arXiv:1111.5133v3 [cs.SE] 15 Mar 2012

Decentralised LTL monitoring

Andreas Bauérand Yliés Falconge*

1 NICTA ** Software Systems Group and Australian National University
2 Laboratoire d’Informatique de Grenoble, UJF Universit@@ble |, France

Abstract. Users wanting to monitor distributed or component-basediesys often perceive them as monolithic
systems which, seen from the outside, exhibit a uniformiebaas opposed to many components displaying many
local behaviours that together constitute the systemisailbehaviour. This level of abstraction is often reasomabl
hiding implementation details from users who may want te¢gp¢he system’s global behaviour in terms of an LTL
formula. However, the problem that arises then is how sugteeification can actually be monitored in a distributed
system that has no central data collection point, wherdaltbomponents’ local behaviours are observable. In this
case, the LTL specification needs to be decomposed intoswufifae which, in turn, need to be distributed amongst
the components’ locally attached monitors, each of whies smly a distinct part of the global behaviour.

The main contribution of this paper is an algorithm for disiting and monitoring LTL formulae, such that satisfac-
tion or violation of specifications can be detected by locahitors alone. We present an implementation and show
that our algorithm introduces only a minimum delay in deétegsatisfaction/violation of a specification. Moreover,
our practical results show that the communication overle@dduced by the local monitors is considerably lower
than the number of messages that would need to be sent toralaata collection point.

1 Introduction

Much work has been done on monitoring systems w.r.t. forpetiications such as linear-time temporal logic (LTL
[1]) formulae. For this purpose, a system is thought of markess as a “black box”, and some (automatically gen-
erated) monitor observes its outside visible behaviourrdento determine whether or not the runtime behaviour
satisfies an LTL formula. Applications include monitoringpgrams written in Java (cf. [2, 3]) or C (cf. [4]), monitor-
ing of abstract Web services (cf. [5]), or transactions quidsl e-commerce sites (cf. [6]).

From a system designer’s point of view, who defines the olvbedlaviour that a system has to adhere to, this
“black box” view is perfectly reasonable. For example, mmstdern cars have the ability to issue a warning if a
passenger (including the driver) is not wearing a seat bt the vehicle has reached a certain speed. One could
imagine using a monitor to help issue this warning based erfdlowing LTL formalisation, which captures this
abstract requirement:

¢ = G(speed_low V ((pressure_sensor_1 _high = seat_belt_1_on)
VAN
A (pressure_sensor_n_high = seat_belt_n_on)))

The formulay asserts that, at all times, when the car has reached a cspteéul, and the pressure sensor in a seat
i € [1,n] detects that a person is sitting injit€ssure_sensor_i _high), it has to be the case that the corresponding seat
belt is fastenedseat_belt_i_on). Moreover, one can build a monitor for which receives the respective sensor values
and is able to assert whether or not these values constititdation—but, only if some central component exists in
the car’s network of components, which collects these seraoes and consecutively sends them to the monitor as
input! In many real-world scenarios, such as the automating this is an unrealistic assumption mainly for economic
reasons, but also because the communication on a car’'s busrkéias to be kept minimal. Therefore one cannot
continuously send unnecessary sensor information on ahlatisst shared by potentially critical applications where
low latency is paramount (cf. [7]). In other words, in thesersarios, one has to monitor such a requirement not based

* This author has been supported by an Inria Exploration Geavisit NICTA, Canberra.

** NICTA is funded by the Australian Government as represehtethe Department of Broadband, Communications and thetddi§iconomy and the Australian
Research Council through the ICT Centre of Excellence mogr

http://arxiv.org/abs/1111.5133v3

on a single behavioural trace, assumed to be collected bg gtohal sensor, but based on the mpastial behavioural
traces of the components which make up the actual systemef@feto this aslecentralised LTL monitoringhen the
requirement is given in terms of an LTL formula.

The main constraint that decentralised LTL monitoring rstechddress is the lack of a global sensor and a central
decision making point asserting whether the system’s iehahas violated or satisfied a specification. We already
pointed out that, from a practical point of view, a centratid®n making point (i.e., global sensor) would require all
the individual components to continuously send events thesnetwork, and thereby negatively affecting the response
time for other potentially critical applications on the wetk. Moreover from a theoretical point of view, a central
observer (resp. global sensor) basically resembles thesict LTL monitoring problem, where the decentralised
nature of the system under scrutiny does not play a role.

Arguably, there exist a number of real-world componentbaapplications, where the monitoring of an LTL
formula can be realised via global sensors and/or cent@side making points, e.g., when network latency and
criticality do not play an important role. However, here wanwto focus on those cases where there exists no global
trace, no central decision making point, and where the gaal keep the communication, required for monitoring the
LTL formula, at a minimum.

In the decentralised setting, we assume that the systenr gndeiny consists of a set of component€ =
{C1,Cs,...,C,}, communicating on a synchronous bus, each of which has arfamaitor attached to it. The set of
allevents isY = X, U Xy U...U X, whereX; is the set of events visible to the monitor at compor@ntThe
global LTL formula, on the other hand, is specified over a $gropositions, AP, such that” = 247, Moreover, we
demand for ali, j < n with ¢ # j thatX; N X; = () holds, i.e., events are local w.r.t. the components whexe dhe
monitored.

At a first glance, the synchronous bus may seem an overlgstmirconstraintimposed by our setting. However, it
is by no means unrealistic, since in many real-world systesecially critical ones, communication is synchronous.
For example, the FlexRay bus protocol (cf. [8]) used for safeitical systems in the automotive domain, allows
synchronous communication. Similar systems are used on#&s, where synchronous implementations of control
systems have, arguably, played an even greater role thhe sutomotive domain due to their deterministic notion of
concurrency and the strong guarantees one can give congéheir correctness.

Brief overview of the approachLet as beforep be an LTL formula formalising a requirement over the systeem’
global behaviour. Then every local monitdd;, will at any time,¢, monitor its own LTL formulay!, w.r.t. a partial
behavioural tracey;. Let us useu;(m) to denote thém + 1)-th eventin a trace,;, andu = (uy, us,. .., u,) for the
global trace obtained by pair-wise parallel composition of the pattiates, each of which at timés of lengtht + 1
(e,u=u1(0) Uuz(0)U...Uunp(0) - ui(t) Uua(t) U...Uuy(t)). Note that from this point forward we will use
u only when, in a given context, it is important to consider abgll trace. However, when the particular type of trace
(i.e., partial or global) is irrelevant, we will simply useu;, etc. We also shall refer to partial traces as local traces
due to their locality to a particular monitor in the system.

The decentralised monitoring algorithm evaluates the ajlttaceu by considering the locally observed traces
u;, 4 € [1,n] in separation. In particular, it exhibits the following perties.

e If a local monitor yieldsp! = L (resp.¢! = T) on some componeid; by observingu;, it implies thatuX« C
XY\ L(p) (respuX® C L(p)) holds whereZ(¢p) is the set of infinite sequences kit described byp. That is,

a locally observed violation (resp. satisfaction) is, iotfa global violation (resp. satisfaction). Or, in otherda
u is a bad (resp. good) prefix far.

e If the monitored tracea is such thaw X« C X%\ L(p) (resp.uX® C L(y)), one of the local monitors on
some componend; yields<p§' =1 (resp.goif’ = T),t > t, for an observation, an extension ofi;, the local
observation ofx on C;, because of some latency induced by decentralised morgtaas we shall see.

However, in order to allow for the local detection of glob#blations (and satisfactions), monitors must be able to

communicate, since their traces are only partial w.r.t.global behaviour of the system. Therefore, our second im-

portant objective is to also monitor withinimal communication overhedih comparison with a centralised solution

where at any timet, all n» monitors send the observed events to a central decisiomgyakint).

Outline. Section 2 introduces basic notions and notation. LTL maimtpby means of formula rewriting (progression),
a central concept to our paper, is discussed in Sec. 3. IndSee lift this concept to the decentralised setting. The

Table 1: LTL semantics over infinite traces
w' Ep < p e w(i), foranyp € AP
w'E-p e uwEe _
w'Ep1 Ve & w'E e Vo' E e
w' = Xp sw Ep
w' = ©1Ups < 3k € [i,00[. w* = @2 AVI € [i, k[. w' |E @1

semantics induced by decentralised LTL monitoring is aetliin Sec. 5, whereas Sec. 6 details on how the local
monitors operate in this setting and gives a concrete dlguorfor this purpose. Experimental results, showing the
feasibility of our approach, are presented in Sec. 7. Se@tiwoncludes and gives pointers to some related approaches.
The proofs for all results claimed in this paper are in Apperid

2 Preliminaries

The considered architecturdcach component of the system emits events at discrete tigtenices. An event is a
set ofactionsdenoted by some atomic propositions from the 48 i.e.,o € 247. We denote“” by X and call it
thealphabet(of system events).

As our system operates under terfect synchrony hypothegis. [9]), we assume that its components commu-
nicate with each other in terms of sending and receiving aggss(which, for the purpose of easier presentation, can
also be encoded by actions)discreteinstances of time, which are represented using identifeN=°. Under this
hypothesis, it is assumed that neither computation nor comcation take time. In other words, at each time
component may receive up to— 1 messages and dispatch up to 1 message, which in the lateewdbalways be
available at the respective recipient of the messages atttiml. Note that these assumptions extend to the compo-
nents’ monitors, which operate and communicate on the sgnehsonous bus. The hypothesis of perfect synchrony
essentially abstracts away implementation details of loyw lit takes for components or monitors to generate, send,
or receive messages. As indicated in the introductionjstdascommon hypothesis for certain types of systems, which
can be designed and configured (e.g., by choosing an apatedrtiration between tinteandt + 1) to not violate this
hypothesis (cf. [9]).

