arXiv:1104.3348v2 [cs.GT] 19 Nov 2014

Symbolic Algorithms for Qualitative Analysis of
Markov Decision Processes withiBhi Objectives

Krishnendu Chatterjee Monika Henzinger
IST Austria University of Vienna
krish.chat@gmail.com monika.henzinger@univie.ac.at
Manas Joglekar Nisarg Shah
Stanford University Carnegie Mellon University
manasrj@stanford.edu nkshah@cs.cmu.edu
Abstract

We consider Markov decision processes (MDPs) with Budhéless) objectives. We consider the
problem of computing the set @imost-surewinning states from where the objective can be ensured
with probability 1. Our contributions are as follows: Fjrate present the first subquadratic symbolic
algorithm to compute the almost-sure winning set for MDPthBitichi objectives; our algorithm takes
O(n - /m) symbolic steps as compared to the previous known algoritrantakesO(n?) symbolic
steps, where: is the number of states and is the number of edges of the MDP. In practice MDPs
have constant out-degree, and then our symbolic algorifesO (n - /n) symbolic steps, as compared
to the previous knowi®(n?) symbolic steps algorithm. Second, we present a new algoyitamely
win-losealgorithm, with the following two properties: (a) the algbm iteratively computes subsets of
the almost-sure winning set and its complement, as compaubprevious algorithms that discover the
almost-sure winning set upon termination; and (b) requi*és - v/K) symbolic steps, wher& is the
maximal number of edges of strongly connected componettsjof the MDP. The win-lose algorithm
requires symbolic computation of scc’s. Third, we imprdwe &lgorithm for symbolic scc computation;
the previous known algorithm takes linear symbolic stepd,@ur new algorithm improves the constants
associated with the linear number of steps. In the worst tasprevious known algorithm takés n
symbolic steps, whereas our new algorithm takea symbolic steps.

1 Introduction

Markov decision processes. The standard model of systems in verification of probalilisystems is
Markov decision processes (MDPH#)at exhibit both probabilistic and nondeterministic beba [12].
MDPs have been used to model and solve control problemsdohastic systems [10]: there, nondeter-
minism represents the freedom of the controller to choosenr@ action, while the probabilistic compo-
nent of the behavior describes the system response to tactions. MDPs have also been adopted as

*The research was supported by Austrian Science Fund (FWd&Fjt@lo P 23499-N23 on Modern Graph Algorithmic Tech-
niques in Formal Verification, FWF NFN Grant No S11407-N235[R), ERC Start grant (279307: Graph Games), and Microsoft
faculty fellows award.

TAppeared in Formal Methods in System Design, 42(3):301-2923. A preliminary version of the paper appeared in the
proceedings of the 23rd International Conference on CoenpAitled Verification, pp. 260-276, 2011.


http://arxiv.org/abs/1104.3348v2

models for concurrent probabilistic systems [6], prokatid systems operating in open environments [18],
and under-specified probabilistic systems [1]specificationdescribes the set of desired behaviors of the
system, which in the verification and control of stochasyistems is typically anv-regular set of paths.
The class ofu-regular languages extends classical regular languagdefiriite strings, and provides a ro-
bust specification language to express all commonly usedf&agions, such as safety, liveness, fairness,
etc. [23]. Parity objectives are a canonical way to defindrsucegular specifications. Thus MDPs with
parity objectives provide the theoretical framework talgtproblems such as the verification and control of
stochastic systems.

Qualitative and quantitative analysis. The analysis of MDPs with parity objectives can be classifital
gualitative and quantitative analysis. Given an MDP withitgaobjective, thequalitative analysisasks
for the computation of the set of states from where the patifgctive can be ensured with probability 1
(almost-sure winning). The more genetplantitative analysissks for the computation of the maximal
probability at each state with which the controller cansfgtihe parity objective.

Importance of qualitative analysis. The qualitative analysis of MDPs is an important problemernifica-
tion that is of interest irrespective of the quantitativelgeis problem. There are many applications where
we need to know whether the correct behavior arises withgimdity 1. For instance, when analyzing a ran-
domized embedded scheduler, we are interested in whetbgr tiwead progresses with probability 1 [8].
Even in settings where it suffices to satisfy certain spetifins with probabilityp < 1, the correct choice
of p is a challenging problem, due to the simplifications intraetli during modeling. For example, in the
analysis of randomized distributed algorithms it is quitencnon to require correctness with probability 1
(see, e.g., [16, 15, 22]). Furthermore, in contrast to qtaive analysis, qualitative analysis is robust to nu-
merical perturbations and modeling errors in the transitimbabilities, and consequently the algorithms for
gualitative analysis are combinatorial. Finally, for MDR#h parity objectives, the best known algorithms
and all algorithms used in practice first perform the quiiéaanalysis, and then perform a quantitative
analysis on the result of the qualitative analysis [6, 7, Hjus qualitative analysis for MDPs with parity
objectives is one of the most fundamental and core problamerification of probabilistic systems. One of
the key challenges in probabilistic verification is to obtafficient and symbolic algorithms for qualitative
analysis of MDPs with parity objectives, as symbolic algoris allow to handle MDPs with a large state
space.

Previous results. The qualitative analysis for MDPs with parity objectiveachieved by iteratively apply-
ing solutions of the qualitative analysis of MDPs with Buiohjectives [6, 7, 5]. The qualitative analysis of
an MDP with a parity objective witld priorities can be achieved ly(d) calls to an algorithm for qualita-
tive analysis of MDPs with Biichi objectives, and hence waifoon the qualitative analysis of MDPs with
Biichi objectives. The classical algorithm for qualitatianalysis for MDPs with Biichi objectives works
in O(n - m) time, wheren is the number of states, amd is the number of edges of the MDP [6, 7]. The
classical algorithm can be implemented symbolically, drtdkes at mos©(n?) symbolic steps. An im-
proved algorithm for the problem was given in [4] that works((m - \/m) time. The algorithm of [4]
crucially depends on maintaining the same number of edgesriain forward searches. Thus the algorithm
needs to explore edges of the graph explicitly and is intisreon-symbolic. A recenO(m - n?/3) time
algorithm for the problem was given in [3]; however the altion requires the dynamic-tree data structure
of Sleator-Tarjan [19], and such data structures cannanpieimented symbollically. In the literature, there
is no symbolic subquadratic algorithm for qualitative gsi of MDPs with Biichi objectives.

Our contribution. In this work our main contributions are as follows.

1. We present a new and simpler subquadratic algorithm falitgtive analysis of MDPs with Biichi

2



objectives that runs i®(m-/m) time, and show that the algorithm can be implemented symebyi
The symbolic algorithm takes at ma3{n-/m) symbolic steps, and thus we obtain the first symbolic
subquadratic algorithm. In practice, MDPs often have amtsbut-degree: for example, see [9] for
MDPs with large state space but constant number of actiori$Pp17] for examples from inventory
management where MDPs have constant number of actions (néer of actions correspond to
the out-degree of MDPs). For MDPs with constant out-degrgenew symbolic algorithm takes
O(n-y/n) symbolic steps, as compared®§n?) symbolic steps of the previous best known algorithm.

. All previous algorithms for the qualitative analysis oDf&s with Blichi objectives iteratively discover
states that are guaranteed to be not almost-sure winnidgyrdp when the algorithm terminates the
almost-sure winning set is discovered. We present a newitilgo (hnamelywin-lose algorithm)
that iteratively discovers both states in the almost-sureivg set and its complement. Thus if the
problem is to decide whether a given states almost-sure winning, and the statés almost-sure
winning, then the win-lose algorithm can stop at an interiatediteration unlike all the previous
algorithms. Our algorithm works in tim@(\/K - m) time, whereK g is the maximal number of
edges of any scc of the MDP (in this paper we write scc for makisec). We also show that the
win-lose algorithm can be implemented symbolically, anthkes at mosO(v/Kg - n) symbolic
steps.

. Our win-lose algorithm requires to compute the scc deasitipn of a graph irQ(n) symbolic steps.
The scc decomposition problem is one of the most fundamenddlem in the algorithmic study of
graph problems. The symbolic scc decompaosition problenmtzagy other applications in verification:
for example, checking emptiness.efautomata, and bad-cycle detection problems in model ahgck
see [2] for other applications. A®(n - logn) symbolic step algorithm for scc decomposition was
presented in [2], and the algorithm was improved in [11]. @lgorithm of [11] is a linear symbolic
step scc decomposition algorithm that requires at mas{ 5-n, 5-D- N + N } symbolic steps, where
D is the diameter of the graph, amd is the number of scc’s of the graph. We present an improved
version of the symbolic scc decomposition algorithm. Ogodthm improves the constants of the
number of the linear symbolic steps. Our algorithm requesiostmin{ 3 - n + N,5- D* + N }
symbolic steps, wher®* is the sum of the diameters of the scc’s of the graph. Thudhd@natorst
case, the algorithm of [11] requirésn symbolic steps, whereas our algorithm requites symbolic
steps. Moreover, the number of symbolic steps of our algoris always bounded by the number of
symbolic steps of the algorithm of [11] (i.e. our algorithemiever worse).

Our experimental results show that our new algorithms perfoetter than the previous known algorithms
both for qualitative analysis of MDPs with Biichi objecvand symbolic scc computation.

2 Definitions

Markov decision processes (MDPs)A Markov decision process (MDRY = ((S, E), (S1,Sp),d) con-
sists of a directed graplb, £), a partition(S1,5p) of thefinite setS of states, and a probabilistic transition
functiond: Sp — D(S), whereD(S) denotes the set of probability distributions over the stpiaces.
The states inS; are theplayer-1 states, where playdr decides the successor state, and the statés in
are theprobabilistic (or random)states, where the successor state is chosen according pioothebilistic
transition functions. We assume that for € Sp andt € S, we have(s,t) € E iff (s)(t) > 0, and we
often writed(s, t) for d(s)(t). For a states € S, we write E(s) to denote the seftt € S | (s,t) € E } of

3



possible successors. For technical convenience we assatnevery state in the grafly, £) has at least
one outgoing edge, i.eE(s) # () for all s € S. We will denote byn = |S| andm = |E| the size of the
state space and the number of transitions (or edges), teshgc

Plays and strategies. An infinite path, or aplay, of the game grapltz is an infinite sequences =
(s0,51,s2,...) of states such thatsy, sx+1) € FE for all & € N. We write {2 for the set of all plays,
and for a state € .S, we write(), C ( for the set of plays that start from the stateA strategyfor player1
is a functiono: S* - S; — D(S) that chooses the probability distribution over the suamestates for all
finite sequences € S* - S; of states ending in a player-1 state (the sequence repses@nefix of a play).
A strategy must respect the edge relation: for@le S* ands € Sy, if o(w - s)(t) > 0, thent € E(s).
A strategy isdeterministic (pure)f it chooses a unique successor for all histories (rathan @ probability
distribution), otherwise it isandomized Playerl follows the strategy if in each player-1 move, given that
the current history of the gameiig € S* - S;, she chooses the next state according(td). We denote by
3. the set of all strategies for playér A memorylesglayer-1 strategy does not depend on the history of the
play but only on the current state; i.e., for allw’ € S* and for alls € S; we haver (- s) = o (W' - s). A
memoryless strategy can be represented as a funetioh — D(S), and a pure memoryless strategy can
be represented as: S; — S.

