
Resolution Proof Transformation for
Compression and Interpolation

S.F. Rollini1, R. Bruttomesso2, N. Sharygina1, and A. Tsitovich3

1 University of Lugano, Switzerland
{simone.fulvio.rollini, natasha.sharygina}@usi.ch

2 Atrenta Advanced R&D of Grenoble, France
roberto@atrenta.com
3 Phonak, Switzerland

aliaksei.tsitovich@phonak.com

Abstract. Verification methods based on SAT, SMT, and Theorem
Proving often rely on proofs of unsatisfiability as a powerful tool to
extract information in order to reduce the overall effort. For example a
proof may be traversed to identify a minimal reason that led to unsatisfi-
ability, for computing abstractions, or for deriving Craig interpolants. In
this paper we focus on two important aspects that concern efficient han-
dling of proofs of unsatisfiability: compression and manipulation. First
of all, since the proof size can be very large in general (exponential in the
size of the input problem), it is indeed beneficial to adopt techniques to
compress it for further processing. Secondly, proofs can be manipulated
as a flexible preprocessing step in preparation for interpolant computa-
tion. Both these techniques are implemented in a framework that makes
use of local rewriting rules to transform the proofs. We show that a care-
ful use of the rules, combined with existing algorithms, can result in an
effective simplification of the original proofs. We have evaluated several
heuristics on a wide range of unsatisfiable problems deriving from SAT
and SMT test cases.

1 Introduction

Symbolic verification methods rely on a representation of the state space as a set
of formulae, which are manipulated by formal engines such as SAT- and SMT-
solvers. For example Bounded Model Checking [13] represents an execution trace
leading to a state violating a property as a propositional formula such that the
state is reachable if and only if the formula is satisfiable. When the formula is
satisfiable, it is possible to infer a counterexample from the model reported by
the solver, showing a path that reaches a violating state. When the formula is
unsatisfiable, it is instead possible to extract information that better explains
the reason why the violating states are unreachable. For instance this can be
useful to derive an abstraction of a set of states as it is done in interpolation-
based model checking [49] (to abstract the initial states) or IC3 [17] (to derive
a minimal set of clauses to put in a frame).

ar
X

iv
:1

30
7.

20
28

v3
 [

cs
.L

O
]

 1
5

A
pr

 2
01

4

In this paper we describe a set of techniques that allow efficient manipula-
tion of a propositional proof of unsatisfiability, the by-product of an unsatisfiable
run of a state-of-the-art solver that may be used to obtain abstractions in the
applications mentioned above. In particular we focus on two important aspects:
compression of a proof of unsatisfiability, and rewriting to facilitate the compu-
tation of interpolants. These approaches are both realized by means of a set of
local rewriting rules that enable proof restructuring and compression.

1.1 Structure of the Paper

The paper is organized as follows. §2 recalls some notions about SAT, SMT and
resolution proofs. §3 introduces a proof transformation framework consisting of
a set of local rewriting rules and discusses its soundness. §4 addresses the prob-
lem of compressing resolution proofs, proposing a collection of algorithms based
on the transformation framework. It compares them against existing compres-
sion techniques and provides experimental results of running different tools over
SMT and SAT benchmarks. §5 presents basic notions about interpolation in
first order theories and discusses some limitations of state-of-the-art interpola-
tion algorithms. It then proposes an application of the transformation framework
aimed at reordering resolution proofs, in such a way that interpolation is made
possible. The approach is demonstrated to be theoretically sound and exper-
iments are provided to show that it is also practically efficient. An algorithm
is also provided to reorder resolution steps in a propositional proof to guaran-
tee the generation of interpolants in conjunctive and disjunctive normal form.
§6 discusses some of the heuristics adopted in the application of rules by the
transformation framework, with reference to §4 and §5. §7 reviews the existing
literature on proof manipulation; §8 draws the conclusions.

1.2 Improvement over Previous Own Work

The present work builds upon and extends [21] and [59] in a number of ways: (i)
it gives a unified and richer description of the Local Transformation Framework
and of the set of rewriting rules on which this is based (§3); (ii) it provides a
more thorough comparison between the notions of resolution proof trees and
DAGs, describing the application and the effect of the rules (§2, §3); (iii) it
gives a proof of correctness of the rules and of the SubsumptionPropagation
algorithm presented in [21] (§3); (iv) it proposes a new meta-algorithm for proof
transformation, TransformAndReconstruct, discussing its soundness and how it
can be instantiated to concrete algorithms with different goals (§3); (v) two new
compression algorithms, PushdownUnits and StructuralHashing, are proposed
and discussed, as well as their combination with the algorithms in [21] and [59]
(§4); (vi) a thorough evaluation of previous and novel algorithms is carried out
on a set of purely propositional benchmarks from the literature (§4); (vii) in the
context of interpolation we illustrate an application of the Local Transformation
Framework to reorder the pivots in a proof so as to guarantee the generation of
interpolants in CNF and DNF (§5); (viii) a description of the heuristics adopted

in the application of the rewriting rules has been added, with reference both to
compression and to transformation for interpolation (§6).

2 Background

The context of this paper is first order logic. We assume countable sets of individ-
ual variables (x, y, z), function (f, g) and predicate (P,Q) symbols. A function
symbol of 0-arity is called a constant (a, b, c), while a predicate symbol of 0-arity
corresponds to a propositional variable (o, p, q, r). A term is built from function
symbols and individual variables (f(c, g(x))); an atom is built from predicate
symbols and terms (P (x, f(c))). A literal (s, t) is either an atom (having positive
polarity) or its negation (having negative polarity). A formula (φ, ψ) is built from
atoms and connectives; we are only interested here in quantifier-free formulae.
A sentence (or ground formula) is a formula without free variables. A clause C
is a finite disjunction of literals; a formula in conjunctive normal form (CNF)
is a finite conjunction of clauses. The empty clause, which represents unsatis-
fiability, is denoted by ⊥. We write clauses as lists of literals and sub-clauses,
omitting the “∨” symbol, as for instance pqD (an overline denotes negation).
We use C1 ⊆ C2 to indicate that C1 subsumes C2, that is the set of literals C1

is a subset of the set of literals C2. Also we assume that clauses do not contain
duplicated literals or both the occurrence of a literal and its negation. Finally,
we use v(s) to denote the variable associated with a literal s.

A SAT-solver is a decision procedure that solves the propositional satisfi-
ability problem; most successful state-of-the-art solvers rely on variants of the
DPLL algorithm, as the conflict-driven clause-learning (CDCL) [12, 48], which
are based on the resolution inference system [38]. A first order theory T is a
collection of sentences; we call SMT(T) the problem of deciding the satisfiabil-
ity of a formula w.r.t. a theory T . A theory solver is an algorithm that decides
whether a conjunction of ground literals is satisfiable in T . If the conjunction is
unsatisfiable in T , then its negation is valid and is called a T -lemma: intuitively,
T -lemmata are formulae that encode facts valid in the theory T . An SMT(T)-
solver is a procedure to solve SMT(T); in particular, a lazy solver integrates a
theory solver with a CDCL SAT-solver [60].

2.1 The Resolution System

The resolution system is an inference system based on a single inference rule,
called resolution rule:

pD pE
p

DE

Clauses pD and pE are the antecedents, DE is the resolvent and p is the pivot
variable. We also represent a resolution step (an application of the resolution
rule) as DE = Resp(pD, pE).

SAT- and SMT-solvers can be instrumented to generate, for unsatisfiable
formulae, a certificate of unsatisfiability in the form of a proof of unsatisfiability
or refutation. It is straightforward to instruct a state-of-the-art CDCL solver to
return proofs: a resolution proof, in particular, can be derived by logging the
inference steps performed during conflict analysis [69].

Throughout the paper we shall use the notions of resolution proof tree and
resolution proof DAG.

Definition 1 (Resolution Proof Tree). A resolution proof tree of a clause
C from a set of clauses C is a tree such that:

1. Each node n is labeled by a clause C(n).
2. If n is a leaf, C(n) ∈ C
3. The root is a node n s.t. C(n) = C.
4. An inner node n has pivot piv(n) and exactly two parents n+, n− s.t. C(n) =

Respiv(n)(C(n+), C(n−))). C(n+) and C(n−) respectively contain the posi-
tive and negative occurrence of the pivot.

5. Each non-root node has exactly one child.

op pq pq opr

oq oqr

qr

p p p p

o o

op pq
p

oq

pq opr
p

oqr
oqr

Fig. 1. Resolution proof tree.

In the following, we equivalently use a graph-based representation (left) or an
inference rule-based representation (right).

In real-world applications proofs are rarely generated or stored as trees; for
instance proofs produced by CDCL solvers are represented as DAGs (Directed
Acyclic Graph). We therefore introduce the following notion of resolution proof,
which is more suitable for describing the graph-based transformation algorithms
illustrated in this paper.

Definition 2 (Resolution Proof DAG). A resolution proof DAG of a clause
C from a set of clauses C is a Directed Acyclic Graph such that:

1. - 4. hold as in Def. 1.
5. Each non-root node has one or more children.

Resolution proof DAGs extend the notion of resolution proof trees by allowing a
node to participate as antecedent in multiple resolution steps.

We identify a node n with its clause C(n) whenever convenient; in general,
different nodes can be labeled by the same clause, that is C(ni) = C(nj) for

op pq opr

oq oqr

qr

p p p p

o o

Fig. 2. Resolution proof DAG.

i 6= j. A proof P is a refutation if C = ⊥. A subproof P ′, with subroot n, of
a proof P is the subtree that derives C(n) from a subset of clauses that label
leaves of P ; when referring to P and its root compared to P ′, we call P global
proof and its root global root.

It is always possible to turn a resolution proof tree into a resolution proof
DAG, by merging two or more nodes labeled by a same clause into a single node,
which inherits the children of the merged nodes. On the other hand, a resolution
proof DAG can be “unrolled” into a resolution proof tree, possibly at exponential
cost: it is in fact sufficient to traverse the DAG bottom-up, duplicating nodes
with multiple children so that each node is left with at most one child.

Similarly to [9], we distinguish between a legal and an illegal proof; an il-
legal proof is a proof which has undergone transformations in such a way that
some clauses might not be the resolvents of their antecedents anymore. In this
paper however an illegal proof represents an intermediate transformation step
in an algorithm, and the proof can always be reconstructed into a legal one, as
explained in the next sections.

In the following, we will consider refutations as obtained by means of mod-
ern CDCL SAT-solvers and lazy SMT-solvers, involving both propositional and
theory atoms. Whenever the theory content is not relevant to the problem at
hand, it is convenient to represent each theory atom with a new propositional
variable called its propositional abstraction: for example an atom x+ y < 1 will
be represented by a certain variable q.

2.2 Resolution Proofs in Verification

Resolution proofs find application in many verification techniques. For instance,
Amla and McMillan’s [8] method for automatic abstraction uses proofs of un-
satisfiability derived from SAT-based bounded model checking as a guide for
choosing an abstraction for unbounded model checking. Proofs can be used as
justifications of specifications of inconsistency in various industrial applications
(e.g., product configuration or declarative modeling [61, 63]). In the context of
proof-carrying code [53] a system can verify a property about an application
exploiting a proof provided with the application executable code. SAT-solvers
and SMT-solvers can be integrated into interactive theorem provers as auto-
mated engines to produce proofs, that can be later replayed and verified within
the provers [7, 32, 66]. An unsatisfiable core, that is an inconsistent subset of

clauses, can be extracted from a proof, to be exploited for example during the
refinement phase in model checking [8, 40]. Another noteworthy application is
in the framework of interpolation-based model checking, where interpolants are
generated from proofs based on their structure and content [42,49–51].

3 The Local Transformation Framework

This section introduces a proof transformation framework based on local rewrit-
ing rules. We start by assuming a resolution proof tree, and then extend the
discussion to resolution proof DAGs. All results related to proofs hold in partic-
ular for refutations.

The framework is built on a set of rewriting rules that transform a subproof
with root C into one whose subroot C ′ is logically equivalent or stronger than C
(that is, C ′ =⇒ C). Each rewriting rule is defined to match a particular context,
identified by two consecutive resolution steps (see Fig. 3). A context involves two

C1 C2

C4 C3

C

p p

q q

C1 C2 p
C4 C3 q

C

Fig. 3. Rule context.

pivots p and q and five clauses C1, C2, C4, C3, C; we call C the context root ; the
subproof rooted in C is the context subproof. Clearly p is contained in C1 and C2

(with opposite polarity), and q is contained in C4 and C3 (again with opposite
polarity); q must be contained in C1 ∪ C2.

A clause C might be the root of two different contexts, depending on whether
C1 and C2 are taken as the antecedents of either of the two antecedents of C; in
that case, to distinguish among them we talk about left and right context.

Fig. 4 shows a set of proof transformation rules. Each rule is associated with a
unique context, and, conversely, each context can be mapped to at least one rule
(i.e., the set of rules is exhaustive, modulo symmetry, for every possible context).
A first property that characterizes the set of rules is locality : only the limited
information represented by a context is in fact needed to determine which rule is
applicable. A second property is strengthening : the rules either keep the context
root unchanged or turn it into a logically stronger formula.

The classification of rules into S (swapping) and R (reducing) depends on the
effect of the rules on the context rooted in C: S1 and S2 swap the two resolution
steps in the context without modifying C, while R1, R2, R2′ and R3 replace C
with a new C ′ such that C ′ ⊆ C; in other words, the R rules generate subproofs
with stronger roots.