We use a projection functioff; to restrict atomic propositions or events to the local vidwnonitor /;, which
can only observe those of componéht For atomic propositiond/; : 247 — 247 and we notedP; = II;(AP)
fori € [1,n]. For events]I; : 2* — 2% and we noteX; = I1,(X), fori € [1,n]. We also assumei,j < n.i # j =
AP; N AP; = () and consequentlyi,j < n.i # j = X; N X; = (). Seen over time, each componéhtproduces
atrace of events, also called itsehaviour which for ¢ time steps is encoded as = u;(0) - w;(1)---u;(t — 1)
with V¢’ < t. u;(t') € X;. Finite traces over an alphahBtare elements of the sét* and are typically encoded by
u,u’, ..., whereas infinite traces ovér are elements of the séf“ and are typically encoded hy, v’ ... The set
of all traces is given by the seéf>* = X* U Y. The set¥* \ {¢} is notedX . The finite or infinite sequence!
is thesuffixof the tracew € Y°°, starting at time, i.e.,w’ = w(t) - w(t + 1) - - -. The system’s global behaviour,

u = (u1,us,...,u,) can now be described as a sequence of pair-wise union ofthkdeents in component’s traces,
each of which at time is of lengtht + 1 i.e.,u = u(0) - - - u(t).

Linear Temporal Logic (LTL)We monitor a system w.r.t. a global specification, expreasagh LTL [1] formula, that
does not state anything about its distribution or the sy'stanchitecture. Formulae of LTL can be described using the
following grammarip ::=p | (¢) | 7¢ | ¢ V¢ | Xp | Uy, wherep € AP. Additionally, we allow the following
operators, each of which is defined in terms of the above ohes:p V —p, L = =T, 01 A 2 = —(—p1 V —2),

Fp = TUp, andGy = —F(—p). The operators typeset in bold are the temporal operatorsniae without
temporal operators are callsthte formulaeWe describe the set of all LTL formulae ové® by the sef.TL(AP),

or justLTL when the set of atomic propositions is clear from the cordexibes not matter. The semantics of LTL [1]
is defined w.r.t. infinite traces:

Definition 1. Letw € X* andi € N=°, Satisfaction of ai.TL formula byw at timei is inductively defined as given
in Table 1.

Whenw® = ¢ holds, we also writav |= ¢ to denote the fact that is a model forp. As such, every formula
¢ € LTL(AP) describes a set of infinite traces, calledi#sguage and is denoted by (¢) C X*. In this paper, a
language describes desired or undesired system behavimumglised by an LTL formula.

3 Monitoring LTL formulae by progression

Central to our monitoring algorithm is the notiongdod and bad prefixeer an LTL formula or, to be more precise,
for the language it describes:

Definition 2. Let L C X“ be a language. The set of glbod prefixegresp.bad prefixepof L is given bygood(L)
(resp.bad(L)) and defined as follows:

good(L) = {u e X* |u-X¥ C L}, bad(L) ={ue X* |u- X« C X¥\ L}.

To further ease presentation, we will shorted(L(¢)) (resp.bad(L(¢))) to good(y) (resp.bad(y)).

Although there exist a myriad of different approaches to tooimg LTL formulae, based on various finite-trace
semantics (cf. [10]), one valid way of looking at the moniitgrproblem for some formula € LTL is the following:
The monitoring problem ofp € LTL is to devise an efficient monitoring algorithm which, in apstése manner,
receives events from a system under scrutiny and stateierhat not the trace observed so far constitutes a good or
a bad prefix of£(y). One monitoring approach along those lines is describetilih We do not want to reiterate how
in [11] a monitor is constructed for some LTL formula, butivait review an alternative monitoring procedure based
on formula rewriting, which is also known as formula progies, or justprogressiorin the domain of planning with
temporally extended goals (cf. [12]).

Progression splits a formula into a formula expressing wieats to be satisfied by the current observation and a
new formula (referred to asfature goalor obligation), which has to be satisfied by the trace in the future. As pro-
gression plays a crucial role in decentralised LTL monitgriwe recall its definition for the full set of LTL operators.

Definition 3. Lety, p1, 2 € LTL, ando € X be an event. Then, thprogression functio® : LT L x X — LTLis
inductively defined as follows:

P(pe AP,o) =T, if p € o, L otherwise _

Plg1 V ¢2,0) = P1,0) V P(gs,0) po 1
P(QolU(p?vU) = P((p%‘j) VP((,Ol,O') /\(,01U<,02 P(_|’ 0.) —|P(0')
P(Gy,0) = P(p,0) AG(9) PXoo) =
P(Fp,0) = P(p,0) VF() Do)=Y

Note that monitoring using rewriting with similar rules dsoae has been described, for example, in [13, 14], although
not necessarily with the same finite-trace semantics in rthiatl we are discussing in this paper. Informally, the
progression function “mimics” thETL semantics on an eveat as it is stated by the following lemma.

Lemma 1. Lety be anLTL formula,o an event andv an infinite trace, we have - w = ¢ < w = P(p, 0).
Lemma 2. If P(p,0) = T, theno € good(y), whereas ifP(p,0) = L, theno € bad(yp).

Moreover, from Corollary 2 and Definition 2 it follows that#(p, o) ¢ {T, L}, then there exist traces, w’ € X%,
such that - w = ¢ ando - w’ [~ ¢ hold. Let us now get back to [11], which introduces a finietr semantics for
LTL monitoring calledLTLs3. It is captured by the following definition.

Definition 4. Letu € X*, the satisfaction relation diTLs, =3: X* x LTL — B3, withBs = {T, L, ?}, is defined

as
T if u € good(yp),

ulg =1 L ifuebad(yp),
7 otherwise

Based on this definition, it now becomes obvious how progpas®uld serve as a monitoring algorithm fof'Ls.

Theorem 1. Letu = u(0)---u(t) € X+ be a trace, and € LTL be the verdict, obtained by+ 1 consecutive
applications of the progression function @fon u, i.e.,v = P(...(P(p,u(0)),...,u(t)))). The following cases
arise: If v = T, thenu =35 ¢ = T holds. Ifv = L, thenu =3 ¢ = L holds. Otherwisey =3 ¢ = ? holds.

Note that in comparison with the monitoring procedurelfdi.;, described in [11], our algorithm, implied by this
theorem, has the disadvantage that the formula, which rglqmiogressed, may grow in size relative to the number
of events. However, in practice, the addition of some pecat8implification rules to the progression function usgall
prevents this problem from occurring.

4 Decentralised progression

Conceptually, a monitor}/;, attached to component;, which observes events ov&l C Y, is a rewriting engine
that accepts as input an event X;, and an LTL formulap, and then applies LTL progression rules. Additionally at
each time, in ourn-component architecture, a monitor can send a message@idaep ton — 1 messages in order
to communicate with the other monitors in the system, udiegseame synchronous bus that the system’s components
communicate on. The purpose of these messages is to senelduteven past obligations to other monitors, encoded
as LTL formulae. In a nutshell, a formulais sent by some nwoif;, whenever the most urgent outstanding obligation
imposed byM;’s current formula at time, ¢!, cannot be checked using events fréinalone. Intuitively, the urgency
of an obligation is defined by the occurrences (or lack ofjatetemporal operators in it. For example, in order to
satisfyp A Xgq, a trace needs to start with followed by ag. Hence, the obligation imposed by the subformutzan
be thought of as “more urgent” than the one impose&lgy A more formal definition is given later in this section.
When progressing an LTL formula, e.g., in the domain of plagrio rewrite a temporally extended LTL goal
during plan search, the rewriting engine, which implemémsprogression rules, will progress a state formulka
AP,withan event suchthap ¢ o,t0 L, i.e.,P(p,) = L (see Definition 3). However, doing this in the decentralised
setting, could lead to wrong results. In other words, we rteemhake a distinction as to why ¢ o holds locally,
and then to progress accordingly. Consequently, the pssgme rule for atomic propositions is simply adapted by
parameterising it by a local set of atomic propositich3;:

T ifpeo,
P(p,o, AP;) =4 L ifpdonpe AP, (1)
Xp otherwise

where for everyw € ¥ andj > 0, we havew’ = Xy if and only if w’~! |= ¢. In other wordsX is the dual to

the X-operator, sometimes referred to as the “previously-dpera past-time LTL (cf. [15]). To ease presentation,

the formulaXmgp is a short for/—’ﬁ h\i Our operator is somewhat different to the standard usK:oit can
D Q03 .

only precede an atomic proposition or an atomic propositibith is preceded by furtheX-operators. Hence, the

restricted use of thX-operator does not give us the full flexibility (or succiness gains [16]) of past-time LTL. Using

the X-operator, let us now formally define tnegencyof an LTL formulay using a pattern matching anas follows:

Definition 5. Lety be an LTL formula, and@” : LTL — N=2° be an inductively defined function assigning a level of
urgencyto an LTL formula as follows.

Y (¢) = matchy with
1V 2 | o1 Apa = max(T(e1), T (p2))
| Xy’ = 1+7(¢')
| - -0

A formulay is said to bemore urgenthan formulay, if and only ifY'(p) > 7 (¢) holds. A formulapy where
Y (¢) = 0 holds is said to be not urgent.

Moreover, the above modification to the progression rulesdiviously the desired effect: if € o, then nothing
changes, otherwise jf ¢ o, we returnXp in case that the monitak/; cannot observe at all, i.e., in case that

p ¢ AP; holds. This effectively means, thaf; cannot decide whether or nptoccurred, and will therefore turn the
state formulg into an obligation for some other monitor to evaluate rathan produce a truth-value. Of course, the
downside of rewriting future goals into past goals that havee processed further, is that violations or satisfastion
of a global goal will usually be detectedter they have occurred. However, since there is no central ebsemich
records all events at the same time, the moniteexdto communicate their respective results to other moniteng;h,

on a synchronous bus, occupies one or more time steps, dagemdhow often a result needs to be passed on until it
reaches a monitor which is able to actually state a verdietsiall later give an upper bound on these communication
times, and show that our decentralised monitoring framkwgyrin fact, optimal under the given assumptions (see
Theorem 2).