Once a starting state € S and a strategy € X is fixed, the outcome of the MDP is a random walk
w? for which the probabilities of events are uniquely definetieve areventA C () is a measurable set of
plays. For a state € .S and an even#d C 2, we writePr?(.A) for the probability that a play belongs i
if the game starts from the stateand player 1 follows the strategy

Objectives. We specifyobjectivesfor the player 1 by providing a set @finning plays® C Q. We say
that a playw satisfiesthe objectived if w € ®. We considetv-regular objectived23], specified as parity
conditions. We also consider the special case of Bilchictibags.

e Buchi objectives. Let T' be a set of target states. For a play= (sg, s1,...) € Q, we define
Inf(w) = { s € S| sx = s forinfinitely manyk } to be the set of states that occur infinitely often
in w. The Bichi objectives require that some stat@ dfe visited infinitely often, and defines the set
of winning plays Buchil') = {w € Q | Inf(w) N T # 0 }.

e Parity objectivesFore,d € N, we write[c..d] = { ¢,c+1,...,d }. Letp: S — [0..d] be a function
that assigns @riority p(s) to every states € S, whered € N. The parity objectiveis defined as
Parity (p) = { w € Q | min (p(Inf(w))) is even }. In other words, the parity objective requires that
the minimum priority visited infinitely often is even. In tleequel we will useb to denote parity
objectives.

Qualitative analysis: almost-sure winningiven a player-1 objective, a strategys € X is almost-sure
winningfor player 1 from the stateif Pr?(®) = 1. Thealmost-sure winning set1)) ,i..s: (®) for player 1

is the set of states from which player 1 has an almost-sureimgnstrategy. The qualitative analysis of
MDPs correspond to the computation of the almost-sure winset for a given objectivé. It follows from
the results of [6, 7] that for all MDPs and all reachabilitydgparity objectives, if there is an almost-sure
winning strategy, then there is a memoryless almost-sunaing strategy. The qualitative analysis of MDPs
with parity objectives is achieved by iteratively applyiting solutions of qualitative analysis for MDPs with
Biichi objectives [7, 5], and hence in this work we will foaus qualitative analysis for Blichi objectives.

Theorem 1 ([6, 7]). For all MDPs G, and all reachability and parity objective®, there exists a pure
memoryless strategy, such that for alls € (1)) gimost () we havePr?*(®) = 1.

4



Scc and bottom sccGiven a graphG = (S, E), a setC' of states is an scc if for ali, t € C there is a path
from s to ¢ going through states i@. An sccC is a bottom scc if for alk € C all out-going edges are i1,
ie., E(s) C C.

Markov chains, closed recurrent sets A Markov chain is a special case of MDP wifh = (), and hence
for simplicity a Markov chain is a tuplé(S, E), §) with a probabilistic transition function : S — D(S),
and(s,t) € Eiff §(s,t) > 0. A closed recurrensetC' of a Markov chain is a bottom scc in the graph
(S,E). LetC = U¢is closed recurrert’ - It follows from the results on Markov chains [14] that fot alc S,
the setC is reached with probability 1 in finite time, and for &l such thatC' is closed recurrent, for all
s € C and for allt € C, if the starting state is, then the stateis visited infinitely often with probability 1.

Markov chain from a MDP and memoryless strategy. Given a MDPG = ((S, E), (S1,Sp),d) and a
memoryless strategy. : S; — D(S) we obtain a Markov chaitz’ = ((S, E’), ') as follows: E' =

EN(Spx8S)U{(s,t)|se€S1,0.(s)(t) >0};andd’(s,t) = (s, t) for s € Sp, andd’(s,t) = o(s)(t)

for s € Sy andt € E(s). We will denote byG,,, the Markov chain obtained from an MD® by fixing a
memoryless strategy, in the MDP.

Symbolic encoding of an MDP.AIl algorithms of the paper will only depend on the graf# F) of the
MDP and the partition Sy, Sp), and not on the probabilistic transition function Thus the symbolic
encoding of an MDP is obtained as the standard encoding ahaition system (with an €bD [21]), with
one additional bit, and the bit denotes whether a state gsltmS; or Sp. Also note that if the state bits
already encode whether a state belongS;tor Sp, then the additional bit is not required.

Symbolic step. To define the symbolic complexity of an algorithm an impotrtaoncept to clarify is the
notion of one symbolic step. In this work we adopt the follogrconvention: one symbolic step corresponds
to one primitive operations that are supported by the standambolic package like CuDD [21]. For
example, the one-step predecessor and successor opeoataining a BDD for a cube (a path from root
to a leaf node with constant 1) of a BDD, etc. are all suppoa®@rimitive operations in CuDD [21] and
correspond to one symbolic step.

3 Symbolic Algorithms for Blichi Objectives

In this section we will present a new improved algorithm foe flualitative analysis of MDPs with Biichi
objectives, and then present a symbolic implementatiorhefaigorithm. Thus we obtain the first sym-
bolic subquadratic algorithm for the problem. We start viith notion ofattractorsthat is crucial for our
algorithm.

Random and player 1 attractor. Given an MDPG, letU C S be a subset of states. Thendom attractor
Attrr(U) is defined inductively as followsX, = U, and fori > 0, let X; 1 = X;U{s € Sp | E(s)NX; #
Pru{se S| E(s) CX,}. Inother words X, ; consists of (a) states iX;, (b) player-1 states whose all
successors are i¥; and (c) random states that have at least one edgg.tdhenAttrr(U) = (J,~o Xi-

The definition ofplayer-1 attractorAttr, (U) is analogous and is obtained by exchanging the role of random
states and player 1 states in the above definition.

Property of attractors. Given an MDPG, and selU of states, letA = Attrg(U). Then fromA player 1
cannot ensure to avoill, in other words, for all states id and for all player 1 strategies, the 3étis
reached with positive probability. Fot = Attr,(U) there is a player 1 memoryless strategy to ensure that
the setU is reached with certainty. The computation of random angguld attractors is the computation
of alternating reachability and can be achievedifmn) time [13], and can be achieved @(n) symbolic
steps.



3.1 A new subquadratic algorithm

The classical algorithm for computing the almost-sure wigrset in MDPs with Biichi objectives has
O(n - m) running time, and the symbolic implementation of the algyoni takes at mosD(n?) symbolic
steps. A subquadratic algorithm, wi(m - \/m) running time, for the problem was presented in [4]. The
algorithm of [4] uses a mix of backward exploration and famvexploration. Every forward exploration step
consists of executing a set of DFSs (depth first searches)jtameously for a specified number of edges, and
must maintain the exploration of the same number of edgesdh ef the DFSs. The algorithm thus depends
crucially on maintaining the number of edges traversedieitly] and hence the algorithm has no symbolic
implementation. In this section we present a new subquadigiorithm to computé(1)) 4m.s: (Buchi(T")).
The algorithm is simpler as compared to the algorithm of ] awe will show that our new algorithm can
be implemented symbolically. Our new algorithm has somélairdeas as the algorithm of [4] in mixing
backward and forward exploration, but the key differencina the new algorithm never stops the forward
exploration after a certain number of edges, and hence reedaintain the traversed edges explicitly. Thus
the new algorithm is simpler, and our correctness and rgntine analysis proofs are different. We show
that our new algorithm works i®(m - \/m) time, and requires at moét(n - /m) symbolic steps.

Improved algorithm for almost-sure Blchi. Our algorithm iteratively removes states from the graphij un
the almost-sure winning set is computed. At iteratiome denote the remaining subgraph(8s F;), where
S; is the set of remaining stateg; is the set of remaining edges, and the set of remaining tatgts is
T; (i.e., T; = S; N T). The set of states removed will be denoteddyi.e.,S; = S\ Z;. The algorithm
will ensure that (a)Z; C S\ (1)) aimost (BUchi(T')); and (b) for alls € S; N Sp we haveE(s) N Z; = (.

In every iteration the algorithm identifies a @t of states such that there is no path fram to the set
T;. Hence clearly@; € S\ (1)) aimost (BUchi(T')). By the random attractor property frodvtrz(Q;) the
set(; is reached with positive probability against any strategyyplayer 1. The algorithm maintains the
setL;, of states that were removed from the graph since (and ima)idhe last iteration of Case 1, and
the setJ; 1 of states that lost an edge to states removed from the graph #ie last iteration of Case 1.
Initially Lo := Jy := 0, Zy := (), and leti := 0 and we describe the iteratiarof our algorithm. We call our
algorithm IMPRALGO (Improved Algorithm) and the pseudocode is given as Alganitl.

1. Case 1If ((|J;| > /m) ori = 0), then

(a) LetY; be the set of states that can reach the current targét étis can be computed i@ (m)
time by a graph reachability algorithm).

(b) Let@; := S;\Y;, i.e., there is no path fror; to 7;.

(€) Ziy1:=Z; U Attrr(Q;). The setAttrr(Q;) is removed from the graph.

(d) The setl;,; is the set of states removed from the graph in this iteratian, (L;11 :=
Attrr(Q;)) andJ;;1 be the set of states in the remaining graph with an eddg._te.

(e) If Q; is empty, the algorithm stops, otherwise= ¢ + 1 and go to the next iteration.