S1: s /∈ C3, t ∈ C2

C1 : stD C2 : stE

C4 : tDE C3 : tF

C : DEF

v(s) v(s)

v(t) v(t)

V

C1 : stD C3 : tF C3 : tF C2 : stE

C′4 : sDF C′′4 : sEF

C : DEF

v(t) v(t) v(t) v(t)

v(s) v(s)

S1′: s /∈ C3, t ∈ C2

C1 : stD C2 : stE

C4 : tDE C3 : tF

C : DEF

v(s) v(s)

v(t) v(t)

W

C1 : stD C3 : tF C3 : tF C2 : stE

C′4 : sDF C′′4 : sEF

C : DEF

v(t) v(t) v(t) v(t)

v(s) v(s)

S2: s /∈ C3, t /∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : tF

C : DEF

v(s) v(s)

v(t) v(t)

V

C1 : stD C3 : tF

C′4 : sDF C2 : sE

C′ : DEF

v(t) v(t)

v(s) v(s)

R1: s ∈ C3, t ∈ C2

C1 : stD C2 : stE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

V
C1 : stD C3 : stF

C′ : sDF

v(t) v(t)

R2: s ∈ C3, t /∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

V

C1 : stD C3 : stF

C′4 : sDF C2 : sE

C′ : DEF

v(t) v(t)

v(s) v(s)

R2′: s ∈ C3, t /∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

V
C1 : stD C3 : stF

C′ : sDF

v(t) v(t)

R3: s ∈ C3, t 6∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

V C′ = C2 : sE

Fig. 4. Local transformation rules for resolution proof trees.

The influence of the S rules does not extend beyond the context where they
are applied, while that of the R rules possibly propagates down to the global
root. The R rules essentially simplify the proof and their effect cannot be undone,
while an application of an S rule can be reversed. In particular, the effect of rule
S2 can be canceled out simply by means of another application of the same S2.
S1 has S1′ as its inverse (notice the direction of the arrow); S1′ is actually a
derived rule, since it corresponds to the sequential application of S2 and R2.

The rules R2 and R2′ are associated with the same context; they respectively
behave as S2 (with an additional simplification of the root) and R1. The decision
whether to apply either rule depends on the overall goal of the transformation.
Note that the application of rule R2 to a context turns it into a new context
which matches rule S1.

3.1 Extension to Resolution Proof DAGs

If the proof to be transformed is a DAG rather than a tree, some constraints are
necessary on the application of the rules.

Consider rules S1, S1′, S2, R2, and suppose clause C4 is involved in more than
one resolution step, having thus at least another resolvent C5 besides C. If C4

is modified by a rule, it is not guaranteed that the correctness of the resolution
step having C5 as resolvent (and in turn of the resolution steps on the path from
C5 to the global root) is preserved. This problem does not concern clauses C1,
C2, C3 and the subproofs rooted in them, which are not changed by any rule.

A simple solution consists in creating a copy of C4, to which all resolvents
of C4 besides C are assigned, so that C4 is left with exactly one resolvent;
at that point any modification to C4 will affect only the context rooted in C.
Since duplications increase the size of the proof, they should be carried out with
moderation (see §6).

A more efficient alternative exists in case of rules R1, R2′, R3, where C4 is
detached by the context rooted in C and loses C as resolvent, but keeps the other
resolvents (if any). The effect of the transformation rules is shown in Fig. 5: the
presence of additional resolvents for C4 is denoted by a dotted arrow.

3.2 Soundness of the Local Transformation Framework

In this section we first prove that the rewriting rules preserve the legality of the
subproofs rooted in the contexts where the rules are applied; then we discuss
how the rules affect the global proof and what steps must be taken to maintain
it legal.

Effect on a context. Based on the following observations, we claim that after a
single application of a rule to a context with root C, the legal subproof rooted
in C is replaced by a legal subproof rooted in C ′ ⊆ C.

Refer to Fig. 5. No additional subproofs are introduced by the rules and no
modifications are brought to the subproofs rooted in C1, C2, C3, which are simply
recombined or detached from the context. As for the S rules, C4 is either replaced

S1: s /∈ C3, t ∈ C2

C1 : stD C2 : stE

C4 : tDE C3 : tF

C : DEF

v(s) v(s)

v(t) v(t)

V

C1 : stD C3 : tF C2 : stE

C′4 : sDF C′′4 : sEF

C : DEF

C4

v(t) v(t) v(t)

v(s) v(s)

S1′: s /∈ C3, t ∈ C2

C1 : stD C2 : stE

C4 : tDE C3 : tF

C : DEF

C′4

v(s) v(s)

v(t) v(t)

W

C1 : stD C3 : tF C2 : stE

C′4 : sDF C′′4 : sEF

C : DEF

v(t) v(t) v(t)

v(s) v(s)

S2: s /∈ C3, t /∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : tF

C : DEF

v(s) v(s)

v(t) v(t)

V

C1 : stD C3 : tF

C′4 : sDF C2 : sE

C′ : DEF

C4

v(t) v(t)

v(s) v(s)

R1: s ∈ C3, t ∈ C2

C1 : stD C2 : stE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

V

C2 : stE C1 : stD C3 : stF

C4 C′ : sDF

v(t) v(t)v(s)
v(s)

R2: s ∈ C3, t /∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

V

C1 : stD C3 : stF

C′4 : sDF C2 : sE

C′ : DEF

C4

v(t) v(t)

v(s) v(s)

R2′: s ∈ C3, t /∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

V

C2 : sE C1 : stD C3 : stF

C4 C′ : sDF

v(t) v(t)v(s)
v(s)

R3: s ∈ C3, t 6∈ C2

C1 : stD C2 : sE

C4 : tDE C3 : stF

C : sDEF

v(s) v(s)

v(t) v(t)

V

C1 : stD C′ = C2 : sE

C4

v(s) v(s)

Fig. 5. Local transformation rules for resolution proof DAGs.

by the resolvent of C1, C3 (S2) or by the resolvent of the resolvents of C1, C3

and C3, C2 (S1, where a new clause C ′′4 = Resv(s)(C2, C3) is also introduced).
Note that in both cases C is not modified. The R rules instead yield a more
substantial change in the form of a stronger context root C ′ ⊆ C:

– In R1 and R2′, the subproofs with root C1 and C3 are combined to obtain
a subproof with root sDF ⊆ sDEF .

– R2 has a swap effect similar to S2, but replaces the root sDEF with DEF ,
removing a single literal.

– In R3, the whole subproof is substituted by the subproof rooted in C2 = sE,
which subsumes C = sDEF .

All the above transformations involve updating the relevant clauses by means of
sound applications of the resolution rule.

Effect on the global proof. The application of a rule to a context yields a legal
subproof rooted in a clause C ′ ⊆ C; however, the global proof could turn into
an illegal one. In fact, the deletion of literals from C affects the sequence of
resolution steps that extends from C to the global root: some of these steps might
become superfluous, because they resolve upon a variable which was introduced
by C (but does not appear in C ′), and they should be appropriately removed.
In the same way, the elimination of a resolution step could itself lead to the
disappearance of more literal occurrences, leading to a chain reaction.

The following Alg. 1, SubsumptionPropagation, has the purpose of propagat-
ing the effect of the replacement of C by C ′ ⊆ C along the path leading from C
to the global root.

The algorithm restructures the proof in a top-down manner analyzing the
sequence of resolution steps to ensure their correctness while propagating the
effect of the initial subsumption. We prove that, after an execution of Subsump-
tionPropagation following the application of an R rule to a legal proof, the result
is still a legal proof.

The idea at the base of the algorithm reflects the mechanisms of the restruc-
turing procedures first proposed in [9, 31]:

1. It determines the effect range of the substitution of C by C ′, which corre-
sponds to the set of nodes reachable from the node labeled by C ′.

2. It analyzes, one by one, all reachable nodes; it is necessary that the an-
tecedents of a node n have already been visited (and possibly modified), in
order to guarantee a correct propagation of the modifications to n.

3. Due to the potential vanishing of literals from clauses, it might happen that
in some resolution step the pivot is not present in both antecedents anymore;
if that is the case, the resolution step is deleted, by replacing the resolvent
with the antecedent devoid of the pivot (if the pivot is missing in both an-
tecedents, either of them is arbitrarily chosen), otherwise, the resolution step
is kept and the resolvent clause updated. At the graph level, n is substituted
by n+ or n−, assigning the children of n (if any) to it.

Algorithm 1: SubsumptionPropagation.

Input: A legal proof modified by an R rule
Output: A legal proof
Data: W : set of nodes reachable from C′, V : set of visited nodes

1 begin
2 V ← ∅
3 Determine W , e.g. through a visit from C′

4 while W \ V 6= ∅ do
5 Choose n ∈W \ V such that:
6 (n+ ∈W or n+ /∈W) and (n− ∈W or n− /∈W)
7 V ← V ∪ {n}
8 p← piv(n)
9 if p ∈ C(n+) and p ∈ C(n−) then

10 C(n)← Resp(C(n+), C(n−))
11 else if p /∈ C(n+) and p ∈ C(n−) then
12 Substitute n with n+

13 else if p ∈ C(n+) and p /∈ C(n−) then
14 Substitute n with n−

15 else if p /∈ C(n+) and p /∈ C(n−) then
16 Heuristically choose a parent, replace n with it

17 end

18 end

Theorem 1 Assume a legal proof P . The application of an R rule, followed
by an execution of SubsumptionPropagation, yields a legal proof P ′, whose new
global root subsumes the previous one.

Proof (by structural induction).

Base case. Assume an R rule is applied to a context rooted in a clause C;
C is replaced by C ′ ⊆ C and the subproof rooted in C ′ is legal, as previously
shown. The subproofs rooted in the clauses of nodes not reachable from C are
not affected and thus remain legal.

Inductive step. All nodes reachable from C are visited; in particular, a node n
is visited after its reachable parents. By inductive hypothesis C ′(n+) ⊆ C(n+),
C ′(n−) ⊆ C(n−) and the subproofs rooted in C ′(n+) and C ′(n−) are legal. We
show that, after visiting n, C ′(n) ⊆ C(n) and the subproof rooted in C ′(n) is
legal. Let p = piv(n). We have three possibilities:

– Case 1: the pivot still appears both in C ′(n+) and in C ′(n−); C ′(n) =
Resp(C ′(n+), C ′(n−)), thus C ′(n) ⊆ C(n).

– Case 2: the pivot is present only in one antecedent, let us say C ′(n+); the
subproof rooted in C(n) is replaced by the one rooted in C ′(n−) (legal by
hypothesis). But C ′(n) = C ′(n−) ⊆ C(n) since C ′(n−) does not contain the
pivot.

Step 1: Application of rule R2

pq pr
p

qr pq
q

pr pu
p

ru rv
r

uv

V

pq pq
q

p pr
p

r pu
p

ru rv
r

uv

Step 2: Elimination of an unnecessary resolution step (Case 2)

pq pq
q

p pr
p

r pu
p

ru rv
r

uv

V
pq pq

q
p pr

p
r rv

r
uv

Step 3: Update of a resolving clause (Case 1)

pt pt
tp pr

p
r rv

r
uv

V
pt pt

tp pr
p

r rv
r

v

Fig. 6. Example of rule application and subsumption propagation.

– Case 3: the pivot is not present in either antecedent. Same reasoning as for
Case 2, but arbitrarily choosing an antecedent for the substitution.

In all three cases the subproof rooted in C ′(n) is legal and C ′(n) ⊆ C(n).

Fig. 6 shows the effect of R2 and the subsequent application of Subsumption-
Propagation on a small proof.

3.3 A Transformation Meta-Algorithm

The Local Transformation Framework defined by our rules leaves to the user the
flexibility of choosing a particular strategy and a termination criterion for their
application.

Whenever a sizeable amount of rules has to be applied, rather than run-
ning SubsumptionPropagation multiple times, it is more efficient to combine the
application of all rules and the propagation of the modifications into a single
traversal of the proof.

Alg. 2, TransformAndReconstruct, illustrates this approach. At first it per-
forms a topological sorting of the proof (line 2), in order to ensure that each
node is visited after its parents. Then it analyzes one node at a time, checking
if the corresponding resolution step is still sound (line 6). If the resolution step
is sound, it updates the resolvent clause, determining the node contexts (if any)

and the associated rules. At most one rule is applied, and the decision is based
on local heuristic considerations (line 9). If the resolution step is not sound and
either antecedent does not contain the pivot (lines 11, 13, 15), then the reso-
lution step is removed by replacing the resolvent with that antecedent (which,
missing the pivot, subsumes the resolvent); at the graph level, n is substituted
by n+ or n−.

Note that the antecedent not responsible for the substitution might have lost
all its resolvents and thus does not contribute to the proof anymore; in that case
it is pruned away, together with the portion of the subproof rooted in it which
has become detached from the global proof.

A key point of the algorithm is the call to ApplyRule(left context, right con-
text): this method heuristically chooses at most one context (possibly none)
rooted in n and applies the corresponding rule. The instantiation of ApplyRule
with different procedures yields concrete algorithms suitable for particular ap-
plications, as illustrated in the next sections.

Based on the above observations and on Theorem 1, we have the following
result:

Theorem 2 TransformAndReconstruct outputs a legal proof.

Algorithm 2: TransformAndReconstruct.

Input: A legal proof, an instance of ApplyRule
Output: A legal proof
Data: TS: nodes topological sorting vector

1 begin
2 TS ← topological sorting top down(proof)
3 foreach n ∈ TS do
4 if n is not a leaf then
5 p← piv(n)
6 if p ∈ C(n−) and p ∈ C(n+) then
7 C(n)← Resp(C(n−), C(n+))
8 Determine left context lc of n, if any
9 Determine right context rc of n, if any

10 ApplyRule(rc, lc)

11 else if p /∈ C(n−) and p ∈ C(n+) then
12 Substitute n with n−

13 else if p ∈ C(n−) and p /∈ C(n+) then
14 Substitute n with n+

15 else if p /∈ C(n−) and p /∈ C(n+) then
16 Heuristically choose a parent, substitute n with it

17 end

18 end

4 Proof Compression

Resolution proofs, as generated by modern solvers, find application in many ver-
ification techniques. In most cases, the size of the proofs affects the efficiency of
the methods in which they are used. It is known that the size of a resolution
proof can grow exponentially with respect to the size of the input formula: even
when proofs are representable in a manageable memory space, it might be crucial
for efficiency to reduce or compress them as much as possible. Several compres-
sion technique have been developed and can be found in literature, ranging from
memoization of common subproofs to partial regularization [6,7,9,25,31,33,62];
however, since the problem of finding a minimum proof is NP-hard, it is still
an open challenge to design heuristics capable of obtaining good reduction in
practical situations.