Example 1.Let us assume we have a decentralised system consistingefdtbmponents), B, C, suchthatdP 4 =
{a}, AP = {b},andAP¢ = {c}, and that a global formula = F(aAbAc) needs to be monitored in a decentralised
manner. Let us further assume that, initiallyy, = ¢©% = ¢, = p. Leto = {a, b} be the system event at tindethat

iS, M4 (resp.Mp, M¢) observedi (o) = {a} (resp.Iip(c) = {b}, [Ic(c) = 0) wheno occurs. The rewriting that
takes place in all three monitors to generate the next lamall fgprmula, using the modified set of rules, and triggered
by o, is as follows:

vy = P(p.{a},{a}) = P(a,{a},{a}) A P(b,{a},{a}) A P(c,{a},{a}) V¢
=XbAXceVp

v = Plp, {0}, {b}) = P(a,{b},{b}) A P(b,{b},{b}) A P(c, {b},{b}) V
=XaAXcVp

pe = Plp,0,{c}) =P(a,0.{c}) AP(b,0,{c}) A P(c,0.{c}) Ve
=XaAXbALVep=¢p

But we have yet to define progression for past goals: For thipgse, each monitor has local storage to keep a
boundedhumber of past events. The event that occurred at timés is referred ag(—k). On a monitor observing
X’;, the progression of a past gdéi”go, attimet > m, is defined as follows:

T if ¢ = pforsomep € AP, N II;(c(—m)),
PX"p,0,AP;) =4 L) if o = pforsomep € AP; \ II;(c(—m)), (2)
X" otherwise

where, fori € [1,n], II; is the projection function associated to each monithr respectively. Note that since we
do not allowX for the specification of a global system monitoring propesty definitions will ensure that the local
monitoring goalsy!, will never be of the formX X Xp, which is equivalent to a future obligation, despite théidni

X. In fact, our rules ensure that a formula preceded byXheperator is either an atomic proposition, or an atomic
proposition which is preceded by one or malyoperators. Hence, in rule (2), we do not need to consideo#rsr
cases forp.

5 Semantics

In the previous example, we can clearly see that monitdisand Mg cannot determine whether or net if in-
terpreted as a trace of lengthis a good prefix for the global goal formuja® Monitor M on the other hand did
not observe an actiony and therefore, is the only monitor after tifiewhich knows that is not a good prefix, and
that, as before, after timg ¢ is the goal that needs to be satisfied by the system undemrsctutuitively, the other
two monitors know that if their respective past goals wettesBad, thens would be a good prefix, but in order to
determine this information, they need to send and receivasages to and from each other, containing obligations,
i.e., LTL formulae.

% Note thatZ(¢), being aivenesdanguage [17], does not have any bad prefixes.

Before we outline how this is done in our setting, let us déscilne semantics, we obtain from this decentralised
application of progression. We already said that monitetect good and bad prefixes for a global formula. In other
words, if a monitor’s progression evaluateslidresp. L), then the trace seen so far is a good (resp. bad) prefix, and if
neither monitor comes to a Boolean truth-value as verdietkeep monitoring. This latter case indicates that, so far,
the trace is neither a good nor a bad prefix for the global féamu

Definition 6. LetC = {C4,...,C,} be the set of system componentse LTL be a global goal, and\ =
{My,...,M,} be the set of component monitors. Furtherdet u;(0) U...Uup(0) - ui(t) U...Uuy(t) € X*
be the global behavioural trace of the system, obtained bypmsition of all local component traces, at titne N=°,
If for some componeidt;, withi < n, containing a local obligatiorp!, M; reports P(t, u;(t), AP;) = T (resp..L),
thenu =p ¢ = T (resp..L). Otherwise, we have =p p = 7.

By =p we denote the satisfaction relation on finite traces in tleedialised setting to differentiate it frohfTL;
as well as standardTL which is defined on infinite traces. Obvioushys and=p both yield values from the same
truth-domain. However, the semantics are not equivalémteshe modified progression function used in the above
definition sometimes rewrites a state formula into an oliligeconcerning the past rather than returning a verdict. On
the other hand, in the case of a one-component system (i eropositions of a formula can be observed by a single
monitor), the definition of=p matches Theorem 1, in particular because our progressierfIuis then equivalent
to the standard case. Monitorifid L3 with progression becomes a special case of decentralisadaring, in the
following sense:

Corollary 1. If M| =1,thenvVu € X*.Vp € LTL. u =3 ¢ = u =p .

6 Communication and decision making

Let us now describe the communication mechanism that enédalal monitors to determine whether a trace is a good
or a bad prefix. Recall that each monitor only sees a projedfan event to its locally observable set of actions,
encoded as a set of atomic propositions, respectively.

Generally, at timef, when receiving an event, a monitor, M;, will progress its current obligationy!, into
P(¢t, 0, AP;), and send the result to another monitif;_.;, whenever the most urgent obligatiah e sus(P (¢!, o,
AP;)), is such thaProp(¢) C (AP;) holds, whereus(y) is theset of urgent subformulasf ¢ andProp : LTL —
24P is the function which yields the set of occurring proposit@f anLTL formula.

Definition 7. The functiorsus : LTL — 28T is inductively defined as follows:

sus(p) = matchp with 1 V a2 | 01 A 2 — sus(p1) U sus(p2)

| ¢’ — sus(¢’)
| X' — {X¢'}
|- =0

The sekus(y) contains the past sub-formulaeyfi.e., sub-formulae starting with a future temporal oparate dis-
carded. It uses the fact that, in decentralised progresXiesperators are only introduced in front of atomic proposi-
tions. Thus, only the cases mentioned explicitly in thegrattmatching need to be considered. Moreover, for formulae
of the formX¢', i.e., starting with arX-operator, it is not needed to appiys to ' because’ is necessarily of the

form X"p with d > 0 andp € AP, and does not contain more urgent formulae tXas.

Note that, if there are several equally urgent obligatiargdistinct monitors, thed/; sends the formula to only
one of the corresponding monitors according to a priorigeotbetween monitors. Using this order ensures that the
delay induced by evaluating the global system specificatiandecentralised fashion is bounded, as we shall see in
Theorem 2. For simplicity, in the following, for a set of coament monitorsm = {My, ..., M,,} the sending order
is the natural order on the intenal n]. This choice of the local monitor to send the obligation is@ed through the
functionMon : M x 247~ M. For a monitortM; € M and a set of atomic propositiods?’ € 247, Mon(M;, AP")
is the monitorM;_ . S.t. jmin iS the smallest integer ifi, n] s.t. there is a monitor for an atomic propositionA®’.

Jmin

Formally:Mon(M;, AP’) = jmin = min{j € [1,n]\ {i} | AP' N AP; # 0}.

Table 2: Decentralised progressionoft= F(a A b A ¢) in a 3-component system.

t:|0 1 2 3
o:|{a,b} {a,b,c} 0 0
M| P = Ple,0, APA) | @0 o= Ppls A0, APa) | @l i= Pz A #,0,APa) ¢ = P(pt AN #,0,APa)
=XbAXcV g =X’ev(XbAXeve) | =Xbv(XbAXcV) =X’bv (XbAXeV)
M| ¥ = P(£,0, APB) | b 1= Pk A0, APB) | b i= P(#,0, APp) oh = P(gh A #,0,APp)
=XaAXcV :Yzc\/(fa/\ic\/go) =# =T
Me:| 6 i= Pl@,0,APC) | % = P(p,0, APc) @& = P(o% A oB N#,0,APc) |t == P(#,0,AP¢)
= =XaAXbVp :XQa/\X2ngp =#

OnceM; has sentP(p!, o, AP;), it setsp!t! = 4, where# ¢ AP is a special symbol for which we define
progression by

P(#,0,AP;) = #. ®3)

andVy € LTL. ¢ A # = ¢. On the other hand, whenevaf; receives a formulap;.;, sent from a monitof/;, it
will add the new formula to its existing obligation, i.es iturrent obligationy! will be replaced by the conjunction
ot A ;2. ShouldM; receive further obligations from other monitors hutt will add each new obligation as an
additional conjunct in the same manner.

Let us now summarise the above steps in the form of an explgitrithm that describes how the local monitors
operate and make decisions.

Algorithm L (Local Monitor). Let ¢ be a global system specification, and = {Mi,..., M,} be the set of
component monitors. The algorithm Local Monitor, executedeach)/;, returnsT (resp..L), if o Ep ¢! (resp.
o b ¢b) holds, wherer € X; is the projection of an event to the observable set of actibtise respective monitor,
andy! the monitor’s current local obligation.

L1. [Next goal.] Lett € N=0 denote the current time step apfibe the monitor’s current local obligation.#f= 0,
then setp! := .

L2. [Receive event.] Read next

L3. [Receive messages.] Lt} 1., be the set of received obligations at timérom other monitors. Set
@h = pE A /\jeu,n],j;éi Pj-

L4. [Progress.] Determin® (!, o, AP;) and store the result i@ﬁ*l.

L5. [Evaluate and return.] Ip! ™! = T returnT, if ¢!™! = L return L.

L6. [Communicate.] Set € sus(p:™") to be the most urgent obligation gf *!. Sendy!*! to monitorMon(M;,

Prop(¢)).
L7. [Replace goal.] Ifin step L6 a message was sent at all,gSLét := #. Then go back to step L1. O

The input to the algorithmg, will usually resemble the latest observation in a conseelyt growing traceu; =
u;(0) - - u;(t), i.e.,0 = u;(t). We then have that =p ¢! (i.e., the algorithm return$) implies thatu |=p ¢ holds
(resp. foro {£p ©t).

Example 2.To see how this algorithm works, let us continue the decks@dmonitoring process initiated in Exam-
ple 1. Table 2 shows how the situation evolves for all threaitoos, when the global LTL specification in question is
F(a A b A ¢) and the ordering between componentdlisc B < C. An evolution of M 4’s local obligation, encoded
asP(ph A #,0, AP 4) (see cellM, att = 1) indicates that communication between the monitors hasroeg:
Mg sent its obligation td\/ 4, at the end of step. Likewise for the other obligations and monitors. The iagting
situations are marked in grey: In particulartat 0, M¢ is the only monitor who knows for sure that, so far, no good
nor bad prefix occurred (see grey celltat 0). At ¢ = 1, we have the desired situation= {a, b, ¢}, but because
none of the monitors can see the other monitors’ eventkeastanother two rounds of communication until béth

and Mg detect that, indeed, the global obligation had been satistie= 1 (see grey cell at = 3).