2. Case 2.Else (J;| < y/m andi > 0), then

(a) We do a lock-step search from every staie J; as follows: we do a DFS from and (a) if
the DFS tree reaches a statelip then we stop the DFS search frammand (b) if the DFS
is completed without reaching a state’fi then we stop the entire lock-step search, and all
states in the DFS tree are identified@s The setAttrr(Q;) is removed from the graph and
Ziy1 = Z; U Attrg(Q;). If DFS searches from all statesin J; reach the sef;, then the
algorithm stops.



(b) The setl;,; is the set of states removed from the graph since the lastigarof Case 1 (i.e.,
Ly = L; U Attrg(Q;), where@); is the DFS tree that stopped without reachifigin the
previous step of this iteration) anfl, ; be the set of states in the remaining graph with an edge
to L1, 1.e.,Ji+1 := (J; \ Attrg(Q;)) U X;, whereX; is the subset of states 6f with an edge
to AttTR(Qi).

(c) i := i+ 1 and go to the next iteration.

Algorithm 1 ImprAlgo
Input: An MDP G = ((S, E), (S1,Sp),0) with Blichi setT.
Output: (1)) umost (Buchi(T)), i.e., the almost-sure winning set for player 1.
1.::=0;5:=8S;Ey=FE; Ty =T,
2. Ly:=Zy:= Jy:= 0;
3.if (]Ji| > v/mori=0) then
3.1.Y; := ReachT;, (S;, E;)); (i.e., compute the séf; that can reacHi; in the graph(S;, E;))
3.2.Q; =S5 \Y;
3.3.if (Q; = 0) then gotoline 6;
3.4.else gotdine 5;
4. else(i.e., J; < /m andi > 0)
4.1.for eachs ¢ J;
4.1.1.DFS, s = s; (initializing DFS-trees)
4.2.for eachs ¢ J;
4.2.1. Do 1 step of DFS frodwF'S; ,, unless it has encountered a state ffm
4.2.2. If DFS encounters a state frain mark that DFS as stopped
4.2.3.if DFS completes without meetirig then
4.2.3.1.Q; := DFS; ;
4.2.3.2.gotoline 5;
4.2 .4.if all DFSs meef; then
4.2.4.1.gotoline 6;
5. Removal of attractor af); in the following steps
5.17;1 := Z; U Attrg(Qi, (S, E;), (51N S;, Sp N Sy));
5.2.8i41:= 5\ Ziy1; Eiy1 = E; N Si11 X Siya;
5.4.if the last goto call from step 3.4 (i.e. Case 1 is execuiteet)
5.4.1Li+1 = Att?"R(Qi, (Sw Ei)7 (Sl ns;, SpnN SZ)),
55.else L;y1 := L; U AttTR(QZ', (Sl, EZ'), (Sl n.s;, SpN SZ)),
5.6J;41 = E_I(LZ'_H) N Sit1;
57.1: =1+ 1;
5.8.gotoline 3;
6. return S\ Z;;

Correctness and running time analysisWe first prove the correctness of the algorithm.

Lemma 1. Algorithm IMPRALGO correctly computes the Sét)) 4105 (BUchi(T)).



Proof. We consider an iteratiohof the algorithm. Recall that in this iteratidr is the set of states that can
reachT; and(); is the set of states with no path 1. Thus the algorithm ensures that in every iteratipn
for the set of state®; identified by the algorithm there is no path to the’Bgtand hence frond); the setT;
cannot be reached with positive probability. Clearly, fr@the setl; cannot be reached with probability 1.
Since fromAttrr(Q;) the setQ; is reached with positive probability against all stratedier player 1, it
follows that fromAttrz(Q;) the setl; cannot be ensured to be reached with probability 1. Thuhoset
Z; of removed states we havg C S\ (1)) simost (BUChI(T)). It follows that all the states removed by the
algorithm over all iterations are not part of the almosteswinning set.

To complete the correctness argument we show that when gioeittm stops, the remaining set is
(1) atmost (Buchi(T')). When the algorithm stops, I&t. be the set of remaining states dfidbe the set of
remaining target states. It follows from above that S, C S\ (1)) aimost (BUChi(T")) and to complete the
proof we showsS.. C (1)) umest (BUchi(T")). The following assertions hold: (a) for alle S, N .Sp we have
E(s) C Sy, and (b) for all states € S, there is a path to the s&l.. We prove (a) as follows: whenever the
algorithm removes a séf;, it is a random attractor, and thus if a state S, N Sp has an edgés, t) with
t €S\ S, thens would have been included ifi \ S, and thus (a) follows. We prove (b) as follows: (i) If
the algorithm stops in Case 1, thén = (), and it follows that every state ifi, can react. (i) We now
consider the case when the algorithm stops in Case 2. Indbsevery state if; has a path t@; = T, this
is because if there is a staten J; with no path tdl;, then the DFS tree fromwould have been identified
asQ); in step 2 (a) and the algorithm would not have stopped. lb¥adl that there is no bottom scc in the
graph induced by, that does not interse@,. because if there is a bottom scc that does not contain a state
from J; and also does not contain a target state, then it would hame identified in the last iteration of
Case 1. Since every state $)) has an out-going edge, it follows every stateSinhas a path td’,. Hence
(b) follows. Consider a shortest path (or the BFS tree) frimstates inS, to 7, and for a state € S, NSy,
let s’ be the successor for the shortest path, and we consider thermmoryless strategy. that chooses
the shortest path successor for all states(S, \ 7.) N.S1, and in states ifi’, N S, choose any successor in
S,. Let?¢ = |S,| and leta be the minimum of the positive transition probability of thi®P. For all states
s € S,, the probability thafl}, is reached withirf steps is at least?, and it follows that the probability that
T, is not reached withitk x ¢ steps is at mosgil — of)*, and this goes to 0 dsgoes toco. It follows that
for all s € S, the pure memoryless strategy ensures thdr, is reached with probability 1. Moreover, the
strategy ensures théy is never left, and hence it follows thaf is visited infinitely often with probability 1.
It follows that S, C (1)) aimost (BUChI(T%)) C (1)) simost (BUchi(T")) and hence the correctness follouls.

We now analyze the running time of the algorithm.
Lemma 2. Given an MDPG with m edges, AlgorithmiMPRALGO takesO(m - v/m) time.

Proof. The total work of the algorithm, when Case 1 is executed, alléterations is at mosD(y/m - m):
this follows because between two iterations of Case 1 at |¢gasedges must have been removed from the
graph (sincgJ;| > \/m everytime Case 1 is executed other than the case wken), and hence Case 1
can be executed at most/\/m = /m times. Since each iteration can be achievedimn) time, the
O(m - v/m) bound for Case 1 follows. We now show that the total work ofaflgorithm, when Case 2 is
executed, over all iterations is at mast,/m - m). The argument is as follows: consider an iteraticuch
that Case 2 is executed. Then we havg < /m. Let@Q; be the DFS tree in iteratiohwhile executing
Case 2, and leE(Q;) = Useq, E(s). The lock-step search ensures that the number of edgesredtpio
this iteration is at most/;| - |[E(Q;)| < v/m x |E(Q;)|. Since®); is removed from the graph weharge
the work of /m - |E(Q);)| to edges inE(Q;), charging work,/m to each edge. Since there are at mast
edges, the total charge of the work over all iterations whase is executed is at mas{m - /m). Note

8



that if instead of,/m we would have used a bourdin distinguishing Case 1 and Case 2, we would have
achieved a running time bound 6f(m?/k + m - k), which is optimized byt = \/m. Our desired result
follows. m

This gives us the following result.

Theorem 2. Given an MDPG and a setl” of target states, the algorithiMPRALGO correctly computes
the set(1)) simos: (BUChI(T)) in time O (m - \/m).

3.2 Symbolic implementation ofMPRALGO

In this subsection we will a present symbolic implementatibeach of the steps of algorithmPrRALGO.
The symbolic algorithm depends on the following symboliemgions that can be easily achieved with an
OBDD implementation. For a sef C S of states, let

Pre(X) = {s€S|E(s)NX#D}
Post(X) = {teS|teU,exE(s) )
CPre(X) = {seSp[E()NX#D}U{scSi|E(s)C X}

In other wordsPre(X) is the predecessors of statesin Post(X) is the successors of statesifi and
CPre(X) is the set of state¥ such that for every random statelinthere is a successor X, and for every
player 1 state irt” all successors are ixi.

We now present a symbolic version oifRALGO. For the symbolic version the basic steps are as
follows: (i) Case 1 of the algorithm is same as Case IMHRALGO, and (ii) Case 2 is similar to Case 2
of IMPRALGO, and the only change in Case 2 is instead of lock-step seaptbring the same number
of edges, we have lock-step search that executes the sant®nofsymbolic steps. The details of the
symbolic implementation are as follows, and we will refettte algorithm as $MBIMPRALGO.

1. Case 1.In Case 1(a) we need to compute reachability to a targef s€he symbolic implementation
is standard and done as followsy = 7 and X;;; := X; U Pre(X;) until X;;; = X;. The
computation of the random attractor is also standard anchieed as above replacitfiye by CPre.

It follows that every iteration of Case 1 can be achieve@{n) symbolic steps.

2. Case 2For analysis of Case 2 we present a symbolic implementafitredock-step forward search.
The lock-step ensures that each search executes the sarbermofrsymbolic steps. The implemen-
tation of the forward search from a staten iterations is achieved as follows?, := { s } and
Pji1 := Pj UPost(P;) unlessP; 1 = P;jor P, NT; # 0. If P;NT; # 0, then the forward search
is stopped froms. If P, = P; andP; N'T; = (), then we have identified that there is no path from
states inP; to 7;.

3. Symbolic computation of cardinality of set¥$he other key operation required by the algorithm is
determining whether the size of sétis at least,/m or not. Below we describe the details of this
symbolic operation.