This section discusses algorithms aimed at compressing proofs. We iden-
tify two kinds of redundancies in resolution proofs and present a set of post-
processing techniques aimed at removing them; the techniques are independent
from the way the refutation is produced and can be applied to an arbitrary
resolution proof of unsatisfiability. We also illustrate how to combine these al-
gorithms in an effective manner, and show the results of experimenting on a
collection of SAT and SMT benchmarks.

We do not address directly the problem of core minimization, that is nonethe-
less achieved as a side effect of proof reduction. A rich literature exists on tech-
niques aimed at obtaining a minimum (a Σ2-complete problem), minimal (DP -
complete), or small unsatisfiable core, that is a subset of the initial set of clauses
that is still unsatisfiable [19,23,29,39,44,47,52,55,68].

4.1 Proof Redundancies

This paper focuses on two particular kinds of redundancies in resolution proofs.
The first one stems from the observation that, along each path from a leaf

to the root, it is unnecessary to resolve upon a certain pivot more than once.
The proof can be simplified, for example by keeping (for a given variable and a
path) only the resolution step closest to the root, while cutting the others away.
In the literature, a proof such that each variable is used as a pivot at most once
along each path from a leaf to the root is said to be regular [64].

The second kind of redundancy is related to the content of a proof. It might
be the case that there exist multiple nodes associated with equal clauses; such
nodes can be merged, keeping only one pair of parents and grouping together all
the children. In particular, we call a proof compact if C(ni) = C(nj) =⇒ i = j
for any i, j, that is, different nodes are labeled by different clauses.

4.2 Proof Regularity

In this section we discuss how to make a proof (partially) regular. We show
how to employ Alg. 2 for this purpose and present two algorithms explicitly

devised for regularization, namely RecyclePivots [9] and its refinement Recy-
clePivotsWithIntersection [33]. We illustrate them individually and explain how
they can be combined to obtain more powerful algorithms.

Regularization in the Local Transformation Framework The R rules are,
as a matter of fact, a means to perform a “local” regularization; they are applied
to contexts where a resolution step on a pivot v(s) is immediately followed by a
reintroduction of the pivot with positive (R1, R2, R′2) or negative (R3) polarity
(see Fig. 5).

Resolving on v(s) is redundant, since the newly introduced occurrence of the
pivot will be later resolved upon along the path to the global root; the R rules
have the effect of simplifying the context, possibly pruning subproofs which do
not contribute anymore to the global proof. Moreover, the rules replace the root
of a context with a stronger one, which allows to achieve further compression as
shown below.

Consider, for example, the following proof:

pq po
p

qo pq
q

po

qr pq
q

pr
p

or os
o

rs

(1)

The highlighted context can be reduced via an application of R2 as follows:

pq pq
q

p

qr pq
q

pr
p

or os
o

rs

(2)

The proof has become illegal as the literal o is now not introduced by any clause.
Since a stronger conclusion (p ⊂ po) has been derived, o is now redundant and
it can be eliminated all the way down to the global root or up to the point it
is reintroduced by some other resolution step. In this example o can be safely
removed together with the last resolution step which also becomes redundant.
The resulting legal (and stronger) proof becomes:

pq pq
q

p

qr pq
q

pr
p

r

(3)

At this stage no other R rule can be directly applied to the proof.
Rule S2 does not perform any simplification on its own, however it is still

used in our framework. Its contribution is to produce a “shuffling” effect in the
proof, in order to create more chances for the R rules to be applied.

Consider again our running example. S2 can be applied as follows:

pq pq
q

p

qr pq
q

pr
p

r

(4)

qr

pq pq
q

p pq
p

q
q

r

(5)

S2 has now exposed a new redundancy involving the variable q. The proof can
be readily simplified by means of an application of R2′:

qr

pq pq
q

p pq
p

q
q

r

(6)

qr

pq pq
p

q
q

r

(7)

As discussed in §3.3, the rewriting framework defined by our rules allows the
flexibility of choosing a strategy and a termination criterion for their application.

A simple strategy is to eagerly apply the R rules until possible, shuffle the
proof by means of S2 with the purpose of disclosing other redundancies, and then
apply the R rules again, in an iterative fashion. However there is usually a very
large number of contexts where S2 could be applied, and it is computationally
expensive to predict whether one or a chain of S2 applications would eventually
lead to the creation of contexts for an R rule.

For efficiency reasons, we rely on the meta-algorithm described in Alg. 2,
for a particular instantiation of the ApplyRule method. Alg. 2 does a single
traversal of the proof, performing shuffling and compression; it is run multiple
times, setting a number of traversals to perform and a timeout as termination
criteria (whichever is reached first). The resulting regularization procedure is
ReduceAndExpose, listed as Alg. 3.

Algorithm 3: ReduceAndExpose.

Input: A legal proof, timelimit : timeout, numtrav : number of transformation
traversals, an instantiation of ApplyRule

Output: A legal proof
1 begin
2 for i=1 to numtrav do
3 TransformAndReconstruct(ApplyRule)
4 if timelimit is reached then
5 break

6 end

7 end

The RecyclePivots Approach The RecyclePivots algorithm was introduced
in [9] as a linear-time technique to perform a partial regularization of resolution
proofs.

RecyclePivots is based on analyzing the paths of a proof, focusing on the
pivots involved in the resolution steps; if a pivot is resolved upon more than
once on a path (which implies that the pivot variable is introduced and then
removed multiple times), the resolution step closest to the root is kept, while
the others are simplified away.

We illustrate this approach by means of an example. Consider the leftmost
path of proof (1). Variable p is used twice as pivot. The topmost resolution step
is redundant as it resolves upon p, which is reintroduced in a subsequent step
(curly brackets denote the set RL of removable literals, see later).

pq po
p

qo {p, q} pq
q

po {p}
qo pq

q
po

p
o

(1)

Regularization can be achieved by eliminating the topmost resolution step
and by adjusting the proof accordingly. The resulting proof is shown below.

pq pq
q

p

qo pq
q

po
p

o

(2)

Alg. 4 shows the recursive version of RecyclePivots (RP in the following). It
is based on a depth-first visit of the proof, from the root to the leaves. It starts
from the global root, having as input a set of removable literals RL (initially
empty). The removable literals are essentially the (partial) collection of pivot
literals encountered during the bottom-up exploration of a path. If the pivot
variable of a resolution step under consideration is in RL (lines 15 and 18), then
the resolution step is redundant and one of the antecedents may be removed
from the proof. The resulting proof is illegal and has to be reconstructed into a
legal one, which can be done in linear time, as shown in [9].

Note that in the case of resolution proof trees, the outcome of the algorithm
is a regular proof. For arbitrary resolution proof DAGs the algorithm is executed
in a limited form (when nodes with multiple children are detected) precisely by
resetting RL (line 10); therefore the result is not necessarily a regular proof.

RecyclePivotsWithIntersection The aforementioned limitation is due to the
same circumstance that restricts the application of rules in the Local Transfor-
mation Framework, as discussed in §3.1. The set of removable literals of a node
is computed for a particular path from the root to the node (which is enough in
presence of proof trees), but does not take into account the existence of other pos-
sible paths to that node. Thus, suppose a node n with pivot p is replaced by one
of its parents (let us say n+) during the reconstruction phase, and C(n+) * C(n);
then, it might happen that some of the literals in C(n+) \C(n) are not resolved
upon along all paths from n to the root, and are thus propagated to the root,
making the proof illegal.

In order to address this issue, the authors of [33] extend RP by proposing
RecyclePivotsWithIntersection (RPI), an iterative version of which is illustrated

Algorithm 4: RecyclePivots(n,RL).

Input: A node n, a set of removable literals RL
1 begin
2 if n is visited then
3 return
4 else
5 Mark n as visited
6 if n is a leaf then
7 return
8 else
9 if n has more than one child then

10 RL← ∅
11 p← piv(n)
12 if p /∈ RL and p /∈ RL then
13 RecyclePivots(n+,RL ∪ {p})
14 RecyclePivots(n−,RL ∪ {p})
15 else if p ∈ RL then
16 n+ ← null
17 RecyclePivots(n−,RL)

18 else if p ∈ RL then
19 n− ← null
20 RecyclePivots(n+,RL)

21 end

in Alg. 5. RPI refines RP by keeping track for each node n of the set of pivot
literals RL(n) which get resolved upon along all paths from n to the root.

The computation of RL in the two approaches is represented in Fig. 7 and
Fig. 8. RP and RPI behave in the same way whenever a node n has only one child.
In case n has no children, i.e., it is the root, RPI takes into account the possibility
for the root to be an arbitrary clause (rather than only ⊥, as in refutations) and
sets RL to include all variables of C(n); it is equivalent to having a path from
n to ⊥ where all variables of C(n) are resolved upon. The major difference
between RP and RPI is in the way a node n with multiple children is handled:
RP sets RL(n) to ∅, while RPI sets RL(n) to the intersection

⋂
(RL(mi) ∪ qi)

of the removable literals sets of its children, augmented with the pivots of the
resolution steps of which the children are resolvents.

RPI starts in Alg. 5 by computing a topological sorting of the nodes (line 2),
from the root to the leaves. RL(root) is computed as the set of literals in the root
clause; for any other node n, RL(n) is initialized and then iteratively refined each
time one of its children is visited. Similarly to RecyclePivots, whenever visiting
an inner node n, if piv(n) appears in RL(n) then the resolution step is redundant
and can be simplified away (lines 9-14, 15-20); in that case, RL(n) is propagated
to a parent of n without the addition of piv(n).

Fig. 9 shows the effect of RPI on a small proof where RP cannot achieve
any compression: RP sets RL(qr) = ∅ since qr has two children, while RPI sets

RL(n) = ∅
RL(n) = (RL(m) ∪ {q})

q =

{
p if p ∈ C(n)
p if p ∈ C(n)

RL(n) = ∅

n

· · ·m1 mk

p1 pk

n

m

p n

Fig. 7. Computation of RL in RecyclePivots.

RL(n) =
⋂

(RL(mi) ∪ {qi})

qi =

{
pi if pi ∈ C(n)
pi if pi ∈ C(n)

RL(n) = (RL(m) ∪ {q})

q =

{
p if p ∈ C(n)
p if p ∈ C(n)

RL(n) =
⋃
{qi}

qi =

{
pi if pi ∈ C(n)
pi if pi ∈ C(n)

n

· · ·m1 mk

p1 pk

n

m

p n

Fig. 8. Computation of RL in RecyclePivotsWithIntersection.

pq pr

qr qsp

rsp

qs

rs

rp p

r

p p

q q q q

ss

pp

V

pq qsp

sp

qs

s

p p

⊥

q q q q

ss

pp

Fig. 9. Compression of a proof by means of RecyclePivotsWithIntersection.

RL(qr) = {r, p, q} and consequently simplifies the uppermost resolution step,
since it is able to detect that p is resolved upon along both paths from qr to the
root.

RecyclePivots and the Local Transformation Framework RecyclePivots
(as well as its refinement RecyclePivotsWithIntersection) and ReduceAndExpose
both aim at compressing a proof by identifying and removing pivot redundan-
cies along paths from the root to the leaves. The main difference between the

Algorithm 5: RecyclePivotsWithIntersection.

Input: A legal proof
Input: A proof to be reconstructed
Data: TS: nodes topological sorting vector, RL: vector of sets of removable

literals
1 begin
2 TS ← topological sorting bottom up(proof)
3 foreach n ∈ TS do
4 if n is not a leaf then
5 if n is the root then
6 RL(n)← {pi}pi∈C(n)

7 else
8 p← piv(n)
9 if p ∈ RL(n) then

10 n+ ← null
11 if n− not seen yet then
12 RL(n−)← RL(n)
13 Mark n− as seen

14 else RL(n−)← RL(n−) ∩RL(n)

15 else if p ∈ RL(n) then
16 n− ← null
17 if n+ not seen yet then
18 RL(n+)← RL(n)
19 Mark n+ as seen

20 else RL(n+)← RL(n+) ∩RL(n)

21 else if p /∈ RL(n) and p /∈ RL(n) then
22 if n− not seen yet then
23 RL(n−)← (RL(n) ∪ {p})
24 Mark n− as seen

25 else RL(n−)← RL(n−) ∩ (RL(n) ∪ {p})
26 if n+ not seen yet then
27 RL(n+)← (RL(n) ∪ {p})
28 Mark n+ as seen

29 else RL(n+)← RL(n+) ∩ (RL(n) ∪ {p})
30 end

31 end

two approaches is that RecyclePivots operates on a global perspective without
changing the topology of the proof (i.e., no shuffling), while ReduceAndExpose
operates on local contexts and allows the topology to change. Both approaches
have advantages and disadvantages.

Operating on a global perspective without modifying the topology allows
a one-pass visit and compression of the proof. Maintaining a fixed topology,
however, may prevent the disclosure of hidden redundancies. For instance the
application of RecyclePivots to the example of §4.2 would have stopped to step
(3), since no more redundant pivots can be found along a path (the proof is

regular). The local contexts instead have to be gathered and considered multi-
ple times. On the other hand, the ability of ReduceAndExpose to change the
topology allows more redundancies to be exposed.

Another advantage of RecyclePivots is that it can eliminate redundancies
that are separated by many resolution steps. The R rewriting rules instead are
applicable only when there is a reintroduction of a certain variable immediately
after a resolution step upon it. Such configurations, when not present in the
proof, can be produced by means of applications of the S2 rule.