This example highlights a worst cadelaybetween the occurrence and the detection of a good (resptrbad
by a good (resp. bad) prefix, caused by the time it takes fonmttmitors to communicate obligations to each other.
This delay directly depends on the number of monitors in ffstesn, and is also the upper bound for the number of
past events each monitor needs to store locally in order sbleeto progress all occurring past obligations:

Theorem 2. Let, for anyp € AP, X 'p be a local obligation obtained by Algorithm L executed on sanonitor
M; € M. Atany timet € N=°, m < min(|M|, ¢+ 1).

Proof. We provide below a sketch of the proof explaining the intuiton the theorem. The formal proof can be found
in Appendix A.3.

Recall thatX-operators are only introduced directly in front of atomiomositions according to rule (1) when
M; rewrites a propositional formula with p ¢ AP;. Furtheri operators can only be added according to rule

(2) whenM; is unable to evaluate an obligation of the fOth The interesting situation occurs when a monitor

M; maintains a set of urgent obligations of the fo{ﬂ(Pry... X pl} with h,j € N2°, then, according to step
L6 of Algorithm L, M; will transm|t the obllgatlons to one monltor only therebydady one additionaX-operator

to the remaining obllgauons{.X pg, e ,Y‘ pz} Obviously, a single monitor cannot have more thai| — 1
outstanding obligations that need to be sent to the otheitorerat any timet. So, the worst case delay is initiated
during monitoring, if at some timall outstanding obligations of each monitdf;, i € [1,|M]|], are of the form
{Xp1,..., Xp} with p1,...,p ¢ AP; (i.e., the obligations are all equally urgent), in whiche#sakes| M| — 1

time steps until the last one has been chosen to be sent tesjigative monitor)/;. Using an ordering between
components ensures here that each set of obligations wiledse in size after being transmitted once. Finally, a last

monitor, M; will receive an obligation of the fOI’I’K‘M‘pk with 1 <k <landp; € AP;. O

Consequently, the monitors only need to memoribe@nded historpf the trace read so far, i.e., the 1&st| events.
Example 2 also illustrates the relationship to ft#eL; semantics discussed earlier in Sec. 3. This relationship is
formalised by the two following theorems stating the “son@ss and completeness” of the algorithm.

Theorem 3. Letyp € LTLandu € X*,thenu Ep o =T/L =>ubEse=T/L,anduls o =7=ukEp p=".

In particular, the example shows how the other directiorheftheorem does not necessarily hold. Consider the trace
u = {a,b} - {a,b,c}: clearly,u =3 F(a AbAc) =T, butwe have: =p F(a A b Ac) =7 in our example. Again,
this is a direct consequence of the delay introduced in dtinge

However, Algorithm L detects all verdicts for a specificat@s if the system was not distributed.

Theorem 4. Lety € LTL andu € X*, thenu |3 o = T/L = 3/ € ¥*. |v/| <nAu-u Ep p=T/L, where
n is the number of components in the system.

7 Experimental results

DECENTMON is an implementation, simulating the above distributed Llthbnitoring algorithm in 1,800 LLOC,
written in the functional programming language OCaml. h && freely downloaded and run from [18]. The system
takes as input multiple traces (that can be automaticalhegeed), corresponding to the behaviour of a distributed
system, and an LTL formula. Then the formula is monitoredraidhe traces in two different modes: a) by merging
the traces to a single, global trace and then using a “camtvaitor” for the formula (i.e., all local monitors send thei
respective events to the central monitor who makes theidasisegarding the trace), and b) by using the decentralised
approach introduced in this paper (i.e., each trace is rgaddeparate monitor). We have evaluated the two different
monitoring approaches (i.e., centralised vs. deceng@dissing two different set-ups described in the remainfler o
this section.

Evaluation of randomly generated formulaBECENTM ON randomly generated 1,000 LTL formulae of various sizes
in the architecture described in Example 1. How both moimitpapproaches compared on these formulae can be
seen in Table 3. The first columns show the size of the momitofé formulae and the underlying alphabet(s) of the

Table 3: Benchmarks for randomly generated LTL formulae
centralised | decentralised diff. ratio

lp|| X.andXy | |tracd| #msg| |tracd|#msg| |trace| #msg
{a,b,c} {alblc}| 1.369 4.107 1.6340.9821.19350.2391
{a,b,c} {alb|c}| 2.095 6.285 2.461 1.6471.1747 0.262
{a,b,c} {alblc}| 3.51810.554 4.011|2.7491.14010.2604
{a,b,c} {alb|c}| 5.88917.6671 6.4 4.611.08670.2609
{a,b,c} {alblc}| 9.37528.125 9.935 7.8791.05970.2801
{a,b,c} {a]b|c}|11.80§35.42412.366 9.9121.04720.2798

S O s W N

Table 4: Benchmarks for LTL specification patterns

centralised | decentralised diff. ratio
pattern Y.andX,; ||tracd| #msg| |tracd| #msg| |tracg| #msg
absence |{a,b,c} {a|blc}|156.11 468.51156.72 37.941.00350.0809
existence |{a,b,c} {a|b|c}|189.9Q 569.72190.42 44.411.00270.0779
bounded existen{{a, b, ¢} {alb|c}|171.72 515.1172.3¢ 68.721.00330.1334
universal |{a,b,c} {alblc}| 97.03 291.09 97.66 11.051.00650.0379
precedence |{a,b,c} {a|b|c}|224.1] 672.33224.7453.7031.00270.0798
response |{a,b,c} {alb|c}|636.281,908.86636.54360.331.00040.1887
precedence chai {a, b, ¢} {albc}|200.23 600.69200.7¢ 62.081.00260.1033
response chain|{a, b, ¢} {a|b|c}|581.241,743.60581.54377.641.00050.2165
constrained chai{{a, b, ¢} {a|b|c}|409.141,227.39409.64222.841.00140.1815

monitor(s). Note that our system measures formula sizering®f the operator entailmérinside it (state formulae
excluded), e.g.G(a A b) V Fcis of size2. The entry|trace denotes the average length of the traces needed to reach
a verdict. For example, the last line in Table 3 says that waitaed 1,000 randomly generated LTL formulae of
size 6. On average, traces were of length 11.808 when theatembnitor came to a verdict, and of length 12.366
when one of the local monitors came to a verdict. The diffeeenatio, given in the second last column then shows the
average delay; that is, on average the traces were 1.04&8 limger in the decentralised setting than the traces in the
centralised setting. The number of messages, #msg., iretiteatised setting, corresponds to the number of events
sent by the local monitors to the central monitor (i@:qce| x | X4|), and in the decentralised setting to the number of
obligations transmitted between local monitors. Whatrigisig here is that the amount of communication needed in
the decentralised setting is ca. only 25% of the commuminaiverhead induced by central monitoring, where local
monitors need to send each event to a central monitor.

Evaluation using specification patterntn order to evaluate our approach also at the hand of reali$ti specifi-
cations, we conducted benchmarks using LTL formulae fdhgwhe well-known LTL specification patterns ([19],
whereas the actual formulae underlying the patterns aitabl@at this site [20] and recalled in [18]). In this contex
to randomly generate formulae, we proceeded as followsalgiren specification pattern, we randomly select one of
the formulae associated to it. Such a formulae is “parasettiby some atomic propositions. To obtain the randomly
generated formula, using the distributed alphabet, weaayginstantiate the atomic propositions.

The results of this test are reported in Table 4: for each kihplattern (absence, existence, bounded existence,
universal, precedence, response, precedence chainnsesplmain, constrained chain), we generated again 1,000 for
mulae, monitored over the same architecture as used in Hgdmp

4 Our practical experiments show that this way of measuriegsthe of a formula is more representative of how difficulsito
progress it in a decentralised manner.

10

Summary. Both benchmarks certainly substantiate that the decé@tamonitoring of an LTL formula induces a
much lower communication overhead compared to a centdadiskition. In fact, when considering the more realistic
benchmark using the specification patterns, the commuaicaverhead was significantly lower compared to monitor-
ing randomly generated formulae. The same is true for treeydid case of monitoring LTL formulae corresponding to
specification patterns, the delay is almost negligiblet idyahe local monitors detect violation/satisfaction ahan-
itored formula at almost the same time as a global monitdn atcess to all observations at any time. Note that we
have further benchmarks available on [18] (omitted for spaasons), also to highlight the effect of differently dize
alphabets and validate the maximal delay (Theorem 2). Notldr that in our tests, we have used continuous sim-
plification of the goal formulae in order to avoid a formulg#sion problem caused by rewriting. IERENTM ON,
advanced syntactic simplification rutesere introduced and sufficient for the purpose of our expenits

8 Related work and conclusions

This work is by no means the first to introduce an approach toitmong the behaviour of distributed systems. For
example, [21] introduced MTL, a temporal logic for describing properties of asynclmes systems, as well as a
monitoring procedure that, given a partially ordered exeowof a parallel asynchronous system, establishes whethe
or not there exist runs in the execution that violate a giverTMcorrectness property. While at first this may seem
to coincide with the work presented in this paper, there ateworthy differences: First, many of the problems
addressed in [21] stem from the fact that the systems to bétoned operate concurrently; that is, create a partially
ordered set of behaviours. Our application domain areibligerd but synchronous systems. Second, we take LTL
“off-the-shelf”; that is, we do not add modalities to exm@soperties concerning the distributed nature of the syste
under scrutiny. On the contrary, our motivation is to enalsiers to conceive a possibly distributed system as a single,
monolithic system by enabling them to specify propertiesrdlie outside visible behaviour only—independent of
implementation specific-details, such as the number oattte®r components—and to automatically “distribute the
monitoring” process for such properties for them. (Argyatiis also bears the advantage that users do not need to
learn another formalism to express system propertiesgllifive address the fact that in many distributed systems
it is not possible to collect a global trace or insert a glatedision making point, thereby forcing the automatically
distributed monitors to communicate. But at the same timéryvand keep communication at a minimum; that is, to
not transmit the occurrence of every single observed ebetiause many such applications would not tolerate this
kind of overhead. This aspect, on the other hand, does ngteptale in [21] where the implementation was tried
on parallel (Java) programs which are not executed on palfiseeparated CPUs as in our case, and where one can
collect a set of global behaviours to reason about.