Symbolic computation of cardinality. Given a symbolic description of a s&t and a numbek;, our goal

is to determine whethdtX| < k. A naive way is to check for each state, whether it belongX toBut
this takes time proportional to the size of state space auliglinot symbolic. We require a procedure that
uses the structure of a BDD and directly finds the states whisHBBDD represents. It should also take into
account that if more thah states are already found, then no more computation is extjuife present the

9



following procedure to accomplish the sameciébeof a BDD is a path from root node to leaf node where
the leaf node is the constant 1 (i.e. true). Thus, each cyivesents a set of states present in the BDD which
are exactly the states found by doing every possible assighof the variables not occurring in the cube.
For an explicit implementation: consider a procedure tisasuCudd-orEachCube (from CUDD package,
see [21] for symbolic implementation) to iterate over thbesiof a given ®DD in the same manner the
successor function works on a binary treel i the number of variables not occurring in a particular gube
we get2! states from that cube which are part of therd. We keep on summing up all such states until they
exceedk. If it does exceed, we stop and say th&t > k. Else we terminate when we have exhausted alll
cubes and we geX | < k. Thus we requirenin(k, |BDD(X)|) symbolic steps, wherBDD (X)) is the size

of the GBDD of X. We also note, that this method operates @pOs that represent set of states, and these
OBDDs only usdog(n) variables compared - log(n) variables used by BpDs representing transitions
(edge relation). Hence, the operations mentioned are eheapcompared Bre andPost computations.

Correctness and runtime analysis. The correctness of ¥1BIMPRALGO is established following the
correctness arguments for algorithmpPRALGO. We now analyze the worst case number of symbolic
steps. The total number of symbolic steps executed by Cagerhbiterations i< (n - /m) since between
two executions of Case 1 at leggin edges are removed, and every execution is achieved:in symbolic
steps. The work done for the symbolic cardinality compatais charged to the edges already removed
from the graph, and hence the total number of symbolic stepsall iterations for the size computations
is O(m). We now show that the total number of symbolic steps execoted all iterations of Case 2 is
O(n - v/m). The analysis is achieved as follows. Consider an iteratiohCase 2, and let the number of
states removed in the iteration hg Then the number of symbolic steps executed in this iterdtio each

of the forward search is at most, and sinceJ;| < /m, it follows that the number of symbolic steps
executed is at most; - /m. Since we remove; states, wehargeeach state removed from the graph with
v/m symbolic steps for the total; - \/m symbolic steps. Since there are at mostates, the total charge
of symbolic steps over all iterations @3(n - v/m). Thus it follows that we have a symbolic algorithm to
compute the almost-sure winning set for MDPs with Biicheabyes inO(n - v/m) symbolic steps.

Theorem 3. Given an MDPG and a setl’ of target states, the symbolic algorithByMBIMPRALGO
correctly computeg(1)) uimos: (Buchi(T')) in O(n - /m) symbolic steps.

Remark 1. In many practical cases, MDPs have constant out-degreeara lwwe obtain a symbolic algo-
rithm that works inO(n-/n) symbolic steps, as compared to the previous known (symioofitementation
of the classical) algorithm that requir@¢n?) symbolic steps.

Remark 2. Note that in our algorithm we usegm to distinguish between Case 1 and Case 2 to obtain
the optimal time complexity. However, our algorithm couldcabe parametrized with a parameteto
distinguish between Case 1 and Case 2, and then the numbenbblic steps required I9(“2 +n - k).

For example, ifm = O(n), by choosingt = logn, we obtain a symbolic algorithm that requir@sgl:;n)
symbolic steps as compared to thén?) symbolic steps of the previous known algorithms. In otherdso
our algorithm can be easily parametrized to provide a tttlbetween the number of forward searches and

speed up in the number of symbolic steps.

3.3 Optimized SYMBIMPRALGO

In the worst case, theY®B IMPRALGO algorithm takesD(n - /m) steps. However it is easy to construct
a family of MDPs withn states and)(n) edges, where the classical algorithm takds) symbolic steps,
whereas 8MBIMPRALGO requires)(n - y/n) symbolic steps. One approach to obtain an algorithm that

10



takes at mosO(n - \/n) symbolic steps and no more than linearly many symbolic stéfke classical
algorithm is to dovetail (or run in lock-step) the classiafgorithm and SMBIMPRALGO, and stop when
either of them stops. This approach will take time at leagtéwhe minimum running time of the classi-
cal algorithm and 8mBIMPRALGO. We show that a much smarter dovetailing is possible (atehel lof
each iteration). We now present the smart dovetailing #dlgar and we call the algorithm DV SyMm -
BIMPRALGO. The basic change is in Case 2 ofMBIMPRALGO. We now describe the changes in Case
2:

e At the beginning of an execution of Case 2 at iteraticuch that the last execution was Case 1, we
initialize a setl; to T;. Every time a post computatioRdst(P;)) is done, we updat&’; by U, :=
U; U Pre(U;) (this is the backward exploration step of the classicalrtlym and it is dovetailed with
the forward exploration step in every iteration). For thenfard exploration step, we continue the
computation ofP; unlessP;, = P; or P;NU; # 0 (i.e., S'MBIMPRALGO checked the emptiness of
intersection withl’;, whereas in 8 DvSymBIMPRALGO the emptiness of the intersection is checked
with U;). If U;y+1 = U, (i.e., a fixpoint is reached), the$} \ U; and its random attractor is removed
from the graph.

Correctness and symbolic steps analysisWe present the correctness and number of symbolic steps re-
quired analysis for the algorithmM®DV SYMBIMPRALGO. The correctness analysis is sameMBRALGO

and the only change is as follows (we describe iteratjoia) if in Case 2 we obtain a sét = P;; and

its intersection witlU; is empty, then there is no path froR) to U; and sincel; C U, it follows that there

is no path fromP; to U;; (b) if P; N U; # 0, then sincdJ; is obtained as the backward exploration fr@in
every state irU; has a path td;, and it follows that there is a path from the starting staté’pfo U; and
hence tdT;; and (c) ifU; = Pre(U;), thenU; is the set of states that can redBhand all the other states
can be removed. Thus the correctness follows similar tordnenaents for MPRALGO. The key idea of the
running time analysis is as follows:

1. Case 1 of the algorithm is same to Case 1 emMBIMPRALGO, and in Case 2 the algorithm also
runs like SYmBIMPRALGO, but for every symbolic stepPpst computation) of SMBIMPRALGO,
there is an additionalPre) computation. Hence the total number of symbolic stepsnoD8SYMm -
BIMPRALGO is at most twice the number of symbolic steps ofMB IMPRALGO. However, the
optimized step of maintaining the s&t which includesl; may allow to stop several of the forward
exploration as they may intersect with earlier than intersection witf;.

2. Case 1 of the algorithm is same as in Case 1 of the clasgjaltam. In Case 2 of the algorithm the
backward exploration step is the same as the classicalithligiprand (i) for everyPre computation,
there is an additionaPost computation and (ii) for every check wheth&r = Pre(U;), there is a
check whetheP; = P;; or P;NU; # (. It follows that the total number of symbolic steps of Case 1
and Case 2 over all iterations is at most twice the numbermbsjic steps of the classical algorithm.
The cardinality computation takes additioi(m) symbolic steps over all iterations.

Hence we obtain the following result.

Theorem 4. Given an MDRG and a sefl” of target states, the symbolic algoritht®v Dv SYMB IMPRALGO
correctly computeg(1)) uimost (Buchi(7)) and requires at most

min{ 2 - SymbStep(SYMBIMPRALGO), 2 - SymbStep(CLASSICAL) + O(m) }

symbolic steps, whef®ymbStep is the number of symbolic steps of an algorithm.

11



Observe that it is possible that the number of symbolic stems running time of 8DvSYMBIM-
PRALGO is smaller than both ®vBIMPRALGO and Q.ASSICAL (in contrast to a simple dovetailing of
SYMBIMPRALGO and Q.ASSICAL, where the running time and symbolic steps is twice that efrtiini-
mum). It is straightforward to construct a family of exangplehere 1Dv SymBIMPRALGO takes linear
(O(n)) symbolic steps, however both.&ssICAL and SYMBIMPRALGO take at leasO(n - /n) symbolic
steps.

4 The Win-Lose Algorithm

All the algorithms known for computing the almost-sure wingnset (including the algorithms presented in
the previous section) iteratively compute the set of stiates where it is guaranteed that there is no almost-
sure winning strategy for the player. The almost-sure wigrset is discovered only when the algorithm
stops. In this section, first we will present an algorithmt titeratively computes two sefd’; and W,
wherell; is a subset of the almost-sure winning set, &iigdis a subset of the complement of the almost-
sure winning set. The algorithm h&X K - m) running time, wherdx is the size of the maximal strongly
connected component (scc) of the graph of the MDP. We witl firssent the basic version of the algorithm,
and then present an improved version of the algorithm, usiegechniques to obtaimPRALGO from the
classical algorithm, and finally present the symbolic impatation of the new algorithm.

4.1 The basic win-lose algorithm

The basic steps of the new algorithm are as follows. The #tgomaintaindt’; andiWs, that are guaranteed
to be subsets of the almost-sure winning set and its compieraspectively. Initiallyit’; = () andW, = (.
We also maintain thatl; = Attri(W;) andWy = Attrr(Ws). We denote by the union ofi/; and
W,. We describe an iteration of the algorithm and we will retetite algorithm as the WL osealgorithm
(pseudocode is given as Algorithm 2).

1. Step 1.Compute the scc decomposition of the remaining graph of tB#Me., scc decomposition
of the MDP graph induced by \ V.

2. Step 2.For every bottom sc€' in the remaining graph: i€ N Pre(W;) # 0 or C N'T # (), then
Wy = Attry (W7 U C); elseWy = Attrr(Wo U C), and the states il/; andW, are removed from
the graph.

The stopping criterion is as follows: the algorithm stopseewhl” = S. Observe that in each iteration, a
setC of states is included in eithdi’; or W5, and hencédV grows in each iteration. Observe that our
algorithm has the flavor of iterative scc decomposition atgm for computing maximal end-component
decomposition of MDPs.

Correctness of the algorithm.Note that in Step 2 we ensure thétir, (W) = Wy and Attrg(Ws) = W,
and hence in the remaining graph there is no state of playeithlam edge td?; and no random state
with an edge td¥,. We show by induction that after every iteratidW, C (1)) simos: (BUchi(T")) and
Wy C S\ (1) aimost (BUChI(T)). The base case (with; = W, = () follows trivially. We prove the
inductive case considering the following two cases.

