, for
m = 2, . . . , k such that

φ�(tm, x),φ�(tm, x ′) ∈ ϕ−1(am−1). (78)

This is true if

ϕ̇(φ�(t, x)) − ϕ̇(φ�(t, x ′)) = 0 ∀t. (79)

The combination of (78) and (79) implies that for all c > 0 there exists an α such that

ϕ−1(c) = ϕ̇−1

(
c

α

)
(80)

hence for all x there exists an α such that

ϕ(x) = αϕ̇(x). (81)

�

Proof of Proposition 16 This is proved for linear systems, by constructing the complete
abstraction.

Form Methods Syst Des

Consider a linear differential equation

[
ẋ1

ẋ2

]
=

[
λ1I1 0

0 λ2I2

][
x1

x2

]
(82)

where I1, I2 are identity matrices and λ1 < 0 and λ2 > 0.
The stable and unstable subspaces of (82) are orthogonal and can be treated separately.

This system is divided into a stable space described by x1 and an unstable space described
by x2. For i ∈ {1,2} let ϕi(xi) = xT

i Pixi be a quadratic Lyapunov function. Then its deriva-
tive is ϕ̇(xi) = xT

i Qixi , where

2λiPi = Qi for i = 1,2. (83)

This implies that any quadratic Lyapunov function satisfies Proposition 15 and hence
generates a complete abstraction.

Since hyperbolic linear systems are topologically conjugate if and only if they have the
same index [18]. There is a homeomorphism h : R

n → R
n such that any hyperbolic linear

system is topologically conjugate of (82), by choosing I1 and I2 appropriately. Note that h

is a diffeomorphism on R
n\{0}.

This implies that there exists a complete abstraction of every hyperbolic linear system. �

References

1. Alfaro LD, Henzinger TA, Majumdar R (2001) Symbolic algorithms for infinite-state games. In: Pro-
ceedings of the 12th international conference on concurrency theory, Aalborg, Denmark, pp 536–550.
doi:10.1007/3-540-44685-0_36

2. Alur R, Courcoubetis C, Dill D (1990) Model-checking for real-time systems. In: Proceedings of the
fifth annual IEEE symposium on logic in computer science, Philadelphia, PA, USA, pp 414–425.
doi:10.1109/LICS.1990.113766

3. Alur R, Dang T, Ivančic F (2003) Progress on reachability analysis of hybrid systems using predicate
abstraction. In: Proceedings of the 6th international conference on hybrid systems: computation and
control, Prague, Czech Republic, pp 4–19

4. Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235.
doi:10.1016/0304-3975(94)90010-8

5. Antoulas AC (2005) Approximation of large-scale dynamical systems. Advances in design and control.
SIAM, Philadelphia

6. Asarin E, Dang T, Frehse G, Girard A, Guernic CL, Maler O (2006) Recent progress in continuous and
hybrid reachability analysis. In: Proceedings of the 2006 IEEE conference on computer aided control
systems design, Munich, Germany, pp 1582–1587. doi:10.1109/CACSD-CCA-ISIC.2006.4776877

7. Behrmann G, David A, Larsen KG (2004) A tutorial on Uppaal. In: Formal methods for the design of
real-time systems. Lecture notes in computer science, vol 3185. Springer, Berlin, pp 200–236. doi:10.
1007/978-3-540-30080-9_7

8. Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control
theory. SIAM studies in applied mathematics, vol 15. SIAM, Philadelphia

9. Bredon GE (1993) Topology and geometry. Springer, Berlin
10. Broucke M (1998) A geometric approach to bisimulation and verification of hybrid systems. In: Pro-

ceedings of the 37th IEEE conference on decision and control, Tampa, FL, USA, pp 4277–4282.
doi:10.1109/CDC.1998.761977

11. Clarke F, Ledyaev Y, Stern R, Wolenski P (1998) Nonsmooth analysis and control theory. Springer,
Berlin

12. Fahrenberg U, Larsen K, Thrane C (2010) Verification, performance analysis and controller synthesis
for real-time systems. In: Fundamentals of software engineering. Lecture notes in computer science,
vol 5961. Springer, Berlin, pp 34–61. doi:10.1007/978-3-642-11623-0_2