Other recent works like [22] target physically distribugstems, but do not focus on the communication over-
head that may be induced by their monitoring. Similarlys thiork also mainly addresses the problem of monitoring
systems which produce partially ordered traces (a la Dielted Gastin), and introduces abstractions to deal with the
combinational explosion of these traces.

To the best of our knowledge, our work is the first to addressptoblem of automatically distributing LTL
monitors, and to introduce a decentralised monitoring @agn that not only avoids a global point of observation or
any form of central trace collection, but also tries to kdepriumber of communicated messages between monitors at
a minimum. What is more, our experimental results show thiatépproach does not only “work on paper”, but that
it is feasible to be implemented. Indeed, even the expeetédgs in communication overhead could be observed for
the set of chosen LTL formulae and the automatically gerdraices, when compared to a centralised solution in
which the local monitors transmit all observed events toodgl monitor.

References
1. Amir Pnueli. The temporal logic of programs. Faundations of Computer Science (FOQ®)ges 46-57. IEEE, 1977.

2. Eric Bodden. A lightweight LTL runtime verification toabf Java. InProc. 19th Conf. Object-Oriented Programming (OOP-
SLA) pages 306—307. ACM, 2004.

® Compared to RuleR [14], the state-of-art rule-based rumtiarification tool, for LTL specifications, our simplificati function
produced better results (see [18])

11

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.

22.

23.

A

. Patrick O’Neil Meredith and Grigore Rosu. Runtime vedfion with the RV System. In Barringer et al. [23], pages 132
. Justin Seyster, Ketan Dixit, Xiaowan Huang, Radu Grosau&Havelund, Scott A. Smolka, Scott D. Stoller, and Eredoka

Aspect-oriented instrumentation with GCC. In Barringeale{23], pages 405-420.

. Sylvain Hallé and Roger Villemaire. Runtime verificatifor the web-a tutorial introduction to interface contsast web

applications. In Barringer et al. [23], pages 106-121.

. Andreas Bauer, Rajeev Gore, and Alwen Tiu. A first-orddicgdanguage for history-based transaction monitoringPitoc.

6th Intl. Collog. Theoretical Aspects of Computing (ICTA@Jume 5684 oL NCS pages 96—111. Springer, 2009.

. Manfred Broy. Challenges in automotive software enginge In Proc. 28th Intl. Conf. on Software Engineering (ICSE)

pages 33-42. ACM, 2006.

. Traian Pop, Paul Pop, Petru Eles, Zebo Peng, and Alexadudirei. Timing analysis of the FlexRay communication pomio

Real-Time Syst39:205-235, 2008.

. Axel JantschModeling Embedded Systems and SoC’s: Concurrency and itiedels of ComputatiorMorgan Kaufmann,

2003.

Andreas Bauer, Martin Leucker, and Christian Schallh&@omparing LTL semantics for runtime verificatior.ogic and
Computation 20(3):651-674, 2010.

Andreas Bauer, Martin Leucker, and Christian Schaillidonitoring of real-time properties. IRroc. 26th Conf. on Founda-
tions of Software Technology and Theoretical Computem8ei¢FSTTCS)olume 4337 oLNCS Springer, 2006.

Fahiem Bacchus and Froduald Kabanza. Planning for tetyp@xtended goals.Annals of Mathematics and Artificial
Intelligence 22:5-27, 1998.

Grigore Rosu and Klaus Havelund. Rewriting-basedriggkes for runtime verificationAutomated Software Engineering
12(2):151-197, 2005.

Howard Barringer, David E. Rydeheard, and Klaus HavellRule systems for run-time monitoring: from Eagle to RuldR
Log. Comput.20(3):675-706, 2010.

Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. Thangof the past. InConf. on Logic of Programsages 196-218.
Springer, 1985.

Nicolas Markey. Temporal logic with past is exponehtiahore succinct, concurrency columrBulletin of the EATCS
79:122-128, 2003.

Bowen Alpern and Fred B. Schneider. Recognizing safedyligseness Distributed Computing2(3):117-126, 1987.
DEceENTMON Website. http://decentmonitor.forge.imag.fr.

Matthew B. Dwyer, George S. Avrunin, and James C. Carlidtterns in property specifications for finite-state veatfon.
In Intl. Conf. on Software Engineering (ICSprges 411-420. ACM, 1999.

Specification Patterns Website. http://patternsagtejcis.ksu.edu/.

Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore RoseceDtralized runtime analysis of multithreaded applocti In
20th Parallel and Distributed Processing Symposium (IPDFEEE, 2006.

Alexandre Genon, Thierry Massart, and Cédric Meutesnibring distributed controllers. IFormal Methods (FM)volume
4085 ofLNCS pages 557-572. Springer, 2006.

Howard Barringer, Ylies Falcone, Bernd Finkbeinegid Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu, Qlegsky,
and Nikolai Tillmann, editorsProc. Intl. Conf. on Runtime Verification (RWplume 6418 o£. NCS Springer, 2010.

Proofs

This section contains the proofs of the results stated sphper.

A.1 Proofs for Section 3

Proof of Lemma 1.The following inductive proof follows the argument conveyley Proposition 3 of [12]. For
completeness sake, here we want to give the complete, fodetalled proof.

The lemma is a direct consequence of the semantidsIaf (Definition 1) and the definition of progression

(Definition 2). Recall that this lemma states that the prssjn function “mimics” thd.TT. semantics on some event

ag.

Proof. We shall prove the following statement:

Voe XVwe X“Vo e LTL.o-w = ¢ & w = P(p,0).

Let us consider an eveate X and an infinite tracev € X, the proof is done by a structural inductionpre LTL.

Base Casep € {T,L,pe AP}.

12

— Casep = T. This case is trivial since, according to the definition & gnogression functiove € X. P(T,0) =
T. Moreover, according to thET'L semantics ofl, Vw € X¥. w = T.
— Casep = 1. This case is symmetrical to the previous one.
— Casep = p € AP. Recall that, according to the progression function formatpropositions, we havB(p, o) =
T if p € 0 and L otherwise.
e Let us suppose that- w = p. According to theLTL semantics of atomic propositions, it means that o,
and thusP(p, o) = T. And, due to thd.TL semantics ofT, we havevw € X“. w = T.
e Letus suppose that |= P(p,o). SinceP(p,o) € {T, L}, we have necessarilf(p, o) = T. According to
the progression functior?(p, o) = T amounts tg € o. Using theLTL semantics of atomic propositions,
we deduce that - w = p.

Induction Case: ¢ € {—¢', 1 V v2,01 A w2, Gp',Fo', X', 01 Ups}. Our induction hypothesis states that the
lemma holds for some formulag, 1, o2 € LTL.

— Casep = —¢'. On one hand, using the progression functionfpwe haveP(—¢’, o) = =P(¢’, o). On the other
hand, using th&TL semantics of operatof, we havew = ¢ < w £~ —¢. Thus, we haver - w = —¢' iff
o - w £ ¢ iff (induction hypothesis o’) w = P(¢’,0) iff w |E —P(¢',0) iff w = P(—¢', o).
— Casep = ¢ V po. Recall that, according to the progression function forrefm\/, we haveP (o1 V ¢2,0) =
P((pl,U) \Y P(QDQ,U).
e Let us suppose that - w = 1 V po. We distinguish again two sub-cases:V @3 = T orp; V g # T.
If o1 Vo = T, then this case reduces to the case where T, already treated. I, V @2 # T, it
means that either - w = p; or o - w = @o. Let us treat the case whese- w | ¢ (the other case is
similar). Fromo - w | 1, we can apply the induction hypothesis @n to obtainw = P(¢1,0), then,
w = P(p1,0) V P(p1,0) = P(¢1V ¢2,0).
e Let us suppose that = P(¢1 V ¢2,0) = P(p1,0) V P(p2,0). We distinguish again two sub-cases:
P(gOl \/90270') =T OrP(gol \/90270') #T.
x If P(p1 V ¢a,0) = T, then we again distinguish two sub-cases:

- If P(p1,0) = T or P(pe,0) = T. Let us treat the case whef&p1,0) = T (the other case is
similar). Applying the induction hypothesis an, we haves - w | ¢1 < w = P(p1,0). Then,
considerw € X, we haver - w = 1, and consequently - w = ¢1 V ps.

- If P(p1,0) # T andP(p2,0) # T, then we haveP(p;1,0) = =P(p2, o). Applying the induction
hypothesis orp; andy,, we obtainr-w = ¢1 < o-w £ 2. Letus considew € X%, If o-w |= ¢,
then we have - w |= 1 V pa. Else ¢ - w [~ 1), we haver |= o, and thenr - w = @1 V ps.

x If P(o1V ¢a,0) # T, then we have either = P(¢1,0) orw = P(p2,0). Let us treat the case where
w = P(p1,0) (the other case is similar). From |= P(¢1,0), we can apply the induction hypothesis on
1 to obtaine - w = ¢1, and thusy - w = @1 V pa.
— Casep = 1 A ps. This case is similar to the previous one.
— Casep = G¢'. Recall that, according to the progression function forafie G, P(Gy’,0) = P(¢',0) A G¢'.
e Let us suppose that- w = G¢’. According to theLTL semantics of operatds, we havevi € N=9. (o -
w)? = . In particular, it implies thato - w)° & ¢/, i.e.,0 - w E ¢' andVi € N2°. (o - wl)! | ¢/, i.e,,
(0 -w)! = w E G¢'. Using the induction hypothesis @i, fromo - w = ¢/, we obtainw = P(¢’, o). As
expected, according to tHEl'L. semantics of operatar, we havew = P(Gy',0) A G¢' = P(Gy¢', o).
e Letus suppose that = P(Gy',0) = P(¢',0) A Gy'. It follows thatw = P(¢’, o), and thus, using the
induction hypothesis op’, o - w = ¢’. Using theLTL semantics of operatda, fromo - w E ¢’ and
w = Gy, we deducei € N20. w' |= ¢/, and theri € N. (0 - w)! = ¢/, i.e.,0-w = Gy'.
— Casep = F¢'. This case is similar to the previous one.
— Casep = X¢'. On one hand, using the progression functiorXome haveP (X', o) = ¢’. On the other hand,
using theL.TL semantics of operatd, we haver - w = X¢' iff w = ¢’. Thus, we have - w = X¢' iff w | ¢
iff (induction hypothesis o’) w = P(X¢', o).
— Casep = ¢1Ugps. Recall that, according to the progression function foraf@ U, P(p1Ups, o) = P(p2,0)V
(P(p1,0) A p1Up2).
e Letus suppose that- w = ¢; Uyp,. According to thed.TL semantics of operatdd, we havedi € N=9. (o -
w)' = 2 AV0 <1 <. (0-w) = ¢1. Let us distinguish two cases:= 0 andi > 0.