1. Consider a bottom se€ in the remaining graph such th@nPre(W;) # 0 or CNT # (). Consider the
randomized memoryless strategyor the player that plays all edges @huniformly at random, i.e.,
for s € C'we haver(s)(t) = Wl)rm fort € E(s)NC. If CNPre(W7) # 0, then the strategy ensures

12



Algorithm 2 WinLose

Input: An MDP G = ((S, E), (S1, Sp), d) with Blichi setT".
Output: (1)) aimost (BUchi(T))), i.e., the almost-sure winning set for player 1.
LW =Wy :i=Wy:=0
2. while(W # S) do
2.1.5CCS :=SCC-Decompositiont.S \ W) (i.e. scc decomposition of the graph induced®y V)
2.2.foreachC'in SCCS
2.2.1.if (E(C) c C UW) then (checks ifC is a bottom scc in graph induced Y\ W)
22.1.1if CNT #Por E(C)N Wy # 0 then
22.1.1AW =W Ul
2.2.1.2.else
2.2.1.2AW5 :=WoUC
2.3. Wy := Attr1 (W1, (S, E), (S1,Sp))
2.4. Wy := Attrr(Wa, (S, E), (S1,5p))
25.W =W U W,
3.return Wy

that 17/, is reached with probability 1, sind&; C (1)) simos: (Buchi(T")) by inductive hypothesis it
follows C' C (1)) aimost (BUChi(T")). HenceAttr; (W1 U C) C (1)) aimost (BUChI(T)). If CN'T # 0,
then since there is no edge from random statég4pit follows that under the randomized memoryless
strategyo, the setC' is a closed recurrent set of the resulting Markov chain, atté every state is
visited infinitely often with probability 1. Sinc€NT" # 0, it follows thatC' C (1)) aimoes: (BUchi(T")),

and hencedttr (W1 U C) C (1)) aimost (BUChI(T)).

2. Consider a bottom sa€ in the remaining graph such th@tn Pre(W;) = ) andC N'T = (). Then
consider any strategy for player 1: (a) If a play startingrfra state inC' stays in the remaining
graph, then sinc€’ is a bottom scc, it follows that the play staysdhwith probability 1. Since
C NT = (it follows that T is never visited. (b) If a play leaveS (note thatC' is a bottom scc
of the remaining graph and not the original graph, and henglayamay leave”), then sinceC' N
Pre(W7) = 0, it follows that the play reachdd>, and by hypothesi®’a C S\ (1)) aimost (BUChi(T")).
In either case it follows tha€ C S\ (1)) aimos: (BUchi(T")). It follows that Attrr(Wa U C) C
S\ (1) atmost (BUCHI(T)).

The correctness of the algorithm follows as when the algoristops we havél’; U Wy = S.

Running time analysis. In each iteration of the algorithm at least one state is resddvom the graph,
and every iteration takes at mas{m) time: in every iteration, the scc decomposition of step 1 ted
attractor computation in step 2 can be achieve@{m) time. Hence the naive running of the algorithm is
O(n - m). The desired(K - m) bound is achieved by considering the standard techniquenoiimg the
algorithm on the scc decomposition of the MDP. In other wpvds first compute the scc of the graph of
the MDP, and then proceed bottom up computing the partitigrand W, for an sccC' once the partition
is computed for all states below the scc. Observe that theeabmrrectness arguments are still valid. The
running time analysis is as follows: |étbe the number of scc’s of the graph, and#dgtandm; be the
number of states and edges of thé scc. LetKX' = max{ n; | 1 < ¢ < ¢ }. Our algorithm runs in time
O(m) + Y5y O(ni - mi) < O(m) + Yi_; O(K -m;) = O(K - m).

13



Theorem 5. Given an MDP with a Bchi objective, theNVINLOSE algorithm iteratively computes the
subsets of the almost-sure winning set and its complemeit,irathe end correctly computes the set
(1)) aimost (Buchi(T")) and the algorithm runs in timé&(Kg - m), whereKg is the maximum number of
states in an scc of the graph of the MDP.

4.2 Improved WINLOSE algorithm and symbolic implementation

Improved WINLOSE algorithm. The improved version of the WL osE algorithm performs a forward
exploration to obtain a bottom scc like Case 2 mfPRALGO. At iteration i, we denote the remaining
subgraph asS;, E;), whereS; is the set of remaining states, afgis the set of remaining edges. The set of
states removed will be denoted By, i.e.,S; = S\ Z;, andZ; is the union ofi¥; andW,. In every iteration
the algorithm identifies a s&t; of states such thaf;; is a bottom scc in the remaining graph, and then it
follows the steps of the WL ose algorithm. We will consider two cases. The algorithm maigdhe set
L, of states that were removed from the graph since (and inaidhe last iteration of Case 1, and the set
J;11 of states that lost an edge to states removed from the grapé sie last iteration of Case 1. Initially
Jo := Lo := Zy := W1 := W := (), and leti := 0, and we describe the iteratiarof our algorithm. We
call our algorithm MPRWINL OSE (pseudocode is given as Algorithm 3).

1. Case 1If ((|J;] > v/m) ori = 0), then

(a) Compute the scc decomposition of the remaining graph.

(b) For each bottom sa€;, if C; NT # () or C; N Pre(W7) # 0, thenWy := Attry (W7 U C;), else
Wy = Att’I“R(WQ U CZ)

(€) Ziy1 := W1 UWs. The setZ;41 \ Z; is removed from the graph.

(d) The setl;, is the set of states removed from the graph in this iteratrah.a, ; be the set of
states in the remaining graph with an edgd.1o; .

(e) If Z; is S, the algorithm stops, otherwigse= i 4+ 1 and go to the next iteration.
2. Case 2.Else (J;| < y/m) andi > 0), then
(a) Consider the sef; to be the set of vertices in the graph that lost an edge to #tesstemoved

since the last iteration that executed Case 1.

(b) We do a lock-step search from every state J; as follows: we do a DFS from, until the DFS
stops. Once the DFS stops we have identified a bottond’scc

(© fC;NT 75 PorC;nN Pre(Wl) 75 0, thenWy = Att’l“l(Wl UCZ‘), elselWy := AttTR(WQ U Cz)
(d) Ziy1 = W1 UWy. The setZ; 41 \ Z; is removed from the graph.

(e) The setl;; is the set of states removed from the graph since the lastidgarof Case 1 and
Ji+1 be the set of states in the remaining graph with an edde to.

(H If Z; =5, the algorithm stops, otherwige= i + 1 and go to the next iteration.

Correctness and running time. The correctness proof oMPRWINLOSE is similar as the correctness
argument of WNL OSE algorithm. One additional care requires to be taken for @asse need to show
that when we terminate the lockstep DFS search in Case 2wthabtain a bottom scc. First, we observe
that in iterationi, when Case 2 is executed, each bottom scc must contain afretaie/;, since it was

14



Algorithm 3 ImprWinLose

Input: An MDP G = ((S, E), (S1, Sp), d) with Blichi setT".
Output: (1)) aimost (BUchi(T))), i.e., the almost-sure winning set for player 1.
1.i:=0;5:=85,Ey:=FE; Ty =T,
2. W1 =Wy = Lo :=Zy = Jy :=(;
3.if (|.J;] > /mori = 0) then
3.1. SCCS :=SCC-DecompositioriS;) (scc decomposition of graph induced By
3.2.foreachC'in SCCS
3.2.1.if (E;(C) c C) then (checks ifC is a bottom scc in graph induced 1Y)
3.21.%if CNT # Qor E(C) N Wy # () then
32111 W =W uc
3.2.1.2.else
3.21.21 W5 :=WoUC
3.3.gotoline 5
4. else(i.e., J; < /m andi > 0)
4.1.foreachs € J;
4.1.1.DFS; s := s (initializing DFS-trees)
4.2.foreachs € J;
4.2.1. Do 1 step of DFS frowF'S; ,
4.2.2.if DFS completeshen
4.2.2.1.C := DFS;
4.222if CNT # Qor E(C)NW; # 0 then
4.2221W, =W uUC
4.2.2.3.else
4.2231W5 :=WoUC
4.2.2.4.gotoline 5
5. Removal ofi¥/; andW; states in the following steps
51.W; := Att’l“l(Wl, (Sl, EZ'), (Sl n.s;, SpN Sl))
5.2. W2 = AttTR(WQ, (SZ, EZ'), (51 N SZ', SP N SZ))
5.3. 741 :=Z; UW1 U W,
54.5.11:=5; \ Ziv1; Biv1 = E; N Sj1 X Si
5.5.1if the lastgoto call was from line3.3 then
551L2+1 = Zz'—i—l \ Zz
5.6.else
56.1.L;y1 :=L; U (Zi—i-l \ Zz)
5.7. Jiy1 = E_l(LH_l) N Si+1
5.8.if Zz'—i—l = S then
5.8.1. goto lines
5.9.i:=17+ 1; gotoline 3
6. return W,

not a bottom scc in the last execution of Case 1. Second, amlbtite lockstep DFSs, the first one that
terminates must be a bottom scc because the DFS search fitate afs/; that does not belong to a bottom

15



scc explores states of bottom scc’s below it. Since Casep? sthien the first DFS terminates we obtain
a bottom scc. The rest of the correctness proof is identsahea proof for the WNL OSE algorithm. The
running time analysis of the algorithm is similar toHRALGO algorithm, and this shows the algorithm runs
in O(m - y/m) time. Applying the MPRWINLOSE algorithm bottom up on the scc decomposition of the
MDP gives us a running time @(m - /K ), whereK g is the maximum number of edges of an scc of the
MDP.

Theorem 6. Given an MDP with a Bchi objective, thd MPRWINL OSE algorithm iteratively computes
the subsets of the almost-sure winning set and its comptermed in the end correctly computes the set
(1)) aimost (Buchi(T')). The algorithmMPRWINLOSEruns in timeO (v/K g -m), whereK i is the maximum
number of edges in an scc of the graph of the MDP.

Symbolic implementation. The symbolic implementation oMPRWINL OSE algorithm is obtained in a
similar fashion as $MBIMPRALGO was obtained fromMPRALGO. The only additional step required is
the symbolic scc computation. It follows from the result§Xf] that scc decomposition can be computed
in O(n) symbolic steps. In the following section we will present enproved symbolic scc computation
algorithm. The correctness proof o¥ @8 IMPRWINLOSEis similar to MPRWINL OSE algorithm. For the
correctness of the @18 IMPRWINL OSE algorithm we again need to take care that when we terminate in
Case 2, then we have identified a bottom scc. Note that for sljodiep forward search we cannot guarantee
that the forward search that stops first gives a bottom sccChee 2 of the 8MBIMPRWINLOSE we do

in lockstep both symbolic forward and backward searchem sthen both the searches stop and gives
the same result. Thus we ensure when we terminate an ireratiCase 2 we obtain a bottom scc. The
correctness then follows from the correctness argumeniginl. ose and IMPRWINLOSE The symbolic
steps required analysis is same as femM8 IMPRALGO.