The ability of the Local Transformation Framework to disclose redundancies
and the effectiveness of RecyclePivots at removing them can be combined in a
simple hybrid approach, shown in Alg. 6.

Algorithm 6: RP + RE.

Input: A legal proof, numloop: number of global iterations, numtrav: number
of transformation traversals for each global iteration, timelimit:
timeout, an instantiation of ApplyRule

Output: A legal proof
1 begin
2 timeslot = timelimit/numloop
3 for i=1 to numloop do
4 RecyclePivots(root,∅)
5 // RPtime is the time taken by RecyclePivots in the last call
6 ReduceAndExpose(timeslot−RPtime,numtrav,ApplyRule)

7 end

8 end

The algorithm takes as input an overall time limit, a number of global iter-
ations and a number of transformation traversals for ReduceAndExpose. The
time limit and the amount of global iterations determine the execution time
available to ReduceAndExpose during each iteration. ReduceAndExpose and
RecyclePivots are run one after the other by Alg. 6, alternately modifying the
topology to expose redundancies and simplifying them away.

A similar, but more efficient algorithm can be obtained by simply replacing
the call to RecyclePivots with a call to RecyclePivotsWithIntersection.

4.3 Proof Compactness

The focus of this section is the notion of compactness as introduced in §4.1:
a proof is compact whenever different nodes are labeled with different clauses,
that is C(ni) = C(nj) =⇒ i = j for any i, j. We first present an algorithm
to address redundancies related to the presence of multiple occurrences of a
same unit clause in a proof. Then we illustrate a technique based on a form
of structural hashing, which makes a proof more compact by identifying and

merging nodes having exactly the same pair of parents. We conclude by showing
how to combine these procedures with the Local Transformation Framework.

Unit Clauses-Based Simplification The simplification of a proof by exploit-
ing the presence of unit clauses has already been addressed in the literature
in [33] and [9]. The two works pursue different goals. The RecycleUnits algo-
rithm from [9] uses learned unit clauses to rewrite subproofs that were derived
before learning them. On the other hand, the LowerUnits algorithm from [33]
collects unit clauses and reinserts them at the level of the global root, thus re-
moving redundancies due to multiple resolution steps on the same unit clauses.

Following the idea of [33], we present PushdownUnits, listed as Alg. 7. First,
the algorithm traverses a proof in a top-down manner, detaching and collecting
subproofs rooted in unit clauses, while at the same time reconstructing the proof
to keep it legal (based on the schema of Alg. 2); then, (some of) these subproofs
are attached back at the end of the proof, adding new resolution steps. Push-
downUnits improves over LowerUnits by performing unit collection and proof
reconstruction in a single pass.

The algorithm works as follows. The proof is traversed according to a topo-
logical order. When a node n is visited s.t. C(n) is the resolvent of a sound
resolution step with pivot p, its parents are examined. Assume n+ is a unit
clause, that is C(n+) = p; then n is replaced by the other parent n− and n+ is
added to the set of unit clauses CU .

This transformation phase might add extra literals EL to the original global
root r; if this is the case, the necessary resolution steps to make the proof legal
are added at the end, starting from r. The nodes previously collected are taken
into account one by one; for each m, if C(m) = s and s is one of the extra literals
EL, then a new resolution step is added and its resolvent becomes the new root.

Note that not necessarily all these nodes will be added back to the proof.
Multiple nodes might be labeled by the same literal, in which case the correspon-
dent variable will be used only once as pivot. Also, a collected literal which was
an antecedent of some resolution step might have been anyway resolved upon
again along all paths from that resolution step to the global root; if so, it does
not appear in the set of extra literals. The subproofs rooted in these unnecessary
nodes can be (partially) pruned away to further compress the proof.

Structural Hashing The work of [25] proposes an algorithm based on a form
of structural hashing ; it explicitly takes into account how resolution proofs are
obtained in CDCL SAT-solvers from a sequence of subproofs deriving learnt
clauses, and keeps a hash map which stores for each derived clause its pair of
antecedents. While building the global proof from the sequence of subproofs,
whenever a clause would be added, if its pair of antecedents is already in the
hash map, then the existing clause is used.

Taking inspiration from the idea at the base of this technique, we present
a post-processing compression algorithm, StructuralHashing, which aims at im-
proving the compactness of a proof. StructuralHashing is illustrated in Alg. 8.

Algorithm 7: PushdownUnits.

Input: A legal proof
Output: A legal proof
Data: TS: nodes topological sorting vector, CU : collected units set, EL: set of

extra literals appearing in the global root
1 begin
2 TS ← topological sorting top down(proof)
3 r ← global root
4 foreach n ∈ TS do
5 if n is not a leaf then
6 p← piv(n)
7 if p ∈ C(n−) and p ∈ C(n+) then
8 C(n)← Resp(C(n−), C(n+))
9 if C(n+) = p then

10 Substitute n with n−

11 CU ← CU ∪ {n+}
12 else if C(n−) = p then
13 Substitute n with n+

14 CU ← CU ∪ {n−}
15 else if piv(n) /∈ C(n−) and piv(n) ∈ C(n+) then
16 Substitute n with n−

17 else if piv(n) ∈ C(n−) and piv(n) /∈ C(n+) then
18 Substitute n with n+

19 else if piv(n) /∈ C(n−) and piv(n) /∈ C(n+) then
20 Heuristically choose a parent, substitute n with it

21 end
22 EL← extra literals of C(r)
23 foreach m ∈ CU do
24 s← C(m)
25 if s ∈ EL then
26 Add a new node o s.t. C(o) = Resv(s)(C(r), C(m))
27 r ← o

28 end

29 end

The proof is traversed in topological order. When a node n is visited, the
algorithm first checks whether its antecedents are already in the hash map; if so,
another node m with the same parents has been seen before. In that case, n is
replaced by m and the children of n are assigned to m. The use of a topological
visit guarantees the soundness of the algorithm: it is safe to replace the subproof
rooted in n with that rooted in m since either (i) m is an ancestor of n (and the
subproof rooted in m is contained in the subproof rooted in n) or (ii) m and n
are not on a same path to the global root, so m is not involved in the derivation
of n.

Note that StructuralHashing does not guarantee a completely compact proof;
if two nodes n1, n2 have the same parents, then C(n1) = C(n2), but the con-

Step 1: Proof traversal and units collection

pqr p
p

qr qpo
q

rpo r
r

po ou
o

pu p
p

u

V

pqr qpo
q

rpo ou
o

pru

CU = {p, r}

Step 2: Reinsertion of units at the root level

pqr qpo
q

rpo ou
o

pru

V

pqr qpo
q

rpo ou
o

pru p
p

ru r
r

u

Fig. 10. Example of application of PushdownUnits. Note that the lowest occurrence
of p is not added back to the proof.

Algorithm 8: StructuralHashing.

Input: A legal proof
Output: A legal proof
Data: TS: nodes topological sorting vector, HM : hash map associating a node

to its pair of parents
1 begin
2 TS ← topological sorting top down(proof)
3 foreach n ∈ TS do
4 if n is not a leaf then
5 if < n+, n− >∈ HM then
6 m← HM(< n+, n− >)
7 Replace n with m
8 Assign n children to m

9 else
10 HM(< n+, n− >)← n

11 end

12 end

verse is not necessarily true. A complete but more computationally expensive
technique might consist in employing a hash map to associate clauses with nodes
(rather than pairs of nodes with nodes as done in StructuralHashing), based on
a function that derives map keys from the clauses content; an implementation
of this technique can be found in [4].

StructuralHashing and the Local Transformation Framework Struc-
turalHashing is a one-pass compression technique, like RecyclePivots and Recy-

clePivotsWithIntersection. Nevertheless, it is still possible to exploit the Local
Transformation Framework in order to disclose new redundancies and remove
them, in an iterative manner. We illustrate this approach in Alg. 9.

Algorithm 9: SH + RE.

Input: A legal proof, numloop: number of global iterations, numtrav: number
of transformation traversals for each global iteration, timelimit:
timeout, an instantiation of ApplyRule

Output: A legal proof
1 begin
2 timeslot = timelimit/numloop
3 for i=1 to numloop do
4 StructuralHashing()
5 // SHtime is the time taken by StructuralHashing in the last call
6 ReduceAndExpose(timeslot− SHtime,numtrav,ApplyRule)

7 end

8 end

A Synergic Algorithm It is possible to combine the compression techniques
illustrated so far as shown in Alg. 10, exploiting their individual features for a
synergistic effect. The combined approach executes the algorithms sequentially
for a given number of global iterations. Note that PushdownUnits is kept outside
of the loop: in our experience, SH, RPI and RE are unlikely to introduce unit
clauses in the proofs, thus for efficiency PushdownUnits is run only once before
the main loop.

The overall complexity of the combined algorithm is parametric in the num-
ber of global iterations and actual transformation traversals (also depending on
the specified time limit).

PushdownUnits performs a topological visit of the proof, collecting unit
clauses and adding them back at the level of the global root; the complexity
is O(|V |+ |E|), linear in the size of the resolution proof DAG.

Complexity is O(|V | + |E|) also for StructuralHashing, which traverses the
proof once, making use of an hash table to detect the existence of multiple nodes
with the same resolvents.

An iterative implementation of RecyclePivotsWithIntersection consists of a
bottom-up scan of the proof, while computing the sets of removable literals and
pruning branches, followed by a reconstruction phase; the complexity is again
O(|V |+ |E|).

Each execution of TransformAndReconstruct, on which ReduceAndExpose
is based, computes a topological sorting of the nodes and traverses the proof
top-down applying rewriting rules. If m transformation traversals are executed,
the complexity of ReduceAndExpose is O(m(|V |+ |E|)).

Algorithm 10: PU + SH + RPI + RE.

Input: A legal proof, numloop: number of global iterations, numtrav: number
of transformation traversals for each global iteration, timelimit:
timeout, an instantiation of ApplyRule

Output: A legal proof
1 begin
2 timeslot = timelimit/numloop
3 PushdownUnits()
4 for i=1 to numloop do
5 StructuralHashing()
6 RecyclePivotsWithIntersection()
7 // SHtime and RPItime are the time taken by StructuralHashing

// and RecyclePivotsWithIntersection in the last call
8 ReduceAndExpose(timeslot−SHtime−RPItime,numtrav,ApplyRule)

9 end

10 end

Note that PushdownUnits, RecyclePivotsWithIntersection, TransformAndRecon-
struct also perform operations at the level of clauses, checking the presence of
pivots, identifying rule contexts, updating resolvents. These operations depend
on the width of the involved clauses; in practice, this value is very small com-
pared to the proof size, and the complexity can be considered O(|V |+ |E|).

Finally, if n global iterations are carried out, the total complexity isO(nm(|V |+
|E|)). There is a clear trade-off between efficiency and compression. The higher
the value of m is, the more redundancies are exposed and then removed; in prac-
tice, however, especially in case of large proofs, a complexity higher than linear
cannot be afforded, so the nm factor should be kept constant in the size of the
proofs.

Some heuristics on the application of the local rules in conjunction with
RecyclePivots, RecyclePivotsWithIntersection and StructuralHashing have been
proved particularly successful: we refer the reader to §4.4, §4.5 and §6 for details.

4.4 Experiments on SMT Benchmarks

As a first stage of experimentation, we carried out an evaluation of the three
algorithms RecyclePivots (RP), ReduceAndExpose (RE), and their combination
RP+RE. The algorithms were implemented inside the tool OpenSMT [20], with
proof-logging capabilities enabled.

We experimented on the set of unsatisfiable benchmarks taken from the SMT-
LIB [57] from the categories QF UF, QF IDL, QF LRA, QF RDL. For these
sets of benchmarks we noticed that the aforementioned compression techniques
are very effective. We believe that the reason is connected with the fact that
the introduction of theory lemmata in SMT is performed lazily: the delayed
introduction of clauses involved in the final proof may negatively impact the
online proof construction in the SAT-solver.

All the experiments were carried out on a 32-bit Ubuntu server featuring a
Dual-Core 2GHz Opteron CPU and 4GB of memory; a timeout of 600 seconds
and a memory threshold of 2GB (whatever is reached first) were put as limit to
the executions.

Table 1. Results for SMT benchmarks. #Bench reports the number of benchmarks
solved and processed within the time/memory constraints, RedNodes% and Red-
Edges% report the average compression in the number of nodes and edges of the proof
graphs, and RedCore% reports the average compression in the unsatisfiable core size.
TranTime is the average transformation time in seconds.

#Bench RedNodes% RedEdges% RedCore% TranTime(s)

RP 1370 6.7 7.5 1.3 1.7

(a)

#Bench RedNodes% RedEdges% RedCore% TranTime(s)

Ratio RE RP+RERE RP+RE RE RP+RE RE RP+RERE RP+RE

0.01 1364 1366 2.7 8.9 3.8 10.7 0.2 1.4 3.5 3.4

0.025 1363 1366 3.8 9.8 5.1 11.9 0.3 1.5 3.6 3.6

0.05 1364 1366 4.9 10.7 6.5 13.0 0.4 1.6 4.3 4.1

0.075 1363 1366 5.7 11.4 7.6 13.8 0.5 1.7 4.8 4.5

0.1 1361 1364 6.2 11.8 8.3 14.4 0.6 1.7 5.3 5.0

0.25 1357 1359 8.4 13.6 11.0 16.6 0.9 1.9 8.2 7.6

0.5 1346 1348 10.4 15.0 13.3 18.4 1.1 2.0 12.1 11.5

0.75 1339 1341 11.5 16.0 14.7 19.5 1.2 2.1 15.8 15.1

1 1335 1337 12.4 16.7 15.7 20.4 1.3 2.2 19.4 18.8

(b)

The executions of RE and RP+RE are parameterized with a time threshold,
which we set as a fraction of the time taken by the solver to solve the benchmarks:
more difficult instances are likely to produce larger proofs, and therefore more
time is necessary to achieve compression. Notice that, regardless of the ratio,
RE and RP+RE both perform at least one complete transformation loop, which
could result in an execution time slightly higher than expected for low ratios
and small proofs.