13

x If ¢ = 0, then we haver - w = 2. Applying the induction hypothesis ag,, we havew | P(p2, o),
and consequently = P(¢1Ugs, o).

* Else ¢ > 0), we havev0 < | < i. (0 - w)! = ¢;. Consequently, we have - w)°? = ¢y, and thus
o -w = 1. Moreover, fromv0 < [< i. (0 - w)! |= @1, we deduce/0 < [< i — 1. w' = ;. From
(0 -w)" = 7, we deducer’™! = @y, Fromw'™! = oy andV0 < I < i. (0 - w)! = @1, we deduce
w = o1 Ups. Applying, the induction hypothesis apy, fromo - w = 1, we obtainw | P(p1,0).
Finally, fromw = ¢1Upz andw = P(p1,0), we obtainw = P(p1Ups, o).

e Let us suppose that = P(p;Uypy, o).
We distinguish two case® (o1 Ups,0) = T andP(p1 Ups,0) £ T.

* If P(p1Upa,0) = P(p2,0) V (P(p1,0) A p1Ugy) = T. We distinguish again two sub-cases.

- If P(p2,0) =TorP(p1,0) ANp1Ups = T.If P(p2,0) = T, then applying the induction hypoth-
esis ony9, we haves - w = ¢ < w | T. Then, fromo - w = 2, we obtain, according to the
LTL semantics of operatdd, o - w = o1 Ups. If P(¢1,0) A v1Ugps = T, we directly deduce that
1 Ups = T, and then this case reduces to the case wheteT, already treated.

- If P(p2,0) # T andP(p1,0) A1 Ugpy # T, then we haveP (2, 0) = ~(P(p1,0) A p1Upa) =
—P(p1,0) V =(p1Ups). Applying the induction hypothesis am andys, we haver - w | ¢ <
w = P(p1,0),ando - w = 92 & w = Ppg,0),andthus - w = 92 < (0w = o1 Vw
©1Ugps). Let us now follow theLTL semantics of operatdd and consider the two cases:w = ¢
oro-w e ¢a. If 0w = pa, thuse - w = 1 Ups (according to thd TL semantics olU). Else
(0w £ o), theno - w = @1 andw = ¢1Uyps, and thusr - w = ¢1 Ugps.

x If P(p1Upq,0) # T, itmeans that either = P(¢2,0) orw = P(¢1,0) Ap1 Ups.

- If w = P(p2,0), then applying the induction hypothesisgs we haver-w | 2. Then, following
theLTL semantics of operatdy, we obtaino - w = o1 Ugps.

- If w = P(p1,0) A p1Ugps, then we havev = P(¢1,0) andw | o1 Ugs. Applying the induction
hypothesis orp;, we haver - w = ¢1. Fromw = 1 Ugs, we havedi € N20. w' = g AV0 <1 <
i. w' = 1. Itimplies that(o - w)™*?! = o andV0 < I < i+ 1. (0 - w)! |= ¢1. Using,o - w = 1,
i.e., (0 w)? = ¢; and theLTL semantics of operatdd, we finally obtains - w = 1 Ups.

O

Proof of Lemma 2We shall prove the following statement.

Voe LTLNo € X¥. P(p,0) =T = 0 € good(p)
A P(p,0) = L = o € bad(p).

The proof uses the definition of tha'T. semantics (Definition 1), the definition of good and bad pesfiDefinition 2),
the progression function (Definition 3), and Lemma 1.

Proof. According to Lemma 1, we havér € Y.Vw € X*. 0 - w | ¢ & w = P(p,0). Consequently, we have
Vo e XVwe X 0wk e Voe XVwe X wlkE Plp,o)andVo € YVw € X¥. 0 -w £ ¢ &
Vo € YYw € X¥. w [~ P(p,0). Consequently, wheR(p,0) = T, we haveVo € Y.Vw € X¥. 0 -w = ¢, i.e.,
o € good(yp). Similarly, whenP(p,0) = L, we havevo € X.Vw € X¥. 0 - w [~ ¢, i.e.,0 € bad(y).

The proof can also be obtained in a more detailed manner amdbhelow. Let us consider € X' andy € LTL.
The proofis performed by a structural inductiongn

Base Casep € {T, L,p € AP}.

— Casep = T. In this case, the proof is trivial sind®(T,os) = T and, according to theTL semantics ofl and
the definition of good prefixegpod(T) = X*.

— Casep = L. Similarly, in this case, the proof is trivial sind®L, o) = 1 andbad(Ll) = X*.

— Casep =p € AP.
Let us suppose tha®(p, o) = T. According to the progression function, it means that o. Moreover, since
¢ = p, according to thd.TL. semantics of atomic propositions, for amyc X*, we haver - w = ¢. According
to the definition of good prefixes, it means that good(y).
The proof forP(¢,0) = L = o € bad(yp) is similar.

14

Induction Case: ¢ € {—¢', 1 V v2,p1 A w2, Gp',Fo', X', 01 Ups}. Our induction hypothesis states that the
lemma holds for some formulag, o1, ¢2 € LTL.

— Casep = —¢'. In this case, the result is obtained by using the inductigmothesis ony’ and the equality’s
1 ==Tand—(—y) = .

— Casep = ¢1 V 2. Recall that, according to the progression function foraf®@V, P(p1V ¢a,0) = P(p1,0)V
P(p2,0).

Let us suppose that(yp, o) = T. We distinguish two cases:

o If P(p1,0) =T orP(pse,0) = T.Letus treat the case wheRéy1, o) = T. Using the induction hypothesis
on 1, we haves € good(y;). According to the definition of good prefixes, we hate € X*. o - w | 1.
We easily deduce, using tHel'L semantics of operator, thatVw € X%. o - w | 1 V @9, thatis,o €
good(p1 V ¢2).

o If P(¢1,0) # T andP(p2,0) # T.SinceP(p,0) = T, we haveP(y1,0) = =P(¢2,0). Using Lemma 1,
we havevw € X¥. 0 -w = p1 © w = P(p1,0) andvVw € X¥. 0 - w = @2 < w = P(p2,0). We deduce
thatvVw € X¥. 0 -w |E ¢1 & 0w £ ¢a. Letus considew € X¥. If o-w | ¢1, we haver - w | 1 V ¢a.
Else ¢ - w }£ ¢1), we haver - w | 9, and thero - w = o V 1. ThatisVw € X¥. 0 - w = ¢1 V @9, i€,
o € good(p1 V ¢2).

Let us suppose tha®(¢, o) = L. In this case, we hav®(p;,0) = L and P(p2,0) = L. Similarly, we can
apply the induction hypothesis on andy- to find thato is bad prefix of botlp; andyp,, and is thus a bad prefix
of 1 V 32 (using theLTL semantics of operator).

— Casep = p1 A ps. This case is symmetrical to the previous one.

— Casep = G¢'. Recall that, according to the progression function forafe G, P(G¢',0) = P(¢',0) A G¢'.
Let us suppose tha&(p,0) = T. It means thaP(¢’,0) = T andG¢’ = T. This case reduces to the case where
p=T.

Let us suppose thdt(p, o) = L. We distinguish two cases.

e If P(¢',0) = L orG¢’ = L. We distinguish again two sub-cases.

x Sub-caseéP(¢’,0) = L. Using the induction hypothesis @i, we deduce that € bad(¢’), i.e.,Yw €
X o-w £ ¢ Following theLTL semantics of operatdk, we deduce thatw € X¥. o - w £ G/,
i.e.,o € bad(Gy').

* Sub-cas&zy’ = L. This case reduces to the case where L.

o If P(p',0) # L andGy' # L. FromP(¢',0) A G¢' = 1, we deduce thaP(¢’,0) = —=G¢’. Using
Lemmalony’, wehavevw € X¥. o-w |E ¢ & wlE P(¢',0). ThusVw € X¥. o-w | ¢ & w £ Gy'.
Let us considew € 2. If - w = ¢/, then we havey [~ G¢'. According to theLTL semantics of operator
G, itmeansthalii € N0 w! [£ ¢'. Thus, still following theLTL semantics of operat®, (o -w)i ™! j£ ¢/,
and, consequently - w = Gy’ Else ¢ - w [~ ¢'), we have directly - w = Gy'.

— Casep = F¢'. Recall that, according to the progression function foraf®F, P(F¢',0) = P(¢’,0) VF¢'.
Let us suppose thdt(p, o) = T. We distinguish two cases.

o If P(¢/,0) =TorFy =T.

x Sub-casé’(¢’, o) = T. Following the previous reasoning, using the inductiondtipsis on’, theLTL
semantics of operatdf, and the definition of good prefixes, we obtain the expectsdlte

*x Sub-casd&'¢’ = T. This case reduces to the case where T.

o If P(¢/,0) # T andFy' # T.FromP(¢',0) vV Gy’ = 1, we deduce thaP(¢’,0) = —F¢'. Using
Lemma 1l ony’, we havevw € X*. 0 -w = ¢ & w = P(¢',0). We thus havd/w € X¥. 0 -w = ¢’ &
w = Fy'. Let us considew € Y. If o - w = ¢', using theLTL semantics of operatd, we have directly
o-wkEF.Else ¢ -w £ '), we havew = F¢'. According to tha.TL semantics of operatd*, it means
that3i € N=0. w' |= ¢/, and thugo - w)*+! = ¢'. Consequently - w = Fy'. Thatis,o € good(Fy').