Corollary 1. Given an MDP with a Bchi objective, the symboliovPRWINLOSE algorithm (SymBIm-
PRWINLOSE) iteratively computes the subsets of the almost-sure wgnset and its complement, and in
the end correctly computes the Sét)) ,m0s: (Buchi(T)). The algorithmSymB IMPRWINLOSE requires
O(v/KEg - n) symbolic steps, whel& g is the maximum number of edges in an scc of the graph of the MDP.

Remark 3. Itis clear from the complexity of the WLoseEand IMPRWINL O0sEalgorithms that they would
perform better for MDPs where the graph has many small s@tser than few large ones.

5 Improved Symbolic SCC Algorithm

A symbolic algorithm to compute the scc decomposition of @brin O(n - log n) symbolic steps was
presented in [2]. The algorithm of [2] was based on forwardl laackward searches. The algorithm of [11]
improved the algorithm of [2] to obtain an algorithm for s@cdmposition that takes at most linear amount
of symbolic steps. In this section we present an improvesdiorrof the algorithm of [11] that improves the
constants of the number of linear symbolic steps requine&elction 5.1 we present the improved algorithm
and correctness, and some further technical details aseqied in Section 8.1 of appendix.

5.1 Improved algorithm and correctness

We first describe the main ideas of the algorithm of [11] arehtbresent our improved algorithm. The
algorithm of [11] improves the algorithm of [2] by maintaigj the right order for forward sets. The notion
of spine-set@&ndskeleton of a forward setas designed for this purpose.

16



Spine-sets and skeleton of a forward setLet G = (S, FE) be a directed graph. Consider a finite path
T = (8o, 81,---,5¢), such that for alD < i < ¢ — 1 we have(s;, s;+1) € E. The path ischordlessif for
all0 < i < j < ¢suchthatj —4 > 1, there is no edge froms; to s;. LetU C S. The pair(U, s) is a
spine-sedf G iff G contains a chordless path whose set of stat&stisat ends irs. For a states, let FW(s)
denote the set of states that is reachable fsqfire., reachable by a forward search frajn The set(U, t)

is askeleton offW(s) iff ¢ is a state irfFW(s) whose distance from is maximum andJ is the set of states
on a shortest path fromto ¢t. The following lemma was shown in [11] establishing relataf skeleton of
forward set and spine-set.

Lemma 3 ([11]). LetG = (S, E) be a directed graph, and |éiW(s) be the forward set of € S. The
following assertions hold: (1) IfU, t) is a skeleton of the forward-sBW(s), thenU C FW(s). (2) If (U, t)
is a skeleton oFW(s), then(U, t) is a spine-set irG.

The intuitive idea of the algorithm. The algorithm of [11] is a recursive algorithm, and in evesgursive
call the scc of a state is determined by computingW(s), and then identifying the set of statesA/(s)
having a path ta. The choice of the state to be processed next is guided bynibicit inverse order asso-
ciated with a possible spine-set. This is achieved as fallaomhenever a forward-séW (s) is computed,

a skeleton of such a forward set is also computed. The ordeiced by the skeleton is then used for the
subsequent computations. Thus the symbolic steps perfotsmeomputeF\W (s) are distributed over the
scc computation of the states belonging to a skeletdi¥fs). The key to establish the linear complexity
of symbolic steps is the amortized analysis. We now pre$entrtain procedure SC@¥D and the main
sub-procedure &=L FwD of the algorithm from [11].

Procedures SCCHND and SKELFwD. The main procedure of the algorithm is SCI®B that calls
SKELFWD as a sub-procedure. The input to SAQEF is a graph(S, E) and (A, B), where either
(A,B) = (0,0) or (A,B) = (U,{ s }), where(U, s) is a spine-set. IS is {), then the algorithm stops.
Else, (a) if(A4, B) is (0, (), then the procedure picks an arbitrarfrom S and proceeds; (b) otherwise, the
sub-procedure ELFwD is invoked to compute the forward set ofogether with the skeletofi/’, s) of
such a forward set. The SC@® procedure has the following local variablédA/Set, NewSet, NewState
andSCC. The variable=WSet that maintains the forward set, wherédsvSet and NewState maintainU’
and{ s’ }, respectively. The variableCC is initialized tos, and then augmented with the scc containing
The partition of the scc’s is updated and finally the procedsirecursively called over:

1. the subgraph dfS, F) is induced byS \ FWSet and the spine-set of such a subgraph obtained from
(U,{t}) by subtractingsCC;

2. the subgraph ofS, E') induced byFWSet \ SCC and the spine-set of such a subgraph obtained from
(NewSet, NewState) by subtractingsCC.

The XELFwD procedure takes as input a graph £') and a states, first it computes the forward set
FW(s), and second it computes the skeleton of the forward set. difneafd set is computed by symbolic
breadth first search, and the skeleton is computed with k.sthe detailed pseudocodes are in the following
subsection. We will refer to this algorithm of [11] asi®soLIc Scc. The following result was established
in [11]: for the proof of the constant 5, refer to the appendfiX11] and the last sentence explicitly claims
that every state is charged at most 5 symbolic steps.

Theorem 7([11]). LetG = (S, E') be a directed graph. The algorith@yMBoOLIC Scc correctly computes
the scc decomposition 6f in min{ 5 - |S|,5 - D(G) - N(G) + N(G) } symbolic steps, whe®(G) is the
diameter ofG, and N (G) is the number of scc’s iv.

17



Improved symbolic algorithm. We now present our improved symbolic scc algorithm and refahe
algorithm as MPROVEDSYMBOLIC Scc. Our algorithm mainly modifies the sub-procedureSFwD. The
improved version of 8ELFwD procedure takes an additional input argum@nand returns an additional
output argument that is stored as a Beby the calling SCCHRD procedure. The calling function passes
the setU as@. The way the outpuP’ is computed is as follows: at the end of the forward searchave h
the following assignmentP := FWSet N ). After the forward search, the skeleton of the forward set
is computed with the help of a stack. The elements of the stack sets of states stored in the forward
search. The spine set computation is similar ke S~wD, the difference is that when elements are popped
of the stack, we check if there is a non-empty intersectioth \#4, if so, we break the loop and return.
Moreover, for the backward searches in SGKOFwe initialize SCC by P rather thans. We refer to the
new sub-procedure astPROVEDSKELFwWD (detailed pseudocode in the following subsection).

Correctness. Sinces is the last element of the spine géf and P is the intersection of a forward search
from s with U, it means that all elements @f are both reachable from(since P is a subset oFW(s))
and can reach (since P is a subset of/). It follows that P is a subset of the scc containirg Hence
not computing the spine-set beyoitddoes not change the future function calls, i.e., the valug’psince
the omitted parts oNewSet are in the scc containingt The modification of starting the backward search
from P does not change the result, sinBewill anyway be included in the backward search. So the |
PROVEDSYMBOLIC SccC algorithm gives the same result agMBoLIC Scc, and the correctness follows
from Theorem 7.

Symbolic steps analysisWe present two upper bounds on the number of symbolic stegheaflgorithm.
Intuitively following are the symbolic operations that dee be accounted for: (1) when a state is included in
a spine set for the first time iMPROVEDSKEL FwD sub-procedure which has two parts: the first part is the
forward search and the second part is computing the sketétithre forward set; (2) when a state is already
in a spine set and is found in forward search mPROVEDSKELFWD and (3) the backward search for
determining the scc. We now present the number of symb@pmsstnalysis forMiPROVEDSYMBOLIC SCC.

1. There are two parts oiMPROVEDSKELFwD, (i) a forward search and (ii) a backward search for
skeleton computation of the forward set. For the backwaadcke we show that the number of steps
performed equals the size NewSet computed. One key idea of the analysis is the proof where we
show that a state becomes part of spine-set at most oncemgsed to the algorithm of [11] where
a state can be part of spine-set at most twice. Because, Wisealieady part of a spine-set, it will
be included inP and we stop the computation of spine-set when an elemeRtgsts included. We
now split the analysis in two cases: (a) states that arededin spine-set, and (b) states that are not
included in spine-set.

(a) We charge one symbolic step for the backward searchiekRbdvEDSKELFWD (spine-set com-
putation) to each element when it first gets inserted in aesp@ai. For the forward search, we
see that the number of steps performed is the size of spiribagavould have been computed if
we did not stop the skeleton computation. But by stoppingétare only omitting states that are
part of the scc. Hence we charge one symbolic step to eaehgstiing inserted into spine-set
for the first time and each state of the scc. Thus, a statengettserted in a spine-set is charged
two symbolic steps (for forward and backward search)\M#ROVEDSKELFwD the first time it
is inserted.

(b) A state not inserted in any spine-set is charged one shengtep for backward search which
determines the scc.

18



Along with the above symbolic steps, one step is charged ¢b state for the forward search in
IMPROVEDSKELFwWD at the time its scc is being detected. Hence each state gatgechat most
three symbolic steps. Besides, for computhevState, one symbolic step is required per scc found.
Thus the total number of symbolic steps is bounde@ bys| + N (G), whereN (G) is the number of
scc’s ofG.

2. Let D* be the sum of diameters of the scc’s inGa Consider a scc with diametel In any scc
the spine-set is a shortest path, and hence the size of the-spi is bounded hy. Thus the three
symbolic steps charged to states in spine-set contribug moost3 - d symbolic steps for the scc.
Moreover, the number of iterations of forward searchmbROVEDSKELFWD charged to states be-
longing to the scc being computed are at mbsAnd the number of iterations of the backward search
to compute the scc is also at mastHence, the two symbolic steps charged to states not in ang-sp
set also contribute at mo2t d symbolic steps for the scc. Finally, computation\afvSet takes one
symbolic step per scc. Hence we hdved + 1 symbolic steps for a scc with diametér We thus
obtain an upper bound 6D* + N (G) symbolic steps.

It is straightforward to argue that the number of symbolepst of MPROVEDSCCHND is at most the
number of symbolic steps of SC@ND. The detailed pseudocode and technical details of the mgrtithe
analysis is presented in the appendix.