Table 1 shows the average proof compression after the application of the
algorithms4. Table 1a shows the compression obtained after the execution of
RP. Table 1b instead shows the compression obtained with RE and RP+RE
parameterized with a timeout (ratio · solving time). In the columns we report
the compression in the number of nodes and edges, the compression of the un-
satisfiable core, and the actual transformation time. Table 2 is organized as

4Full experimental data, as well as executables used in tests are available at
http://verify.inf.usi.ch/sites/default/files/RPTCI2014.tar.gz

http://verify.inf.usi.ch/sites/default/files/RPTCI2014.tar.gz

Table 2. Results for SMT benchmarks. MaxRedNodes% and MaxRedEdges% are the
maximum compression of nodes and edges achieved by the algorithms in the suite on
individual benchmarks.

MaxRedNodes% MaxRedEdges% MaxRedCore%

RP 65.1 68.9 39.1

(a)

MaxRedNodes% MaxRedEdges% MaxRedCore%

Ratio RE RP+RE RE RP+RE RE RP+RE

0.01 54.4 66.3 67.7 70.2 45.7 45.7

0.025 56.0 77.2 69.5 79.9 45.7 45.7

0.05 76.2 78.5 78.9 81.2 45.7 45.7

0.075 76.2 78.5 79.7 81.2 45.7 45.7

0.1 78.2 78.8 82.9 83.6 45.7 45.7

0.25 79.3 79.6 84.1 84.4 45.7 45.7

0.5 76.2 79.1 83.3 85.2 45.7 45.7

0.75 78.2 79.9 84.4 86.1 45.7 45.7

1 78.3 79.9 84.6 86.1 45.7 45.7

(b)

Table 1 except that it reports the best compression values obtained over all the
benchmarks suites.

On a single run RP clearly achieves the best results for compression with
respect to transformation time. To get the same effect on average on nodes
and edges, for example, RE needs about 5 seconds and a ratio transformation
time/solving time equal to 0.1, while RP needs less than 2 seconds. As for core
compression, the ratio must grow up to 1. On the other hand, as already re-
marked, RP cannot be run more than once.

The combined approach RP+RE shows a performance which is indeed better
than the other two algorithms taken individually. It is interesting to see that the
global perspective adopted by RP gives an initial substantial advantage, which
is slowly but constantly reduced as more and more time is dedicated to local
transformations and simplifications.

Table 2b displays some remarkable peaks of compression obtained with the
RE and RP+RE approaches on the best individual instances. Interestingly we
noticed that in some benchmarks, like 24.800.graph of the QF IDL suite, RP does
not achieve any compression, due to the high amount of nodes with multiple
resolvents present in its proof that forces RecyclePivots to keep resetting the
removable literals set RL. RP+RE instead, even for a very small ratio (0.01),
performs remarkably, yielding 47.6% compression for nodes, 49.7% for edges and
45.7% for core.

4.5 Experiments on SAT Benchmarks

A second stage of experimentation was preceded by an implementation of all
the compression algorithms discussed so far (Alg. 1 - Alg. 10) within a new
tool, PeRIPLO [58]; PeRIPLO, built on MiniSAT 2.2.0, is an open-source SAT-
solver which features resolution proof manipulation and interpolant generation
capabilities 5.

We evaluated the following algorithms: PushdownUnits (PU), RecyclePiv-
otsWithIntersection (RPI), ReduceAndExpose (RE), StructuralHashing (SH)
(Algs. 7,4,3,8) and their combinations RPI+RE (Alg. 6), SH+RE (Alg. 9),
PU+RPI+SH+RE (Alg. 10); the evaluation was carried out on a set of purely
propositional benchmarks from the SAT Challenge 2012 [2], the SATLIB bench-
mark suite [3] and the CMU collection [1].

First, a subset of unsatisfiable benchmarks was extracted from the SAT Chal-
lenge 2012 collection by running MiniSAT 2.2.0 alone with a timeout of 900
seconds and a memory threshold of 14GB; this resulted in 261 instances from
the Application track and the Hard Combinatorial track. In addition to these,
another 125 unsatisfiable instances were obtained from the SATLIB Benchmark
Suite and the CMU collection, for a total of 386 instances.

The experiments were carried out on a 64-bit Ubuntu server featuring a
Quad-Core 4GHz Xeon CPU and 16GB of memory; a timeout of 1200 seconds
and a memory threshold of 14GB were put as limit to the executions. The
PeRIPLO framework was able to handle proofs up to 30 million nodes, as in the
case of the rbcl xits 07 UNSAT instance from the Application track in the SAT
Challenge 2012 collection.

Differently from the case of SMT benchmarks, we decided to specify as ter-
mination criterion an explicit amount of transformation traversals per global
iteration, focusing on the dependency between proofs size and time taken by the
algorithms to move over proofs and compress them.

Table 3 reports the performance of the compression techniques. Table 3a
shows the results for the individual techniques PU, SH, RPI, RE, the latter
tested for an increasing amount of transformation traversals (3, 5, 10), and the
combination PU+SH+RPI without RE. Tables 3b, 3c, 3d respectively report on
the combinations RPI+RE, SH+RE, PU+SH+RPI+RE: in the first column, a
pair n,m indicates that n global iterations and m transformation traversals per
global iteration were carried out.

RPI is clearly the most effective technique on a single run, as for compression
and ratio transformation time / overall time. For this set of experiments we tuned
RE focusing on its ability to disclose new redundancies, so we did not expect
exceptional results when running the algorithm by itself; the performance of RE
improves with the number of transformation traversals performed, but cannot
match that of RPI.

5Full experimental data, as well as executables used in tests are available at
http://verify.inf.usi.ch/sites/default/files/RPTCI2014.tar.gz

http://verify.inf.usi.ch/sites/default/files/RPTCI2014.tar.gz

Table 3. Results for SAT benchmarks. #Bench reports the number of benchmarks
solved and processed within the time/memory constraints, RedNodes% and Red-
Edges% report the average compression in the number of nodes and edges of the proof
graphs, RedCore% the average compression in the unsatisfiable core size. TranTime is
the average transformation time in seconds; Ratio is the ratio between transformation
time and overall time.

#Bench RedNodes% RedCore% RedEdges% TranTime(s) Ratio

PU 200 1.81 0.00 2.18 5.44 0.09

SH 205 5.90 0.00 6.55 4.53 0.07

RPI 203 28.48 1.75 30.66 14.32 0.21

RE 3 203 4.16 0.09 4.85 24.84 0.31

RE 5 203 5.06 0.14 5.88 37.86 0.41

RE 10 202 6.11 0.17 7.08 67.09 0.56

PU+SH+RPI 196 32.81 1.47 35.70 18.66 0.27

(a)

RPI+RE #Bench RedNodes% RedCore% RedEdges% TranTime(s) Ratio

2,3 201 30.69 2.08 33.49 34.78 0.39

2,5 200 30.71 2.15 33.53 40.37 0.45

3,3 200 31.28 2.23 34.22 51.43 0.51

3,5 200 31.56 2.34 34.50 61.16 0.56

(b)

SH+RE #Bench RedNodes% RedCore% RedEdges% TranTime(s) Ratio

2,3 204 17.33 0.09 19.20 33.87 0.38

2,5 204 19.81 0.15 21.92 48.40 0.47

3,3 204 21.68 0.16 23.96 56.39 0.51

3,5 202 23.69 0.18 26.17 70.75 0.59

(c)

PU+SH+RPI+RE #Bench RedNodes% RedCore% RedEdges% TranTime(s) Ratio

2,3 195 39.46 1.89 43.34 35.23 0.44

2,5 195 40.46 1.93 44.49 38.49 0.46

3,3 195 41.68 2.06 45.86 47.41 0.51

3,5 195 42.41 2.05 46.71 52.91 0.54

(d)

On the other hand, the heuristics adopted in the application of the rewriting
rules (see §6) have a major effect on SH, enhancing the amount of compression
from about 6% to more than 20%.

The combined approaches naturally achieve better and better results as the
number of global iterations and transformation traversals grows. In particular,
Alg. 10, which brings together the techniques for regularization, compactness
and redundancies exposure, reaches a remarkable average compression level of
40%, surpassing (ratio being equal) all other combined approaches.

Table 4. Results for SAT benchmarks. MaxRedNodes% and MaxRedEdges% are the
maximum compression of nodes and edges achieved by the PU+SH+RPI+RE combi-
nation on a single benchmark.

PU+SH+RPI+RE MaxRedNodes% MaxRedCore% MaxRedEdges%

2,3 83.7 21.5 83.7

2,5 84.9 21.6 85.2

3,3 87.1 22.1 87.4

3,5 87.9 22.2 88.2

We report for completeness in Table 4 the maximum compression obtained
by the PU+SH+RPI+RE combination on the best individual instances.

A limitation of the current version of PeRIPLO it that preprocessing by
SATElite is not enabled in case of proof-logging; this restriction, which entails
higher solving times and might yield larger proofs sizes, will be addressed in a
future release of the tool.

5 Proof Transformation for Interpolation

Craig interpolants [26], since the seminal work by McMillan [49–51], have been
extensively applied in SAT-based model checking and predicate abstraction [42].
Formally, given an unsatisfiable conjunction of formulae A∧B, an interpolant I
is a formula that is implied by A (i.e., A =⇒ I), is unsatisfiable in conjunction
with B (i.e., B ∧ I =⇒ ⊥) and is defined on the common language of A and B.
The interpolant I can be thought of as an over-approximation of A that is still
in conflict with B.

Several state-of-the art approaches exist to generate interpolants in an auto-
mated manner; the most successful techniques derive an interpolant for A ∧ B
from a proof of unsatisfiability of the conjunction. This approach grants two im-
portant benefits: the generation can be achieved in linear time w.r.t. the proof
size, and interpolants themselves only contain information relevant to determine
the unsatisfiability of A ∧B.

Pudlák and Kraj́ıček [46, 56] are probably the first to propose an efficient
way to compute interpolants in the context of propositional logic. McMillan [50]

proposes an alternative method that also handles the quantifier-free theories
of uninterpreted functions, linear arithmetic, and their combination. All these
techniques adopt recursive algorithms, which initially set partial interpolants for
the axioms. Then, following the proof structure, they deduce a partial interpolant
for each conclusion from those of the premises. The partial interpolant of the
overall conclusion is the interpolant for the formula.

Yorsh and Musuvathi present in [67] a generalization of Pudlák’s method that
can compute interpolants for a formula defined modulo a theory T . The leaves of
the proof of unsatisfiability in this case are original clauses as well as T -lemmata
involving original predicates, generated by the prover during the solving process.
It is then sufficient to compute a partial interpolant for each theory lemma in
order to derive the global interpolant.

The last technique, for its modularity, finds its natural implementation within
SMT-solvers [11], procedures that combine SAT-solvers and domain specific al-
gorithms for a theory T in an efficient way (see §2). Cimatti et al. [24] show that
interpolant generation within SMT-solvers can outperform other known methods
(e.g. [50]), as a result of using optimized domain-specific procedures for T .

In the following we use A and B to denote two quantifier-free formulae in
a theory T , for which we would like to compute an interpolant. Theories of
interest are equality with uninterpreted functions EUF , linear arithmetic over
the rationals LRA and the integers LIA, the theory of arrays AX , or a com-
bination of theories, such as EUF ∪ LRA. Variables that appear only in A or
B are called A-local and B-local respectively. Variables that appear in both A
and B are called AB-common. A predicate is called AB-mixed if it is defined on
both A-local and B-local variables, it is called AB-pure otherwise. Notice that
AB-mixed predicates cannot appear in A and B.

Example 1. Let A ≡ (x = v ∧ f(x) = z), B ≡ (y = v ∧ f(y) = u ∧ z 6= u)
be two formulae in the EUF theory. Variable x is A-local, y, u are B-local, z, v
are AB-common (a predicate x = y would be AB-mixed). An interpolant I for
A ∧B is f(v) = z, which is an AB-pure predicate.

We consider resolution proofs are defined as in §2; recall that propositional vari-
ables in a proof may represent the propositional abstraction of theory predicates.
In this case we say that a propositional variable is AB-mixed if such is the pred-
icate associated with it.

One limitation of the approach of [67] is that theory lemmata, appearing in a
proof of unsatisfiability, must not contain AB-mixed predicates. However, several
decision procedures defined for SMT-solvers heavily rely on the creation of new
predicates during the solving process. Examples are delayed theory combination
(DTC) [16], Ackermann’s Expansion [5], Lemmas on Demand [28] and Splitting
on Demand [10] (see §5.2). All these methods may introduce new predicates,
which can potentially be AB-mixed.

In this section we show how to compute an AB-pure proof from an AB-mixed
one but without interfering with the internals of the SMT-solver; our technique
applies to any approach that requires the addition of AB-mixed predicates (see

§5.2 for a set of examples). We illustrate how to employ the Local Transforma-
tion Framework to effectively modify the proofs, in such a way that the generic
method of [67] can be applied; in this way it is possible to achieve a complete
decoupling between the solving phase and the interpolant generation phase, pro-
vided that an interpolation procedure is available for a conjunction of atoms in
T .

A sketch of the approach is depicted in Fig. 11. The idea is to move all AB-
mixed predicates (in grey) toward the leaves of the proof (Figure 11b) within
maximal AB-mixed subproofs.

Definition 3 (AB-mixed subproof). Given a resolution proof P , an AB-
mixed subproof is a subproof P ′ of P rooted in a clause C, whose intermediate
pivots are all AB-mixed predicates. P ′ is maximal if C does not contain AB-
mixed predicates.

When dealing with a background theory T we note the following fact: if P ′

is a maximal AB-mixed subproof rooted in a clause C, then C is a valid theory
lemma for T .