Let us suppose thd(p,0) = L. It means thaP’(¢’,0) = L andF¢’ = L. A similar reasoning as the one used
for the casep = Gy’ andP(p,0) = T can be applied to obtain the expected result.

— Casep = X¢'. Recall that, according to the progression function foraf X, P(X¢',0) = ¢'.

Let us suppose thaP(p,0) = T. It means thaty’ = T. According to theLTL semantics ofT, we have
Yw e XY w E ¢'. ThenVw € X¥. 0 - w = X¢' = ¢. Thatis,c € good(Xy').

Let us suppose thaP(p,0) = L. It means thaty’ = L. According to theLTL semantics ofL, we have
Vw e XY wlE ¢'. ThenVw € X¥. 0 - w = X¢' = ¢. Thatis,o € bad(X¢').

15

— Casep = ¢1Ugps. Recall that, according to the progression function foraf@ U, P(¢1Ups, o) = P(p2,0)V
(P(e1,0) Ap1Ups).
Let us suppose thdt(p, o) = T. We distinguish two cases.
o If P(pa,0) =T orP(p1,0) Ap1Upa =T
* Sub-casé’(p2,0) = T. Using the induction hypothesis @i, we haves € good(y2). Let us consider
w € X¥, we haver - w € L(ps), i.e., (0 - w)° = ¢1Up,. According to theL TL semantics olU, we
haveo - w = 1 V @2, 1.e.,0 - w € L(p1Uyp2). We deduce that € good(p; Ugps).
* Sub-casd’(¢1,0) Ap1Upy = T. Necessarilyp; Up, = T and this case reduces to the first one already
treated.

o If P(pa,0) # T andP(p1,0) A ¢1Ups # T. From P(p1Upq,0) = T, we deduce thaP(ps,0) =
—(P(p1,0) A v1Upa). Applying Lemma 1 tap,, we obtainvw € X¥. o - w = p2 < w | P(pa,0). We
thus havevw € X¥. o - w = p2 & w = P(p1,0) A p1Ups. Let us considew € X¢. Let us distinguish
two cases. It - w = 9, according to th&TL semantics olJ, we haver - w = 1 Uys. Else ¢ - w £ 2),
it implies thato - w = P(p1,0) A ¢1Ups, and, in particulaw - w = ¢1Ups. That is, in both cases,
o € good(p1Upa).

Additional notation.For the remaining proofs, we defifig the extended progression function on traces that consists
in applying successively the progression function defireefhsto each event in order.

Definition 8. Given a formulap € LTL and a traceu = u(0)---u(t — 1) € X7, the application of extended
progression functiorP to ¢ andw is defined as:

Plp,u(0) - ut = 1)) = P(p,u) = P(... (P(p,u(0)), ..., ut = 1))))

For the sake of readability, in the remainder, we overloadibtation of the progression function on events to traces,
i.e.,P(p,u) is denotedP(p, u).

Some intermediate lemmaBased on the previous introduced notation and the definitidhe progression function
(Definition 2), we extend the progression function to tradéee following lemma states some equality’s that directly
follow from an inductive application of the definition of tipgogression function on events.

Lemma 3. Given some formulag, 1, 92 € LTL, and a traceu € X, the progression function can be extended to
the traceu by successively applying the previously defined progradsiaction to each event afin order. Moreover,
we have¥yp, o1, ps € LTLYu € YT,

P(T,

u) =
() J‘?
Plpe AP,u) T if p € u(0), L otherwise
(ﬁ%)_ ﬁ*P((toa)7
P(QOl \/QOQ,U) (9011)\/P(SOQau)a
P((,Ol/\<,02,) (‘Pl,)/\P(<P25u)v
P(Gp,u) = N5 Plo,u) A G,
(F%U) \/‘zUIO ! P(% i) \ F(p,
) =

if lul =1
PXepu P(<p,u1) otherwise
P(p2,u) V P(p1,u) A p1Ups if |u| = 1

Plorteu) = {V“' F (P2, ') A N2y Plonw?)) V Ay Pler, u') A @1 Uy, otherwise

Proof. The proof is done by two inductions: an induction on the langftthe traceu (which is also the number of
times the progression function is applied) and a structodalction onp € LTL.

Base Caseu =0 € X, Ju| = 1.

In this case, the result holds thanks to the definition of tlegpession function.

Induction case:

16

Let us suppose that the lemma holds for any trace X+ of some lengtht € N and let us consider the trace
u-o € X1, we perform a structural induction gne LTL.
Structural Base casex € {T, L,p € AP}.

— Casep = T. In this case the result is trivial since we have:
P(T,u-0)=P(P(T,u),o) (extended progression)
= P(T,0) (induction hypothesis on)
=T (progression on events)
— Casep = 1. This case is symmetrical to the previous one.
— Casep = p € AP. Let us distinguish two caseg:€ u(0) orp ¢ u(0).
o If p € u(0), we have:

P(p,u-0) = P(P(p,u), o) (extended progression)
= P(T,o0) (induction hypothesis on)
=T (progression on events)

e If p ¢ u(0), we have:

P(p,u-o) = P(P(p,u), o) (extended progression)
= P(Ll,0) (induction hypothesis on)
=1 (progression on events)

Induction Casep € {—¢’, p1Va, p1Apa, G, F¢', X¢' 01 Ups }. Our induction hypothesis states that the lemma
holds for some formulae’, ¢1, ¢ € LTL.

— Casep = —¢'. We have:

P(—¢',u-0) = P(P(—¢',u),0) (extended progression)
= P(—P(¢’,u), o) (induction hypothesis on andy’)
= -P(P(¢’,u), o) (progression on events)
=-P(¢',u-0) (extended progression)
— Casep = X¢'. We have:
P(X¢',u-0)=P(P(X¢', u),o) (extended progression)
= P(P(¢',u'),o) (induction hypothesis on andy’)
= P(¢',ulo) (extended progression)
=P(¢, (u-0)")
— Casep = 1 V 2. We have:
P(o1 Va,u-0) = P(P(p1 V ¢a,u),0) (extended progression)
= P(P(¢1,u) V P(p2,u),0) (induction hypothesis on andyp, ©2)
= P(P(¢1,u),0) V P(P(p2,u),0) (progression on events)
= P(p1,u-0)V P(pa,u-0) (extended progression)

— Casep = 1 A ps. This case is similar to the previous one.
— Casep = Gy'. We have:

P(Gy',u-o0)
= P(P(Gy¢',u),0) (extended progression)
= P(/\Li‘o’1 P u) NGy, o) (induction hypothesis on andy’)
= P(/\Li‘o_1 P(¢',u?),0) AN P(Gy', o) (progression on events fov)
= /\Li'ofl P(P(¢',u?),0) A P(Gy', o) (extended progression fo)
= /\‘ii'gl P(¢',ut- o) A P(Gy', o) (extended progression)
= /\‘iilo_1 P(o',ut- o) AP(o',0) ANGy' (progression on events f@&)
/

= /\Lig'fQ P(¢,(u-0))ANP(¢, (u-0)" =) AGy' (u' -0 = (u-0) ando = (u - o)lv7I=1)
()

17

— Casep = F¢'. We have:

PF¢,u-0)
= P(P(F¢',u),0) (extended progression)
= P(V'“‘ P ui) VEY o) (induction hypothesis on andy’)
= P(\/'“‘ 'P(¢',ul),0) v P(Fy, o) (progression on events)
= Li'gl Py ,u -o)V P(Fy¢',0) (extended progression for)
= Li'o’l P(o',ut - o)V P(¢',0) VFy (progression on events f@t)

= Vg2 P (o)) VP (u 0)) VR (00 = (u0)' ando = (o)1)
= VIZ T P(¢ (u o)) VR
— Casep = p1 Uyps. We have:

P(p1Ups,u - 0)
(extended progression)

= P(P(p1Up2,u),0)
(induction hypothesis on, and structural induction hypothesis @n andys)

= PV (Plozul) A N Ploru) v AT Plor,ut) A o1 Uga,o)
(progression on events fo)

= P(VI (Ploau) AN Plor,u?)).0) v PN Ploru) A i Uga, o)
(progression on events forandV)

= Vo (P(P(p2,ut),0) A N Zh P(P(p1,), 0)) v A P(P(o1,u'), 0) A P(p1 U, 0)

(extended progression)
=ity ! (Plezut - 0) A NZy Plor,w? - 0) v AL Plor,ul - 0) A P91 U, 0)

Moreover:
A P(pr,ut - o) A P(p1Uga, 0)
(progression on events f&F)
= A5 Plpr,ut - o) A (P(p2,0) V Pi1,0) A o1 Usg)
(distribution of A overV)
= (/\Li'&lp(%vui -0) A P(p2,0)) V (/\'u‘ Y P(p1,ut - 0) AP(p1,0) Ap1Ugs)
(0 = (u- o)l*el=1 and elimination ofP (¢, o))
= (N5 Plpr,u' - 0) A P(02,0)) V (A5 7! Pler,ut - 0) A o1 Uspz)
Furthermore:

VIS (Plpa,ut - 0) ANZG Plor,ud - 0)) V (ASG Plpr,ul - o) A Pli2,0))
(variable renaming)

\/‘”| 1|(‘(<p2,u O')/\/\l IP(ﬂﬁl,uj'U)) ((2,)/\/\‘ (%’huj'a))
(0= (u-g)l™)
VT f< (p2: (- 0)) A Ay Plorw? - 0) V (Plgas (u-)71 A AT Plpr - 0)
= Vi3 (Pl (wr0)) A Ny Pl (u 0)7)

Finally:

P(¢1Ups,u - 0)
= V2o (Plezu’ - 0) ANy Plor,w?) V (NG Plor,ul - 0) A Ple2,0))
(/\WU| ' P, (T)/\%U(Pz)
= VI3 (Pl ul - o) A NZg Plon,w? - 0)) V (AL Plpr,ut - 0) Aoy Ugs)
=\ (P(ga, (w- o)) A NiZg Plgr (u- o))
VAL Plpr, (u- 0))/\901Us02)

18

O

We introduce another intermediate lemma, which is a coresarpiof the definition of thETL semantics (Defini-
tion 1) and the definition of the progression function (Défimi 8). This lemma will be useful in the remaining proofs.
This lemma states that the progression function “mimicg”sbmantics oETL on a trace: € X+,

Lemma 4. Let o be anLTL formula,u € 3T a non-empty trace and € X* an infinite trace, we have - w =
< w = Plp,u).