Theorem 8. Let G = (S, E) be a directed graph. The algorithitmPROVEDSYMBOLIC SCC correctly
computes the scc decompositiontbin min{ 3 - |[S| + N(G),5 - D*(G) + N(G) } symbolic steps, where
D*(G) is the sum of diameters of the scc’st@fand NV (G) is the number of scc’s iv.

Remark 4. Observe that in the worst case SQGF takes5 - n symbolic steps, whereamPROVEDSC-
CFIND takes at most - n symbolic steps. Thus our algorithm improves the constatiiehumber of linear
symbolic steps required for symbolic scc decomposition.

6 Experimental Results

In this section we present our experimental results. Wepgnesent the results for symbolic algorithms for
MDPs with Biichi objectives and then for symbolic scc decosifon.

Symbolic algorithm for MDPs with B tichi objectives. We implemented all the symbolic algorithms (in-
cluding the classical one) and ran the algorithms on ranggaherated graphs. If we consider arbitrarily
randomly generated graphs, then in most cases it givesais#ial MDPs. Hence we generated more
structured MDP graphs. First we generated a large number@P$/and as a first step chose the MDP
graphs where all the algorithms required large number of®fim steps, and then generated large number
of MDP graphs randomly by small perturbations of the grapizsen in the first step. Our results of average
symbolic steps required are shown in Table 1 and show thatevealgorithms perform significantly better
than the classical algorithm. The running time comparisogiven in Table 2.

Symbolic scc computation.We implemented the symbolic scc decomposition algorittomff11] and our
new symbolic algorithm. A comparative study of the algamtbf [11] and the algorithm of [2] was done
in [20], and it was found that the performances were comparatence we only perform the comparison
of the algorithm of [11] and our new algorithm. We ran the alidpons on randomly generated graphs.
Again arbitrarily randomly generated graphs in many casesgise to graphs that are mostly disconnected
or completely connected. Hence we generated random grapfistoconstructing a topologically sorted

19



Number of states Classical| SYMBIMPRALGO | SMDVSYMBIMPRALGO | SYMBIMPRWINLOSE
5000 30731 3478 3898 3573
10000 103977 6622 7490 6815
20000 306015 12010 13212 13687

Table 1: The average symbolic steps required by symbolirittgns for MDPs with Biichi objectives.

Number of stateg Classical| SYMBIMPRALGO | SMDVSYMBIMPRALGO | SYMBIMPRWINLOSE
5000 78.8 9.7 10.2 10.8
10000 563.7 40.3 43.0 46.1
20000 3974.4 186.4 192.3 217.4

Table 2: The average running time required in sec by symiaddiorithms for MDPs with Biichi objectives.

order of the scc’s and then adding edges randomly respetttintppologically sorted order. Our results of
average symbolic steps are shown in Table 3 and shows thataualgorithm performs better (around 15%

improvement over the algorithm of [11]). The running timergaarison is shown in Tab 4.

Number of states Algorithm from [11] | Our Algorithm | Percentage Improvement
10000 1043 878 15.83
25000 2649 2264 14.53
50000 6299 5394 14.36

Table 3: The average symbolic steps required for scc coripuia

In all cases, our implementations were the basic implentientaf the algorithms, and more optimized
implementations would lead to improved performance resuihe source codes, sample examples for the
experimental results, and other details of the implemmmadre available ahttp://www.cs.cmu.
edu/~nkshah/SymbolicMDP.

7 Conclusion

In this work we considered a core problem of probabilisticifi@tion which is to compute the set of
almost-sure winning states in MDPs with Biichi objectiviéée presented the first symbolic sub-quadratic
algorithm for the problem, and also a new symbolic sub-catadalgorithm (MPRWINL OSE algorithm).

As compared to all previous algorithms which idnetify thenast-sure winning states upon termination,
the IMPRWINL OSE algorithm can potentially discover almost-sure winningtess in intermediate steps as
well. Finally we considered another core graph theoretiblem in verification which is the symbolic scc
decomposition problem. We presented an improved algorftmthe problem. The previous best known
algorithm for the problem required - n symbolic steps in the worst case and our new algorithm takes a
most4 - n symbolic steps, where is the number of states of the graph. Our basic implementstows
that our new algorithms perform favorably over the old alipons. Optimized implementations of the new
algorithms and detailed experimental studies would be &maating direction for future work.

20



Number of states Algorithm from [11] | Our Algorithm | Percentage Improvement
10000 7.7 6.3 17.53
25000 48.3 40.0 16.98
50000 180.8 152.5 15.67

Table 4: The average running time required in sec for scc cdatpn.

Acknowledgements.We thank Fabio Somenzi for sharing the facts about the paence comparison of
the algorithm of [2] and the algorithm of [11]. We thank anorous reviewers for many helpful comments
that improved the presentation of the paper.

References

[1] A.Bianco and L. de Alfaro. Model checking of probabilesand nondeterministic systems.F8TTCS
95, volume 1026 oL NCS pages 499-513. Springer-Verlag, 1995.

[2] R. Bloem, H. N. Gabow, and F. Somenzi. An algorithm fopatgly connected component analysis in
log symbolic steps. IFMCAD, pages 37-54, 2000.

[3] K. Chatterjee and M. Henzinger. Faster and dynamic &lyois for maximal end-component decom-
position and related graph problems in probabilistic vesifon. INSODA pages 1318-1336, 2011.

[4] K. Chatterjee, M. Jurdzifiski, and T.A. Henzinger. Slmptochastic parity games. @SL'03 volume
2803 of LNCS pages 100-113. Springer, 2003.

[5] K. Chatterjee, M. Jurdzifiski, and T.A. Henzinger. Qitittive stochastic parity games. 8ODA'04
pages 121-130. SIAM, 2004.

[6] C. Courcoubetis and M. Yannakakis. The complexity ofgadoilistic verification.Journal of the ACM
42(4):857-907, 1995.

[7] L. de Alfaro. Formal Verification of Probabilistic SystemBhD thesis, Stanford University, 1997.

[8] L. de Alfaro, M. Faella, R. Majumdar, and V. Raman. Codeaee resource managementBMSOFT
05. ACM, 2005.

[9] L. de Alfaro and P. Roy. Magnifying-lens abstraction fdarkov decision processes. GAV, pages
325-338, 2007.

[10] J. Filar and K. Vrieze Competitive Markov Decision Process&pringer-Verlag, 1997.

[11] R. Gentilini, C. Piazza, and A. Policriti. Computingatgly connected components in a linear number
of symbolic steps. I'8ODA pages 573-582, 2003.

[12] H. Howard.Dynamic Programming and Markov Process®MT Press, 1960.

[13] N. Immerman. Number of quantifiers is better than nundfaape cells. Journal of Computer and
System Science®2:384-406, 1981.

21



[14] J.G. Kemeny, J.L. Snell, and A.W. Knappenumerable Markov Chain®. Van Nostrand Company,
1966.

[15] M. Kwiatkowska, G. Norman, and D. Parker. Verifying damized distributed algorithms with prism.
In Workshop on Advances in Verification (WAVE’ @000.

[16] A.Pogosyants, R. Segala, and N. Lynch. Verificatiorheftandomized consensus algorithm of Aspnes
and Herlihy: a case studpistributed Computing13(3):155-186, 2000.

[17] M. L. Puterman.Markov Decision Processed. Wiley and Sons, 1994,

[18] R. SegalaModeling and Verification of Randomized Distributed Raatd Systemd$2hD thesis, MIT,
1995. Technical Report MIT/LCS/TR-676.

[19] D.D. Sleator and R. E. Tarjan. A data structure for dyitamees.J. Comput. Syst. S¢R6(3):362—-391,
1983.

[20] F. Somenzi. Personal Communication.

[21] F. Somenzi. Colorado university decision diagram pa&ek http://vlsi.colorado.edu/
pub/, 1998.

[22] M.I.A. Stoelinga. Fun with FireWire: Experiments witlerifying the IEEE1394 root contention pro-
tocol. InFormal Aspects of Computing002.

[23] W. Thomas. Languages, automata, and logic. In G. Ragnéind A. Salomaa, editotdandbook of
Formal Languagesvolume 3, Beyond Words, chapter 7, pages 389-455. Sprihger.

22



8 Appendix

8.1 Technical details of improved symbolic scc algorithm

The pseudocode of SC@¥D is formally given as Algorithm 4. The correctness analysid the analysis
of the number of symbolic steps is given in [11]. The pseudeaaf IMPROVEDSCCHND is formally given

as Algorithm 5. The main changes ofi#kROVEDSCCHND from SCCHND are as follows: (1) instead of
SKELFwD the algorithm MPROVEDSCCHND calls procedureMPROVEDSKELFwWD that returns an addi-
tional setP and IMPROVEDSKEL FwD is invoked with an additional argument thatis (2) in line 4 of M-
PROVEDSCCHND the se6CCisinitialized toP instead ok. The main difference oMPROVEDSKELFWD
from SKELFwD is as follows: (1) the seP is computed in line 4 ofMPROVEDSKELFWD asFWSet N @),
where() is the set passed byPROVEDSCCHND as the argument; and (2) in the while loop it is checked if
the element popped intersects withand if yes, then the procedure breaks the while loop. Thectress
argument from the correctness of SQQF is already shown in Section 5.1.

Symbolic steps analysisWe now present the detailed symbolic steps analysis of t@idim. As noted
in Section 3.2, common symbolic operations on a set of sta&Rre, Post andCPre. We note that these
operations involve symbolic sets 2f log(n) variables, as compared to symbolic setdogf(n) variables
required for operations such as union, intersection andiffetence. Thus onlyre, Post and CPre are
counted as symbolic steps, as done in [11]. The total numbather symbolic operations is also(|S]).
We note that only lines 5 and 10 ofiPROVEDSCCHND and lines 3.3 and 7.3 ofMPROVEDSKEL FwWD
involve Pre andPost operations.

In the following, we charge the costs of these lines to stat@sder to achieve tha - |S| + N(G) bound
for symbolic steps. We define subspine-setNa#/Set returned by MPROVEDSKELFwWD and show the
following result.

Lemma 4. For any spine-set/ and its end vertex, 7' is a subspine-set iff \ 7' C SCC(u).