This observation derives from Def. 3 and from the fact that (i) AB-mixed
predicates can only appear in theory lemmata (as they do not appear in the
original formula) and (ii) a resolution step over two theory lemmata generates
another theory lemma.

Once AB-mixed maximal subproofs are formed, it is possible to replace them
with their root clauses (Figure 11c). The obtained proof is now free of AB-mixed
predicates and can be used to derive an interpolant applying the method of [67],
provided that an interpolant generating procedure is available for the theory T .

(a) (b) (c)

T -lemmaT -lemma

Fig. 11. An overview of our approach. (a) is the proof generated by the SMT-solver.
White points represent A-local predicates, black points represent B-local predicates,
grey points represent AB-mixed predicates. (b) AB-mixed predicates are confined in-
side AB-mixed trees. (c) AB-mixed trees are removed and their roots are valid theory
lemmata in T .

The crucial part of our approach is an algorithm for proof transformation.
It relies on the Local Transformation Framework discussed in §3. An ad-hoc
application of the rules can be used to transform a proof P into a proof P ′, where
all AB-mixed variables are confined in AB-mixed subproofs. Each rewriting

rule can effectively swap two pivots p and q in the resolution proof, or perform
simplifications, depending on the particular context.

In the following, to facilitate the understanding of the algorithm, we will call
AB-mixed and AB-pure predicates light and heavy respectively. The rules are
applied when a light predicate is below a heavy predicate in the proof graph.
The effect of an exhaustive application of the rules is to lift light predicates over
heavy predicates as bubbles in water.

5.1 Pivot Reordering Algorithms

The Local Transformation Framework can be effectively employed to perform a
local reordering of the pivots. Each rule in Fig. 5 either swaps the position of
two pivots (S1, S2, R2), or it eliminates at least one pivot (R1, R2′, R3). This
feature can be used to create an application strategy aimed at sorting the pivots
in a proof P , by transforming it into a proof P ′ such that all light variables are
moved above heavy variables.

In order to achieve this goal it is sufficient to consider only unordered contexts,
i.e. those in which v(t) is a light variable and v(s) is a heavy variable. Therefore
a simple non-deterministic algorithm can be derived as Alg. 11.

Algorithm 11: PivotReordering.

Input: A legal proof
Output: A legal proof without unordered contexts
Data: U : set of unordered contexts

1 begin
2 Determine U , e.g. through a visit of the proof
3 while U 6= ∅ do
4 Choose a context in U
5 Apply the associated rule, and SubsumptionPropagation if necessary
6 Update U

7 end

8 end

The algorithm terminates: note in fact that each iteration strictly decreases
the distance of an occurrence of a heavy pivot w.r.t. the global root, until no
more unordered contexts are left.

A more efficient choice is to make use of Alg. 2 TransformAndReconstruct,
by instantiating the ApplyRule method so that it systematically pushes light
variables above heavy ones; a possible instantiation is shown in Alg. 12. An
algorithm for pivot reordering would then consist of a number of consecutive
runs of TransformAndReconstruct, stopping when no more unordered contexts
are found: Alg. 13, PivotReordering2, implements this approach.

Algorithm 12: ApplyRuleForPivotReordering.

Input: A left context lc, a right context rc
1 begin
2 if lc is ordered and rc is unordered then
3 Apply rule for rc
4 else if lc is unordered and rc is ordered then
5 Apply rule for lc
6 else if lc is unordered and rc is unordered then
7 Heuristically choose between lc and rc and apply rule

8 end

Algorithm 13: PivotReordering2.

Input: A legal proof
Output: A legal proof without unordered contexts

1 begin
2 while unordered contexts are found do
3 TransformAndReconstruct(ApplyRuleForP ivotReordering)
4 end

5 end

5.2 SMT-Solving and AB-Mixed Predicates

In this section we show a number of techniques currently employed in state-of-
the-art SMT-solvers that can potentially introduce AB-mixed predicates during
the solving phase. If these predicates become part of the proof of unsatisfiability,
the proof reordering algorithms described in §5.1 can be applied to produce an
AB-pure proof.

Theory Reduction Techniques Let Tk and Tj be two decidable theories such
that Tk is weaker (less expressive) than Tj . Given a Tj-formula ϕ, and a deci-
sion procedure SMT(Tk) for quantifier-free formulae in Tk, it is often possible to
obtain a decision procedure SMT(Tj) for quantifier-free formulae in Tj by aug-
menting ϕ with a finite set of Tk-lemma ψ. These lemmata (or axioms) explicitly
encode the necessary knowledge such that Tk |= ϕ ∧ ψ if and only if Tj |= ϕ.
Therefore a simple decision procedure for Tj is as described by Alg. 14.

Algorithm 14: A reduction approach for SMT(Tj).
Input: ϕ for Tj

1 begin
2 ψ = generateLemmata(ϕ)
3 return SMT(Tk)(ϕ ∧ ψ)

4 end

In practice the lemmata generation function can be made lazy by plugging
it inside the SMT-solver directly; this paradigm is known as Lemma on De-
mand [28] or Splitting on Demand [10]. We show some reduction techniques as
follows.

Id Clauses Prop. abstract.

1 x = wr(y, i, e) p1
2 rd(x, j) 6= rd(y, j) p2
3 rd(x, k) 6= rd(y, k) p3
4 j 6= k p4
5 (i = j ∨ rd(wr(y, i, e), j) = rd(y, j)) p5 p6
6 (i = k ∨ rd(wr(y, i, e), k) = rd(y, k)) p7 p8
7 (x 6= wr(y, i, e) ∨ rd(x, j) = rd(y, j) ∨ rd(wr(y, i, e), j) 6= rd(y, j)) p1 p2 p6
8 (x 6= wr(y, i, e) ∨ rd(x, k) = rd(y, k) ∨ rd(wr(y, i, e), k) 6= rd(y, k)) p1 p3 p8
9 (j = k ∨ i 6= j ∨ i 6= k) p4 p5 p7

p7p8 p1p3p8

p1p3p7 p4p5p7

p1p3p4p5 p4p4
p1p3p5

p5p6 p1p2p6

p1p2p5p5
p1p2p3 p3

p1p2 p1

p2 p2

⊥

(a)

p7p8 p1p3p8

p1p3p7 p4p5p7

p1p3p4p5

p5p6 p1p2p6

p1p2p5p5
p1p2p3p4 p4p4

p1p2p3 p3

p1p2 p1

p2 p2

⊥

(b)

Fig. 12. Clauses from Ex. 2. ϕ ≡ {1, 2, 3, 4}, ψ ≡ {5, 6}. Clauses 7-9 are theory lemmata
discovered by the EUF solver. (a) is a possible proof obtained by the SMT-solver (for
EUF) on ϕ ∧ ψ. (b) is a proof after swapping p4 and p5 by means of rule S2; in the
resulting proof all mixed literals (p5-p8) appear in the upper part of the proof in an
AB-mixed proof subtree. The root of the AB-mixed subtree p1p2p3p4 is a valid theory
lemma in AX .

Reduction of AX to EUF . We consider the case where Tk ≡ EUF , the theory of
equality with uninterpreted functions, and Tj ≡ AX , the theory of arrays with
extensionality. The axioms of EUF are the ones of equality (reflexivity, symme-
try, and transitivity) plus the congruence axioms ∀x, y. x = y =⇒ f(x) = f(y),
for any functional symbol of the language.

The theory of arrays AX is instead axiomatized by:

∀x, i, e. rd(wr(x, i, e), i) = e (1)

∀x, i, j, e. i = j ∨ rd(wr(x, i, e), j) = rd(x, j) (2)

∀x, y. x = y ⇐⇒ (∀i. rd(x, i) = rd(y, i)) (3)

State-of-the-art approaches for AX implemented in SMT-solvers [14, 18, 27,
35] are all based on reduction to EUF . Instances of the axioms of AX are added
to the formula in a lazy manner until either the formula is proven unsatisfiable
or saturation is reached. The addition of new lemmata may require the creation
of AB-mixed predicates when a partitioned formula is considered.

Example 2. Let ϕ ≡ A ∧ B, where A ≡ x = wr(y, i, e), and B ≡ rd(x, j) 6=
rd(y, j) ∧ rd(x, k) 6= rd(y, k) ∧ j 6= k. Variables {i, e} are A-local, {j, k} are B-
local, and {x, y} are AB-common. To prove ϕ unsatisfiable with a reduction to
EUF , we need to instantiate axiom (2) twice as ψ ≡ (i = j ∨ rd(wr(y, i, e), j) =
rd(y, j)) ∧ (i = k ∨ rd(wr(y, i, e), k) = rd(y, k)). Notice that we introduced four
AB-mixed predicates. Now we can send ϕ ∧ ψ to an SMT-solver for EUF to
produce the proof of unsatisfiability. Fig. 12 shows a possible resolution proof
generated by the SMT-solver, and how it can be transformed into a proof without
AB-mixed predicates.

Reduction of LIA to LRA. Decision procedures for LIA (linear integer arith-
metic) often rely on iterated calls to a decision procedure for LRA (linear ratio-
nal arithmetic). An example is the method of branch-and-bound : given a feasible
rational region R for a set of variables x = (x1, . . . , xn), and a non-integer point
c ∈ R for x, then one step of branch-and-bound generates the two subproblems
R ∪ {xi ≤ bcic} and R ∪ {xi ≥ dcie}. These are again recursively explored until
an integer point c is found.

Note that the splitting on the bounds can be delegated to the propositional
engine by adding the lemma ((xi ≤ bcic) ∨ (xi ≥ dcie)). In order to obtain a
faster convergence of the algorithm, it is possible to split on cuts, i.e. linear
constraints, rather than on simple bounds. However cuts may add AB-mixed
predicates if A-local and B-local variables are mixed into the same cut.

Example 3. Let ϕ ≡ A ∧ B in LIA, where A ≡ 5x− y ≤ 1 ∧ y − 5x ≤ −1, and
B ≡ 5z−y ≤ −2∧y−5z ≤ 3. The axiom ψ ≡ ((x− z ≤ 0)∨ (x− z ≥ 1)) (which
contains two AB-mixed literals) is sufficient for ϕ∧ψ to be proven unsatisfiable
by a solver for LRA, by discovering two additional theory lemmata ((5x− y 6≤
1)∨ (y−5z 6≤ 3)∨ (x−z ≤ 0)) and ((5x−y 6≤ −1)∨ (y−5z 6≤ −2)∨ (x−z ≥ 1)).

Ackermann’s Expansion. When Tj is a combination of theories of the form EUF∪
Tk, Ackermann’s expansion [5] can be used to reduce the reasoning from Tj
to Tk. The idea is to use as ψ the exhaustive instantiation of the congruence
axiom ∀x, y (x = y =⇒ f(x) = f(y)) for all pairs of variables appearing in
uninterpreted functional symbols and all uninterpreted functional symbols f in
ϕ. This instantiation generates AB-mixed predicates when x is instantiated with
an A-local symbol and y with a B-local one.

Example 4. Let Tk ≡ LRA. Let ϕ ≡ A ∧ B and A ≡ (a = x + y ∧ f(a) = c),
B ≡ (b = x + y ∧ f(b) = d ∧ c 6= d). The axiom ψ ≡ ((a 6= b) ∨ (f(a) = f(b))
is sufficient for LRA to detect the unsatisfiability of ϕ ∧ ψ, by discovering two
additional theory lemmata ((f(a) 6= f(b)) ∨ (f(a) 6= c) ∨ (f(b) 6= d) ∨ (c 6= d))
and ((a 6= x+ y) ∨ (b 6= x+ y) ∨ (a = b)).

Theory Combination via DTC A generic framework for theory combination
was introduced by Nelson and Oppen in [54]. We recall it briefly as follows.

Given two signature-disjoint and stably-infinite theories T1 and T2, a decision
procedure for a conjunction of constraints in the combined theory T1 ∪ T2 can
be obtained from the decision procedures for T1 and T2. First, the formula ϕ is
flattened, i.e. auxiliary variables are introduced to separate terms that contain
both symbols of T1 and T2. Then the idea is that the two theory solvers for
T1 and T2 are forced to exhaustively exchange interface equalities i.e. equalities
between interface variables (interface variables are those that appear both in
constraints of T1 and T2 after flattening)6.

Delayed Theory Combination (DTC) implements a non-deterministic version
of the Nelson-Oppen framework, in which interface equalities are not exchanged
by the deciders directly, but they are guessed by the SAT-solver. With DTC
it is possible to achieve a higher level of modularity w.r.t. the classical Nelson-
Oppen framework. DTC is currently implemented (with some variations) in most
state-of-the-art SMT-solvers.

If no AB-mixed interface equality is generated, an interpolant can be derived
with the methods already present in the literature; otherwise our method can
be applied to reorder the proof, as an alternative to the techniques described
in [24,36].

Example 5. Consider again ϕ of Ex. 4. Since a, b, f(a), f(b) appear in constraints
of both theories, we need to generate two interface equalities a = b and f(a) =
f(b). The guessing of their polarity is delegated to the SAT-solver. The SMT-
solver will detect the unsatisfiability after the EUF-solver discovers the two
theory lemmata ((a 6= b)∨(f(a) = f(b)) and ((f(a) 6= f(b))∨(f(a) 6= c)∨(f(b) 6=
d)∨ (c 6= d)) and the LRA-solver discovers the theory lemma ((a 6= x+y)∨ (b 6=
x+ y) ∨ (a = b)).

6Note that in practice flattening can be avoided. For instance in Ex. 5 we do not
perform any flattening.

5.3 Experiments on SMT benchmarks

For the purpose of this experimentation we chose to focus on one particular
application among those of §5.2, namely Ackermann’s Expansion for Theory
Combination.

We evaluated the proof transformation technique on the set of QF UFIDL

formulae from the SMT-LIB [57] (QF UFIDL refers to the combined theory EUF∪
IDL). The suite contains 319 unsatisfiable instances. Each formula was split in
half to obtain an artificial interpolation problem (in the same fashion as [24])7.