13. Ghosh R, Tomlin C (2004) Symbolic reachable set computation of piecewise affine hybrid automata and
its application to biological modelling: Delta-Notch protein signalling. Syst Biol 1(1):170–183

http://dx.doi.org/{10.1007/3-540-44685-0_36}
http://dx.doi.org/{10.1109/LICS.1990.113766}
http://dx.doi.org/{10.1016/0304-3975(94)90010-8}
http://dx.doi.org/{10.1109/CACSD-CCA-ISIC.2006.4776877}
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/{10.1109/CDC.1998.761977}
http://dx.doi.org/10.1007/978-3-642-11623-0_2

Form Methods Syst Des

14. Girard A (2005) Reachability of uncertain linear systems using zonotopes. In: Proceedings of the 8th
international conference on hybrid systems: computation and control, Zurich, Switzerland, pp 291–305

15. Girard A, Pola G, Tabuada P (2010) Approximately bisimilar symbolic models for incrementally stable
switched systems. IEEE Trans Autom Control 55(1):116–126. doi:10.1109/TAC.2009.2034922

16. Guéguen H, Lefebvre MA, Zaytoon J, Nasri O (2009) Safety verification and reachability analysis for
hybrid systems. Annu Rev Control 33(1):25–36. doi:10.1016/j.arcontrol.2009.03.002

17. Hirsch MW (1976) Differential topology. Springer, Heidelberg
18. Hirsch MW, Smale S, Devaney RL (2004) Differential equations, dynamical systems & an introduction

to chaos, 2nd edn. Elsevier, Amsterdam
19. Junior JP, de Melo W (1980) Geometric theory of dynamical systems: an introduction. Springer, Berlin
20. Kurzhanski AB, Vályi I (1997) Ellipsoidal calculus for estimation and control. Birkhäuser, Boston
21. Maler O, Batt G (2008) Approximating continuous systems by timed automata. In: Proceedings of the

1st international workshop on formal methods in systems biology, Cambridge, UK, pp 77–89
22. Matsumoto Y (2002) An introduction to Morse theory. American Mathematical Society, Providence
23. Meyer KR (1968) Energy functions for Morse Smale systems. Am J Math 90(4):1031–1040
24. Morse M, Hedlund GA (1938) Symbolic dynamics. Am J Math 60(4):815–866
25. Peixoto MM (1962) Structural stability on two-dimensional manifolds. Topology 1(2):101–120
26. Sloth C, Wisniewski R (2010) Abstraction of continuous dynamical systems utilizing Lyapunov func-

tions. In: Proceedings of the 49th IEEE conference on decision & control, Atlanta, Georgia USA,
pp 3760–3765

27. Tiwari A (2008) Abstractions for hybrid systems. Form Methods Syst Des 32(1):57–83.
doi:10.1007/s10703-007-0044-3

28. Tu LW (2008) An introduction to manifolds. Springer, Berlin
29. Wisniewski R (2005) Flow lines under perturbations within section cones. PhD thesis, Department of

Mathematical Sciences, Aalborg University
30. Wisniewski R, Raussen M (2007) Geometric analysis of nondeterminacy in dynamical systems. Acta

Inform 43(7):501–519. doi:10.1007/s00236-006-0037-5
31. Yazarel H, Pappas GJ (2004) Geometric programming relaxations for linear system reachability. In:

Proceedings of the 2004 American control conference, Boston, MA, USA, pp 553–559. doi:10.1109/
ACC.2004.182304

http://dx.doi.org/{10.1109/TAC.2009.2034922}
http://dx.doi.org/{10.1016/j.arcontrol.2009.03.002}
http://dx.doi.org/{10.1007/s10703-007-0044-3}
http://dx.doi.org/{10.1007/s00236-006-0037-5}
http://dx.doi.org/10.1109/ACC.2004.182304
http://dx.doi.org/10.1109/ACC.2004.182304

	Verification of continuous dynamical systems by timed automata
	Abstract
	Introduction
	Notation

	Preliminaries
	Dynamical systems
	Considered class of systems

	Timed automata

	Generation of finite partition
	Generation of timed automaton from finite partition
	Properties of the generated timed automaton
	Determinism of abstractions
	Compositionality of abstractions
	Bisimilarity of abstractions generated from cells and extended cells
	Convergence check via partial order

	Conditions for the partitioning
	Sound and complete abstractions
	Refinable abstraction

	Partitioning the state space using Lyapunov functions
	Refinable abstraction
	Sound abstraction
	Complete abstraction

	Examples
	Conclusion
	Appendix A: Definitions
	Appendix B: Proofs
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