Proof. Note that while constructing a subspine-§&twe stop the construction when we find any state
v € FWSet N U from the spine set. Now clearly sineec U, there is a path frome to u. Also, since we
found this state in"W (u), there is a path fromx to v. Hence,p € SCC(u). Also, each state that we are
omitting by stopping construction @ has the property that there is a path frano that state and a path
from that state t@. This implies that all the states we are omitting in congtancof 7" are inSCC(u). M

Note that since we pad&wSet \ SCC in the subsequent call tmPROVEDS CCHND, it will actually be
a spine set for the reduced problem. In the following lemmaa@v that any state can be part of subspine-
set at most once, as compared to twice in the S@GHrocedure in [11]. This lemma is one of the key
points that lead to the improved analysis of symbolic stepsiired.

Lemma 5. Any statev can be part of subspine-set at most once.

Proof. In [11], the authors show that any statean be included in spine sets at most twice KESFwD.
The second time the stateis included is in line 6 of KELFWD when theSCC(v) of the state is to be
found. In contrast,MPROVEDSKELFWD checks intersection of the subspine-set being construeitbdhe
setP that contains the states 8€C(v) which are already in a subspine-set. When this happenspi she
construction of the subspine-set. Nowifs already included in the subspine-set, then it will be pa®
and would not be included in subspine-set again. Hemcan be part of subspine-set at most once. B

Lemma 6. States added i6CC by iteration of line 5 o MPROVEDSCCHND are exactly the states which
are not part of any subspine-set.

23



Proof. We see that in line 5 olMPROVEDSCCHND, we start fromSCC = P and then we find th8CC by
backward search. Alsd; has all the states froi®CC which are part of any subspine-set. Hence, the extra
states that are added %€ C are states which are never included in a subspine-set. [

Charging symbolic steps to statesWe now consider three cases to charge symbolic steps t@ statk
scc’s.

1. Charging states included in subspine-s€irst, we see that the number of times the loop of line 3
in IMPROVEDSKELFWD is executed is equal to the size of the spine set thkaL.$wbD would have
computed. Using Lemma 4, we can charge one symbolic steghostate of the subspine-set and each
state of thesCC that is being computed. Now, the number of times line 7.3v#ROVEDSKEL FwWD
is executed equals the size of subspine-set that is compdette, we charge one symbolic step to
each state of subspine-set for this line.

Now we summarize the symbolic steps charged to each statdgpart of some subspine-set. First
time when a state gets into a subspine-set, it is chargedtlps,sone for line 3.3 and one for line
7.3 of IMPROVEDSKELFwD. If its SCC is not found in the same call tosaPROVEDSCCHND, then

it comes into action once again when$6C is being found. By Lemma 5, it is never again included
in a subspine set. Hence in this call teAROVEDSKELFWD, it is only charged one symbolic step for
line 3.3 and none for line 7.3 as line 7.3 is charged to statdecome part of the newly constructed
subspine-set. Also because of Lemma 6, since this stat@isubspine-set, it is not charged anything
for line 5 of IMPROVEDSCCHND. Hence, a state that occurs in any subspine-set is chargadsat
three symbolic steps.

2. Charging states not included in subspine-s&wor line 5 of MPROVEDSCCHND, the number of
times it is executed is the number of states that are add8d @oafter initialization toSCC = P.
Using Lemma 6, we charge one symbolic step to each stateso$ @ that is never a part of any
subspine-set. Also, we might have charged one symbolictsteqoch a state for line 3.3 ol
PROVEDSKELFwWD when we called it. Hence, each such state is charged at moslytwbolic steps.

3. ChargingSCCs. For line 10 of MPROVEDSCCHND, we see that it is executed only once in a call
to IMPROVEDSCCHND that computes &CC. Hence, the total number of times line 10 is executed
equalsN (G), the number o6CCs of the graph. Hence, we charge e&€tT one symbolic step for
this line.

The above argument shows that the number of symbolic stepshb algorithm 1PROVEDSCCHND
requires is at most - |S| + N(G). This completes the formal proof of Theorem 8.

We now present an example that presents a family of graphsiwitn states, where the SCQND
algorithm takes almosi - k£ - n symbolic steps, whereas theRROVEDSCCHND algorithm takes at most
3. k- n+ n symbolic steps.

Example 1. Let k,n € N. Consider a graph witk - n states such that the states are numbered fram
k- n. The edges are as follows: (1) for all states i < k- n — 1, there is an edgé&, i + 1) (i.e, the states
are all in a line); and (2) for all <1 < n, there is an edge from state i to state(s — 1) - & + 1. We will
show that the SCCQRD algorithm requires roughly5 - £ — 1) - n symbolic steps on this graph. Note the
the number of scc’s in this graphss and hence by Theorem 8 theRROVEDSCCHND algorithm takes at
most3 - k£ - n + n symbolic steps.

We now analyze the symbolic steps required by the S@6FRalgorithm, and our analysis is in two
steps.

24



1. Step 1.In the beginning, starting from the state 1 of the graph, geradhm performs a forward
and backward search to find the spine set. This will have aafdsto symbolic steps per state (one
symbolic step while going forward, and one symbolic steplevpoing backward), except for the first
vertex which gets charged only one symbolic step (it doegyabtharged while going backwards).
This gives acost d - k-n — 1 symbolic steps. After this, the first scc will be found withadditional
cost of onlyk, and the first discovered scc consists of staté=2, ..., k }. Hence the total symbolic
steps required i8- k-n —1+ k.

2. Step 2.After Step 1, the algorithm will start finding scc’s from thedeof the spine set. So consider
the set of lask states fromk - (n — 1) + 1 ton - k. The algorithm will pick the last state - &, find
a spine set, consisting of the ldsstates (stateks - (n — 1) + 1 ton - k). This will have a cost of
2 - k — 1 symbolic stepsK symbolic steps for the forward search, d@nd- 1 symbolic steps for the
backward search). After this, the algorithm will find the soaitaining the last state- & (i.e., the scc
that consists of statgsk - (n — 1) +1,k- (n—1)+2,...,n-k }), and this take& symbolic steps as
there are: vertices in the scc. Now Step 2 is repeated with state. — 1), and then repeated for state
k- (n—2) and so on. So the cost for every scc, except the very first g+ 1+ k = 3k — 1. Since
there aren scc’s, the total number of symbolic steps required for Stispa2 least(3 -k — 1) - (n —1).

Hence the total symbolic steps required for the algorithat isast
2-kn—1+k+B-k=-1)-(n-1)=0(B-k—-1)-n—2-k.

Note that withk = n, SCCHND takes at leasi-n?—3-n symbolic steps, whereas the#ROVEDSCCHND
takes at mos$ - n? + n symbolic steps. ]

25



Algorithm 4 SCCHND

Input: (S, E, (U, s)), i.e., a graphS, E) with spine setU, s).
Output: SCCPartition i.e. the set of SCCs of the gragh, E)
Initialize SCCPartition := 0; FWSet := 0;
1.if (S = 0) then
1.1return;
2.if (U =0) then
2.1s := pick(S)
3. (FWSet, NewSet, NewState) := SKELFWD(S, E, s)
4.5CC=s
5. while (((Pre(SCC) N FWSet) \ SCC) # () do
5.1SCC := SCCU (Pre(SCC) N FWSet)
6. SCCPartition := SCCPartition U {SCC}
(Recursive call orp' \ FWSet)
7.5 := S\ FWSet
8.E :=En(S x5
9.U":=U\SCC
10. s ;== Pre(SCCNU) N (S '\ SCC)
11. SCCPartition := SCCPartitiond SCCRND (S, E/, (U’ §"))
(Recursive call offWSet \ SCC)
12. 5" := FWSet \ SCC
13.E' == EN(S' x §)
14.U’ := NewSet \ SCC
15. s’ := NewState \ SCC
16. SCCPartition := SCCPartitionu SCCRND(S’, E’, (U’, §'))
17. ReturnrSCCPartition

Procedure SKELFwD
Input: (S, E,s), i.e., agraph(S, E) with a states € S.
Output: (FWSet, NewSet, NewState),
i.e. forward seFWSet, new spine-selewSet andNewState € NewSet
1. Letstack be an empty stack of sets of nodes
2.L:=s
3. while (L # () do
3.1 Push(stack, L)
3.2FWSet := FWSet U L
3.3L := Post(L) \ FWSet
. L := Pop(stack)
. NewSet := NewState := pick(L)
6. while (stack # ) do
6.1 L := Pop(stack)
6.2 NewSet := NewSet U pick(Pre(NewSet) N L)
7.return (FWSet, NewSet, NewState)

[S2IF N

26



Algorithm 5 IMPROVEDSCCHND

Input: (S, E, (U, s)), i.e., a graph(S, E) with spine setU, s).
Output: SCCPartition, the set of SCCs of the graghy, F)
Initialize SCCPartition := 0; FWSet := 0;

1.if (S = 0) then

1.1return;
2.if (U =0) then
2.1s := pick(9)

3. (FWSet, NewSet, NewState, P) := IMPROVEDSKELFWD(S, E, U, s)

4.SCC=P

5. while (((Pre(SCC) N FWSet) \ SCC) # ) do

5.1SCC := SCCU (Pre(SCC) N FWSet)

6. SCCPartition := SCCPartition U {SCC}
(Recursive call orp' \ FWSet)

7.5 := S\ FWSet

8.E :=En(S x5

9.U":=U\SCC

10.s" := Pre(SCCNU) N (S '\ SCC)

11. SCCPartition := SCCPartitionJ IMPROVEDSCCRND (S’, E’, (U, s'))
(Recursive call ofrWSet \ SCC)

12. 5" := FWSet \ SCC

13.E' == EN(S' x §)

14.U’ := NewSet \ SCC

15. s’ := NewState \ SCC

16. SCCPartition := SCCPartitionJ IMPROVEDSCCRND (S’, E’, (U, s'))

Procedure IMPROVEDSKEL FWD
Input: (S, E,Q,s), i.e., agraph(S, F) with a setQ) and a state € S.
Output: (FWSet, NewSet, NewState, P)
1. Letstack be an empty stack of sets of nodes
2.L:=s
3. while (L # () do
3.1 Push(stack, L)
3.2FWSet := FWSet U L
3.3L := Post(L) \ FWSet
4. P :=FWSetN Q
5. L := Pop(stack)
6. NewSet := NewState := pick(L)
7. while (stack # () do
7.1 L := Pop(stack)
7.2if (LN P # 0) then
7.2.1break while loop
7.3elseNewSet := NewSet U pick(Pre(NewSet) N L)
8. return (FWSet, NewSet, NewState, P)

27