The pivot reordering algorithm Alg. 13 was realized by means of the Local
Transformation Framework and implemented in OpenSMT [20]. Proof manip-
ulation was applied when the proof contained AB-mixed predicates, in order to
lift them up inside AB-maximal subproofs and replace them with their roots.

We ran the experiments on a 32-bit Ubuntu server equipped with Dual-Core
2GHz Opteron 2212 CPU and 4GB of memory. The benchmarks were executed
with a timeout of 60 minutes and a memory threshold of 2GB (whatever was
reached first): 172 instances, of which 82 proofs contained AB-mixed predicates8,
were successfully handled within these limits. We have reported the cost of the
transformation and its effect on the proofs; the results are summarized in Table 5.
We grouped benchmarks together following the original classification used in
SMT-LIB and provided average values for each group7.

Table 5. The effect of proof transformation on QF UFIDL benchmarks summarized
per group: #Bench - number of benchmarks in a group, #AB - average number of AB-
mixed predicates in a proof, Time% - average time overhead induced by transformation,
Nodes% and Edges% - average difference in the proof size as a result of transformation.

Group #Bench #AB Time% Nodes% Edges%

RDS 2 7 84 -16 -19

EufLaArithmetic 2 74 18 187 193

pete 15 20 16 66 68

pete2 52 13 6 73 80

uclid 11 12 29 87 90

Overall 82 16 13 74 79

The results in Table 5 demonstrate that our proof transformation technique
induces, on average, about 13% overhead with respect to plain solving time. The
average increase in size is around 74%, but not all the instances experienced a
growth; we observed in fact that in 42 out of 82 benchmarks the transformed
proof was smaller than the original one both in the number of nodes and edges.

7 The benchmarks and the detailed results are available at http://verify.inf.

usi.ch/sites/default/files/RPTCI2014.tar.gz
8Notice that in some cases AB-mixed predicates were produced during the search,

but they did not appear in the proof.

http://verify.inf.usi.ch/sites/default/files/RPTCI2014.tar.gz
http://verify.inf.usi.ch/sites/default/files/RPTCI2014.tar.gz

Overall it is important to point out that the creation of new nodes due to the
application of the S rules did not entail any exponential blow-up in the size of
the proofs during the transformation process.

Another interesting result to report is the fact that only 45% of the proofs
contained AB-mixed predicates and, consequently, required transformation. This
is another motivation for using off-the-shelf algorithms for SMT-solvers and have
the proof transformed in a second stage, rather than tweaking (and potentially
slowing down) the solver to generate clean proofs upfront.

5.4 Pivot Reordering for Propositional Interpolation

This section concludes our discussion on interpolation by moving back from
the context of SMT to that of SAT. We complete the analysis begun by the
authors of [45] and illustrate how, in the case of purely propositional refutations,
a transformation technique can be devised to generate interpolants directly in
conjunctive or disjunctive normal form.

Assuming a refutation of a formula A∧B, we distinguish whether a variable
p is local to A (p ∈ A), local to B (p ∈ B) or common to A and B (p ∈
AB). Fig. 13 shows McMillan interpolation algorithm for propositional logic [31,
50]. The algorithm initially sets a partial interpolant for the clauses that label
the refutation leaves; in particular, the partial interpolant of a clause in A is
its restriction C|AB to the propositional variables common to A and B. Then,
recursively, a partial interpolant for each resolvent is computed from those of the
antecedents depending on whether the pivot appears only in A (I1 ∨ I2) or not
(I1 ∧ I2); the partial interpolant of the global root is the interpolant for A ∧B.
In Fig. 13, C[I] means that clause C has a partial interpolant I. I1, I2 and I are

Leaf: C [I]

I =

{
C|AB if C ∈ A
> if C ∈ B

Inner node:
C1 ∨ p [I1] C2 ∨ p [I2]

C1 ∨ C2 [I]

I =

{
I1 ∨ I2 if p ∈ A
I1 ∧ I2 if p ∈ B or p ∈ AB

Fig. 13. McMillan interpolation algorithm.

the partial interpolants respectively associated with the two antecedents C1 ∨ p,
C2 ∨ p and the resolvent C1 ∨ C2 of a resolution step.

Alg. 13, PivotReordering2, can be employed to restructure a refutation so
that McMillan interpolation algorithm generates an interpolant in CNF. It is
sufficient in fact to modify the definition of light and heavy predicates given
in §5, so that a context is considered unordered whenever v(t) is local to A
(light) and v(s) is a propositional variable in B or in AB (heavy). Effect of the
proof transformation is to push up light variables, so that, along every path from
the leaves to the root, light variables appear before heavy variables.

We need to show that this condition is sufficient in order for McMillan algo-
rithm to produce an interpolant in CNF.

Theorem 3 Assume a refutation P without unordered contexts. McMillan in-
terpolation algorithm generates an interpolant in CNF from P .

Proof (by structural induction).

Base case. The partial interpolant for a leaf labeled by a clause C is either >
or C|AB, so it is in CNF.

Inductive step. Given an inner node n and the associated pivot p = piv(n),
assume the partial interpolants I1 and I2 for C(n+) = C1∨p and C(n−) = C2∨p
are in CNF. We have four possibilities:

– Case 1: I1 and I2 are both in clausal form; then either n+, n− are leaves or
they are inner nodes with light pivot variables. p can be either light or heavy:
in the first case I is itself a clause, in the second case I is a conjunction of
clauses, so it is in CNF.

– Case 2: I1 is a clause, I2 is a conjunction of at least two clauses; then n+

can be either a leaf or an inner node with a light pivot, but I2 must be an
inner node with a heavy pivot (due to ∧ being the main connective of I2).
Since P does not have unordered contexts, p must be a heavy variable, thus
I = I1 ∧ I2 is in CNF.

– Case 3: I1 is a conjunction of at least two clauses, I2 is a clause. Symmetric
to Case 2.

– Case 4: Both I1 and I2 are a conjunction of at least two clauses. As for Case
2 and Case 3.

A similar argumentation holds for the generation of interpolants in disjunctive
normal form. Let us consider the algorithm dual to McMillan, which we address
as McMillan′ [31], illustrated in Fig. 14.

Leaf: C [I]

I =

{
⊥ if C ∈ A
¬C|AB if C ∈ B

Inner node:
C1 ∨ p [I1] C2 ∨ p [I2]

C1 ∨ C2 [I]

I =

{
I1 ∨ I2 if p ∈ A or p ∈ AB
I1 ∧ I2 if p ∈ B

Fig. 14. McMillan′ interpolation algorithm.

Alg. 13 can be employed to transform the refutation; in this case a context
is unordered if v(t) is a variable local to B (light) and v(s) is a variable local
to A or shared (heavy). The effect of pushing up light variables is that, during
the construction of the interpolant, the connective ∧ will be introduced before ∨
along each path, so that the resulting interpolant will be in disjunctive normal
form (note that the partial interpolant of a leaf is already in DNF, being a
conjunction of literals).

We can thus state the following theorem:

Theorem 4 Assume a refutation P without unordered contexts. McMillan′ in-
terpolation algorithm generates an interpolant in DNF from P .

As already pointed out in [45], the price to pay for a complete transformation
might be an exponential increase of the proof size, due to the node duplications
necessary to apply rules S1, S2, R2 to contexts where C4 has multiple children
(see Fig. 5). A feasible compromise consists in performing a partial CNFization
or DNFization by limiting the application of such rules to when C4 has a single
child; in this case, the proof growth depends only on the application of rule S1,
and the increase is maintained linear.

6 Heuristics for the Proof Transformation Algorithms

In this section we discuss some of the heuristics implemented in OpenSMT and
PeRIPLO to guide the application of the Local Transformation Framework
rules and the reconstruction of proofs, with reference to compression (§4) and
pivot reordering for interpolation (§5).

Some of the algorithms presented so far (Algs. 1,2,7) need to handle the
presence of resolution steps which are not valid anymore since the pivot is missing
from both antecedents; in that case, the resolvent node n must be replaced by
either parent. A heuristics which has been proven useful for determining the
replacing parent is the following. If one of the parents (let us say n+) has only
n as child, then n is replaced by n−; since n+ loses its only child, then (part
of) the subproof rooted in n+ gets detached from the global proof, yielding a
simplification of the proof itself. If both parents have more than one child, then
the parent labeled by the smaller clause is the one that replaces n, aiming at
increasing the amount of simplifications performed while moving down to the
global root.

As far as the heuristics for the application of rewriting rules are concerned,
the ApplyRule method adheres to some general lines. Whenever a choice is
possible between a left and a right context, a precedence order is respected:
(X > Y means: the application of X is preferred over that of Y):

R3 > {R2′, R1} > R2 > S1′ > S2 > S1

The compression rules R have always priority over the shuffling rules S, R3 being
the favorite, followed by R2′ and R1. Among the S rules, S1′ is able to perform
a local simplification, which makes it preferred to S2 and especially to S1, which
increases the size of the proof; between equal S rules, the one which does not
involve a node duplication (see Fig. 5) is chosen.

Additional constraints depend on the actual goal of the transformation. If
the aim is pivot reordering, the constraints are as illustrated in Alg. 13, with
ties broken according to the general lines given above. If the aim is compression,
then S1 is never applied, since it increases the size of the proof and it is not
apparent at the time of its application whether it would bring benefits in a second
moment, neither are applied R2, S1′, S2 if they involve a duplication. A strategy

which proved successful in the application of S rules is to push up nodes with
multiple resolvents whenever possible, with the aim of improving the effect of
RecyclePivots and RecyclePivotsWithIntersection; interestingly, this technique
shows as a side effect the disclosure of redundancies which can effectively be
taken care of by StructuralHashing.

These heuristics have been discovered through experimentation and have
been adopted due to their practical usefulness for compression, in a setting where
the large size of proofs allows only a few traversals (and thus a limited application
of rules) by means of ReduceAndExpose, and where the creation of new nodes
should be avoided; it is thus unlikely that, arbitrarily increasing the number
of traversals, they would expose and remove all pivots redundancies. A more
thorough, although practically infeasible, approach could rely on keeping track
of all contexts and associated rules in a proof P . Since the S rules are revertible,
an equivalence relation ≡S could be defined among proofs so that P ≡S P

′ if P ′

can be obtained from P (and vice versa) by means of a sequence of applications
of S rules. A backtracking-based algorithm could be employed to systematically
visit equivalence classes of proofs, and to move from an equivalence class to
another thanks to the application of an R rule.

7 Related Work

Various proof manipulation techniques have been developed in the last years,
the main goal being compression.

In [6], Amjad proposes an algorithm based on heuristically reordering the
resolution steps that form a proof, trying to identify a subset of the resolution
steps that is still sufficient to derive the empty clause. The approach relies on
using an additional graph-like data structure to keep track of how literals of
opposite polarity are propagated from the leaves through the proof and then
resolved upon.

Sinz [62] explicitly assumes a CDCL context, where a resolution-based SAT-
solver generates a sequence of derivations called proof chains, combined in a
second moment to create the overall proof. He presents an algorithm that works
at the level of proof chains, aiming at identifying and merging shared substruc-
tures to generate a smaller proof.

Amjad further develops this approach in [7]. He adopts a representation of
resolution proofs that allows the use of efficient algorithms and data structures
for substring matching; this feature is exploited to perform memoization of proofs
by detecting and reusing common subproofs.

Cotton introduces in [25] two compression methods. The first one is based on
a form of structural hashing, where each inner node in a proof graph is associated
with its pair of antecedents in a hash map. The compression algorithm traverses
the sequence of proof chains while updating the hash map, and adds a resolution
step to the overall proof only if it does not already exist. The second one consists
of a rewriting procedure that, given in input a proof and a heuristically chosen

propositional variable p, transforms the proof so that the last resolution step is
on p; this might result in a smaller proof.

Bar-Ilan et al. [9] present a technique that exploits learned unit clauses to
rewrite subproofs that were derived before learning them. They also propose
a compression algorithm (RecyclePivots) that searches for resolution steps on
the same pivot along paths from leaves to the root in a proof. If a pivot is
resolved upon more than once on a path (which implies that the pivot variable
is introduced and then removed multiple times), the resolution step closest to
the root is kept, while the others are simplified away. The algorithm is effective
on resolution proof trees, but can be applied only in a limited form to resolution
proof DAGs, due to the possible presence of multiple paths from a node to the
root.

This restriction is relaxed in the work of Fontaine et al. [33], who extend
the algorithm of [9] into RecyclePivotsWithIntersection to keep track, for each
node, of the literals which get resolved upon along all paths from the node to the
root. [33] also presents an algorithm that traverses a proof, collecting unit clauses
and reinserting them at the level of the global root, thus removing redundancies
due to multiple resolution steps on the same unit clauses; this technique is later
generalized in [15] to lowering subproofs rooted in non-unit clauses.

[41] builds upon [9] in developing three variants of RecyclePivots tailored
to resolution proof DAGs. The first one is based on the observation that the
set of literals which get resolved in a proof upon along all paths from the node
to the root must be a superset of the clause associated to the node, if the root
corresponds to the empty clause. The second and third ones actually correspond
respectively to RecyclePivotsWithIntersection and to a parametric version of it
where the computation of the set of literals is limited to nodes with up to a
certain amount of children.

Our set of compression techniques has been illustrated with reference to [62],
[9] and [33] in §4.

Besides compression, a second area of application of proof manipulation has
been interpolation, both in the propositional and in the first order settings.

D’Silva et al. [30] introduce a global transformation framework for interpo-
lation to reorder the resolution steps in a proof with respect to a given partial
order among pivots; compression is shown to be a side effect for some bench-
marks. Compared to [30], our approach works locally, and leaves more freedom in
choosing the strategies for rule applications. Also our target is not directly com-
puting interpolants, but rather rewriting the proof in such a way that existing
techniques can be applied.

The same authors focus in [31] on the concept of strength of an interpolant.
They present an analysis of existing propositional interpolation algorithms, to-
gether with a method to combine them in order to obtain weaker or stronger
interpolants from a same proof of unsatisfiability. They also address the use and
the limitations of the local transformation rules of Jhala and McMillan [45]. The
rewriting rules corresponding to S1 and S2 in the Local Transformation Frame-
work (§3) were first introduced in [45] and further examined in [31] as a way to

modify a proof to obtain stronger or weaker interpolants, once fixed the interpo-
lation algorithm; we devised the remaining rules after an exhaustive analysis of
the possible proof contexts. [45] also discusses the application of S1 and S2 to
generate interpolants in conjunctive normal form; however, not all the contexts
are taken into account, and, as pointed out in [31], the contexts for S1 and S2
are not correctly identified.

Note that S1 and S2 have also a counterpart in Gentzen’s sequent calculus
system LK [34]: S1 corresponds to swapping applications of the structural cut
and contraction rules, while S2 is one of the rank reduction rules.

Interpolation for first order theories in presence of AB-mixed predicates is
addressed in [24], only for the case of DTC, by tweaking the decision heuristics
of the solver, in such a way that it guarantees that the produced proof can
be handled with known methods. In particular the authors define a notion of
ie-local proofs, and they show how to compute interpolants for this class of
proofs, and how to adapt an SMT-solver to produce only ie-local proofs. [36] the
relaxes the constraint on generating ie-local proofs by introducing the notion
of almost-colorable proofs. We argue that our technique is simpler and more
flexible, as different strategies can be derived with different applications of our
local transformation rules. Our method is also more general, since it applies not
only to theory combination but to any approach that requires the addition of
AB-mixed predicates (see §5.2).

More recently, a tailored interpolation algorithm has been proposed in [22]
for the combined theory of linear arithmetic and uninterpreted functions; it has
the notable feature of allowing the presence of mixed predicates, thus making
proof manipulation not necessary anymore.

Clausal Proofs. This paper addresses resolution proofs in the context of transfor-
mation for compression and Craig interpolation; state-of-the-art algorithms, as
described in the previous sections, rely on representing and manipulating proofs
in the form of directed acyclic graphs. However, alternative approaches exist; for
example, CDCL SAT-solvers can be instrumented to generate proofs in clausal
format, as a sequence of learned clauses [37, 43, 65]. The development of com-
pression techniques tailored to clausal proofs is an interesting topic, which will
be investigated as future work.

8 Conclusions

In this paper we have presented a proof transformation framework based on a
set of local rewriting rules and shown how it can be applied to the tasks of proof
compression and pivot reordering.

As for compression, we discussed how rules that effectively simplify the proof
can be interleaved with rules that locally perturbate the topology, in order to cre-
ate new opportunities for compression. We identified two kinds of redundancies
in proofs, related to the notions of regularity and compactness, and presented
and compared a number of algorithms to address them, moving from existing

techniques in the literature. Individual algorithms, as well as their combinations,
were implemented and tested over a collection of benchmarks both from SAT
and SMT libraries, showing remarkable levels of compression in the proof size.

As for pivot reordering, we described how to employ the rewriting rules to
isolate and remove AB-mixed predicates, in such a way that standard proce-
dures for interpolation in SMT can be applied. The approach enables the use of
off-the-shelf techniques for SMT-solvers that are likely to introduce AB-mixed
predicates, such as Ackermann’s Expansion, Lemma on Demand, Splitting on
Demand and DTC. We showed by means of experiments that our rules can effec-
tively transform the proofs without generating any exponential growth in their
size. Finally, we explored a form of interaction between LISs and proof manip-
ulation by providing algorithms to reorder resolution steps in a propositional
proof to guarantee the generation of interpolants in conjunctive or disjunctive
normal form.

References

1. CMU Benchmarks. http://www.cs.cmu.edu/~modelcheck/bmc/bmc-benchmarks.
html.

2. SAT Challenge 2012. http://baldur.iti.kit.edu/SAT-Challenge-2012/.
3. SATLIB Benchmark Suite. http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html.
4. Skeptik Proof Theory Library. https://github.com/Paradoxika/Skeptik.
5. W. Ackermann. Solvable Cases of the Decision Problem. Studies in Logic and the

Foundations of Mathematics. North-Holland, Amsterdam, 1954.
6. H. Amjad. Compressing Propositional Refutations. Electronic Notes in Theoretical

Computer Science, 185:3–15, 2007.
7. H. Amjad. Data Compression for Proof Replay. Journal of Automated Reasoning,

41(3-4):193–218, 2008.
8. N. Amla and K. McMillan. Automatic Abstraction Without Counterexamples. In

TACAS, pages 2–17, 2003.
9. O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman. Linear-Time

Reductions of Resolution Proofs. In HVC, pages 114–128, 2008.
10. C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on Demand in

SAT Modulo Theories. In LPAR, pages 512–526, 2006.
11. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo Theories.

In Handbook of Satisfiability, pages 825–885. 2009.
12. R. J. Bayardo and R. Schrag. Using CSP Look-Back Techniques to Solve Real-

World SAT Instances. In AAAI/IAAI, pages 203–208, 1997.
13. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model

Checking. Advances in Computers, 58:117–148, 2003.
14. M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodrguez-Carbonell, and A. Rubio. A

Write-Based Solver for SAT Modulo the Theory of Arrays. In FMCAD, pages
101–108, 2008.

15. J. Boudou and B. Paleo. Compression of Propositional Resolution Proofs by Low-
ering Subproofs. In TABLEAUX, pages 237–251, 2013.

16. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P. van Rossum,
and R. Sebastiani. Efficient Satisfiability Modulo Theories via Delayed Theory
Combination. In CAV, pages 335–349, 2005.

http://www.cs.cmu.edu/~modelcheck/bmc/bmc-benchmarks.html
http://www.cs.cmu.edu/~modelcheck/bmc/bmc-benchmarks.html
http://baldur.iti.kit.edu/SAT-Challenge-2012/
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://github.com/Paradoxika/Skeptik

17. A. R. Bradley. SAT-Based Model Checking without Unrolling. In VMCAI, pages
70–87, 2011.

18. R. Brummayer and A. Biere. Lemmas on Demand for the Extensional Theory of
Arrays. In Workshop on SMT, 2008.

19. R. Bruni. Approximating Minimal Unsatisfiable Subformulae by Means of Adap-
tive Core Search. Discrete Applied Mathematics, 130(2):85–100, 2003.

20. R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The OpenSMT Solver.
In TACAS, pages 150–153, 2010.

21. R. Bruttomesso, S. Rollini, N. Sharygina, and A. Tsitovich. Flexible Interpolation
with Local Proof Transformations. In ICCAD, pages 770–777, 2010.

22. J. Christ, J. Hoenicke, and A. Nutz. Proof Tree Preserving Interpolation. In
TACAS, pages 124–138, 2013.

23. A. Cimatti, A. Griggio, and R. Sebastiani. A Simple and Flexible Way of Comput-
ing Small Unsatisfiable Cores in SAT Modulo Theories. In SAT, pages 334–339,
2007.

24. A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Interpolant Generation in
Satisfiability Modulo Theories. In TACAS, pages 397–412, 2008.

25. S. Cotton. Two Techniques for Minimizing Resolution Proofs. In SAT, pages
306–312, 2010.

26. W. Craig. Three Uses of the Herbrand-Gentzen Theorem in Relating Model Theory
and Proof Theory. Journal of Symbolic Logic, 22(3):269–285, 1957.

27. L. de Moura and N. Bjørner. Generalized, Efficient Array Decision Procedures. In
FMCAD, pages 45–52, 2009.

28. L. de Moura and H. Rue. Lemmas on Demand for Satisfiability Solvers. In SAT,
pages 244–251, 2002.

29. N. Dershowitz, Z. Hanna, and A. Nadel. A Scalable Algorithm for Minimal Un-
satisfiable Core Extraction. In SAT, pages 36–41, 2006.

30. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Restructuring
Resolution Refutations for Interpolation. Technical report, ETH, 2008.

31. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant
Strength. In VMCAI, pages 129–145, 2010.

32. P. Fontaine, J. Marion, S. Merz, L. Nieto, and A. Tiu. Expressiveness + Au-
tomation + Soundness: Towards Combining SMT Solvers and Interactive Proof
Assistants. In TACAS, pages 167–181, 2006.

33. P. Fontaine, S. Merz, and B. Paleo. Compression of Propositional Resolution Proofs
via Partial Regularization. In CADE, pages 237–251, 2011.

34. G. Gentzen. Untersuchungen über das Logische Schließen. I. Mathematische
Zeitschrift, 39(1):176–210, 1935.

35. A. Goel, S. Krstić, and A. Fuchs. Deciding Array Formulas with Frugal Axiom
Instantiation. In SMT, pages 12–17, 2008.

36. A. Goel, S. Krstić, and C. Tinelli. Ground Interpolation for Combined Theories.
In CADE, pages 183–198, 2009.

37. E. Goldberg and Y. Novikov. Verification of Proofs of Unsatisfiability for CNF
Formulas. In DATE, pages 10886–10891, 2003.

38. C. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability solvers. In
Handbook of Knowledge Representation, pages 89–134. 2008.

39. E. Grégoire, B. Mazure, and C. Piette. Local-search Extraction of MUSes. Con-
straints, 12(3):325–344, 2007.

40. O. Grumberg, F. Lerda, O. S. Ofer, and M. Theobald. Proof-guided
Underapproximation-widening for Multi-process Systems. In POPL, pages 122–
131, 2005.

41. A. Gupta. Improved Single Pass Algorithms for Resolution Proof Reduction. In
ATVA, pages 107–121, 2012.

42. T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstractions from Proofs.
In POPL, pages 232–244, 2004.

43. M. Heule, W. Hunt, and N. Wetzler. Trimming while Checking Clausal Proofs. In
FMCAD, 2013.

44. J. Huang. Mup: a Minimal Unsatisfiability Prover. In ASP-DAC, pages 432–437,
2005.

45. R. Jhala and K. McMillan. Interpolant-Based Transition Relation Approximation.
In CAV, pages 39–51, 2005.

46. J. Kraj́ıček. Interpolation Theorems, Lower Bounds for Proof Systems, and Inde-
pendence Results for Bounded Arithmetic. Journal of Symbolic Logic, 62(2):457–
486, 1997.

47. I. Lynce and J. Marques-Silva. On Computing Minimum Unsatisfiable Cores. In
SAT, pages 305–310, 2004.

48. J. Marques-Silva and K. Sakallah. GRASP - A New Search Algorithm for Satisfi-
ability. In ICCAD, pages 220–227, 1996.

49. K. McMillan. Interpolation and SAT-Based Model Checking. In CAV, pages 1–13,
2003.

50. K. McMillan. An Interpolating Theorem Prover. In TACAS, pages 16–30, 2004.
51. K. McMillan. Applications of Craig Interpolation to Model Checking. In CSL,

pages 22–23, 2004.
52. M. Mneimneh, I. Lynce, Z. Andraus, J. Marques-Silva, and K. Sakallah. A Branch-

and-Bound Algorithm for Extracting Smallest Minimal Unsatisfiable Formulas . In
SAT, pages 467–474, 2005.

53. G. Necula. Proof-Carrying Code. In POPL, pages 106–119, 1997.
54. G. Nelson and D. Oppen. Simplification by Cooperating Decision Procedures.

ACM Transactions on Programming Languages and Systems, 1(2):245–57, 1979.
55. Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov. AMUSE:

A Minimally-Unsatisfiable Subformula Extractor. In DAC, pages 518–523, 2004.
56. P. Pudlák. Lower Bounds for Resolution and Cutting Plane Proofs and Monotone

Computations. Journal of Symbolic Logic, 62(3):981–998, 1997.
57. S. Ranise and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).

http://www.smtlib.org.
58. S. Rollini. Proof tRansformer and Interpolator for Propositional LOgic

(PeRIPLO). http://verify.inf.usi.ch/content/periplo.html.
59. S. Rollini, R. Bruttomesso, and N. Sharygina. An Efficient and Flexible Approach

to Resolution Proof Reduction. In HVC, pages 182–196, 2010.
60. R. Sebastiani. Lazy Satisfiability Modulo Theories. JSAT, 3:144–224, 2007.
61. I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdir. Debugging

Overconstrained Declarative Models using Unsatisfiable Cores. In ASE, pages 94–
105, 2003.

62. C. Sinz. Compressing Propositional Proofs by Common Subproof Extraction. In
EUROCAST, pages 547–555, 2007.

63. C. Sinz, A. Kaiser, and W. Kuchlin. Formal Methods for the Validation of Auto-
motive Product Configuration Data. AI EDAM, 17(1):75–97, 2003.

64. G. S. Tseitin. On the Complexity of Derivation in the Propositional Calculus.
Studies in Constructive Mathematics and Mathematical Logic, pages 115–125, 1968.

65. A. Van Gelder. Verifying RUP Proofs of Propositional Unsatisfiability. In ISAIM,
2008.

http://www.smtlib.org
http://verify.inf.usi.ch/content/periplo.html

66. T. Weber and H. Amjad. Efficiently Checking Propositional Refutations in HOL
Theorem Provers. Journal of Applied Logic, 7(1):26–40, 2009.

67. G. Yorsh and M. Musuvathi. A Combination Method for Generating Interpolants.
In CADE, pages 353–368, 2005.

68. L. Zhang and S. Malik. Extracting Small Unsatisfiable Cores from Unsatisfiable
Boolean Formulas. In SAT, 2003.

69. L. Zhang and M. Sharad. Validating SAT Solvers Using an Independent Resolution-
Based Checker: Practical Implementations and Other Applications. In DATE,
pages 10880–10885, 2003.

	Resolution Proof Transformation for Compression and Interpolation