Proof. We shall prove the following statement:
Vue YT Vwe XY Vo e LTL.u-w | ¢ & w = P(p,u).

Let us consider € X', the proof is done by a structural induction gre LTL.
Base casep € {T,L,pe AP}.

— Casep = T. This case is trivial since, using Lemma 3 ®randu, we haveP(T,u) = T. Moreover, according
to theLTL semantics ofl, Vw € X% . - w = T.
— Casep = L. This case is symmetrical to the previous one.
— Casep=pe AP.
e Let us suppose that- w = p. By applying Lemma 3 o andu, we haveP(u,p) = T. Moreover, due to
the LTL semantics ofl, we havevw € X*. w = T = P(u,p).
e Let us suppose that |= P(p,u). SinceP(p,u) € {T, L}, we have necessarilf(p,u) = T. According
to the progression functior?(p,u) = T necessitates that € «(0). Using theLTL semantics of atomic
propositions, we deduce th@at - w)° = p, i.e.,u - w = p.

Induction Case: p € {—¢', 01 V v2,01 A 2, Ge' , Fo', X', 01 Upa}. Our induction hypothesis states that the
lemma holds for some formulag, 1, 02 € LTL.

— Casep = @1 V . Recall that, by applying Lemma 3 gn V o, andu, we haveP(¢; V o2, u) = P(p1,u) V
P(p2,u).

e Let us suppose that - w = ¢1 V p2. Let us distinguish two cases; V oo = T andyy V oo # T. If
p1 V w2 = T, then this case reduces to the case where T already treated. Ifp; vV 2 # T, it means
that eitheru - w | o1 oru - w = ¢s. Let us treat the case whete w = ¢; (the other case is similar).
Fromu - w = o1, we can apply the structural induction hypothesiggrto obtainw |= P(¢1,u), and then,
w = P(p1,u) V P(pz,u) = P(p1V @2,u).

e Let us suppose that = P(p1 V p2,u). Let us again distinguish two cases.Afp1,u) V P(pa,u) = T,
then it reduces to the case where= T already treated. IP(p1,u) V P(p2,u) # T, then we have either
w = P(p1,u) orw = P(p2,u). Let us treat the case where= P(p1, u) (the other case is similar). From
w = P(¢1,u), we can apply the structural induction hypothesissrto obtainu - w = 1, and thus, using
theLTL semantics of/, u - w = 1 V pa.

— Casep = 1 A ps. This case is similar to the previous one.
— Casep = G¢'. Recall that, by applying Lemma 3 @Ry’ andu, we haveP (Gy', u) = /\Li'o_l P u') NGy'.

e Letus suppose that- w = G¢'. From theLTL semantics of operatds, we havevi € N=0. (u-w)! | ¢'.
In particular, it implies that/0 < i < |u| — 1. v’ - w = ¢ andVi > 0. ((u - w)“I=1) = ¢. Using,
V0 <i < |ul — 1. u' - w |= ¢ and applying the structural induction hypothesisgrand theu;’s, we obtain
V0 <i < |ul—1.w = P(¢,u'), and thusw = A P(g!,u). UsingVi > 0. w' = ((u-w)l*I=1) = o,
we obtainw = G¢'. As expected, according to tAE'L, semantics of\, we havew = A i'o_l P(¢',ut) A
Gy’ = P(G¢',u).

e Letus suppose that = P(Gy',u). We havev0 < i < |u| — 1. w E P(¢',u?) andw | G¢'. Using the
structural induction hypothesis arf and theu's, it follows thatv0 < i < |u| — 1. v’ - w = (u - w)* = ¢'.
Using the semantics of operat@r, fromw = G¢’ andv0 <i < |u| — 1. u*-w = (u-w)* = ¢', we deduce
u-wE Gy

— Casep = F¢'. This case is similar to the previous one.

|
i

19

— Casep = X¢'. Recall that, by applying Lemma 3 anandXy’, we haveP (X', u) = P(¢’,u! - o). Using the
LTL semantics o, we haveu - w = X¢' iff u! - w = ¢'. Thus we have: - w = X¢' iff u! -0 - w = ¢ iff
(induction hypothesis op’) w |= P(¢',u! - o) = P(X¢', u).

— Casep = —¢'. Recall that, by applying Lemma 3 anand—¢’, we haveP(—¢', u) = —~P(¢’,u). Using the
LTL semantics of operator, we havevp € LTL.Vw € X¥. w = ¢ < w £ —p. Thus, we have - w | —¢/ iff
u - w B ' iff (induction hypothesis op’) w = P(¢', u) iff w = —P(¢',u) iff w |E P(=¢,u).

— Casep = p1Uys. Recall that, by applying Lemma 3 anandy; Uy}, we have

Ju|—1 i—1 Ju|—1
P(e1Ugh,u) = \/ (Plp2,u') A \ P(or,w?)) v\ Pler,u') A1 Ugs.
i=0 §=0 i=0

e Letus suppose that- w = ¢; Up,. According to theLTL semantics of operatdd, 3k € N2°. (u - w)* =
02 A0 <1 < k. (u-w) = ¢1. Let us distinguish two cases:> |u| andk < |u].

x If k > |ul, then we have in particulat0 < I < |u| — 1. u' - w = ¢;. Applying the structural induction
hypothesis onp; and theu!’s, we findv0 < I < |u|. w | P(p1,ul), i.e.,w = /\‘“| ' P(py,ub).
From (o - w)* |= ¢ andk > |u| — 1, we deduce thak’ > 0. w* | ¢, andk’ =k — |ul + 1.
Furthermore, we haved < i < k'. ((u-w)/*I=1)¥ = w = P(p1, u), i.e.w = AX o P(p1,u?). Finally,
w E P(p1Upa, u).

* If k < |u| — 1, then from(u - w)* = o, we haveu* - w |= 2. Using the induction hypothesis on
©2 andu®, we havew = P(p2,u*). Moreover, usingvl < |k|. (u-w)! = u!-w | ¢ and the
induction hypothesis op; and theu!’s, we obtainvl < |k|. (u-w)! = w = P(p1,u). Finally, we have
w = Aig b Pler,u') A Pz, ub), and thuss = P(o1Ugps, u).

e Let us suppose that = P(p1Ups, u). We distinguish two sub-cases:
P(p1Upso,u) = T andP(p1Upa,u) #£ T.

* Sub-casé’(p1 Upsy, u) = T. We distinguish again three sub-cases:

- Sub-case\/ "l (P(p2,u’) A NiZg P(¢1,u/)) = T. Necessarily, we havéd < i < |u| —

1.P(<p2,)/\/\J OP(cpl, u?) = T. Otherwise, that would mean thai , is € [0, |u|—1]. P(p2, u’)A
/\;1;01 P(p1,u?) = =P(p2,u’) A /\12 ' P(¢1,u’) and we would obtain a contradiction. From

P(p2,u') N Nj—g P(e1,u?) = T, we haveP(ps,u) = T and \'_y P(p1,u/) = T. Using the
induction hypotheS|s op; andys, we obtainu’ - w = e andv0 < j < i. u/ - w = 1. According
to theLTL semantics of operatdd, it meansu - w = o1 Ups.

. Sub-casef\ﬁo’l P(p1,u) A p1Upy = T. In this case, we have necessatilyUyp, = T, and this
case reduces to the case where T.

- Sub-cas&/|"l;! (P(g2,u) AN Zo Pler,ud)) # T andAM5! P(or, u?) Ap1 Ugs # T. We have

then
[u|—1 lul—1
\/ (P(p2,u /\P%,u7 —ﬁ(/\ P(pr,u’ /\<P1U<P2)
i=0

Let us suppose thati € N2°. (u - o) [~ . Following the induction hypothesis amn, it means in
particular that/0 < i < |u| — 1. w & P(p2,u?). Then, sincav = P(p2Uyp,), it would imply that
w /\Li'gl P(p1,u?) A1 Ugpa. But, fromw = ¢; Ugs, we would obtain a contradiction according
to theLTL semantics. Hence, let us considéne minimalk € N0 s.t. (u-w)* |= po. If i > |u| -1,
then similarly we havey = /\Li'gl P(p1,u’) A1 Ups. Itfollows thatv0 < [< |u|—1.u-w = ¢y
andv|u| — 1 <1 <. (u-w) | ¢1,and thusu - w = 1 Ups. Else ¢ < |u| — 1), we can follow a
similar reasoning to obtain the expected result.

* Sub-case(p1 Uy, u) = T. Similarly, in this case, we can show th#it € N=°. (u - w)* |= ¢o. Then
we considek,,;, the minimalk s.t.(u - w)* |= ¢,. Then, we can show that’ < k. (u-w)* = 1.
And thenu - w = 1 Ups.

O

20

Proof for Theorem 1 We shall prove the following statement:

Vu € Xt Vo e LTL. v = P(p,u)
=>w=T=ufEsep=T)A(v=_L=>ulE3sp=1).
The proof uses the definition of tha'T. semantics (Definition 1), the definition of good and bad pesfiDefinition 8),
the progression function (Definition 3), and Lemma 1.

Proof. According to Lemma 4, we havé, € X TVw € X%, u-w = ¢ & w = P(p,u). Consequently, we have
Vu € XTVw € X% u-wE ¢ & VYue Xt Vw e XY wE Plp,u) andVu € YT Vw € XY u-w ¢ &
Yu € Xt VYw € X¥. w £ P(p,u). Consequently, wheR(p,u) = T, we havevu € Xt.Vw € X% u-w [o, i.e.,
u € good(yp). Also, whenP(p,u) = L, we havevu € T Vw € X9 u-w [~ ¢, i.e.,u € bad(p). O

A.2 Proofs for Section 5

Proof of Corrolary 1. We shall prove the following statement:
M =1=VueX*VpellLuEsp=ulpyp

Proof. The proof is trivial, since in case of one component in theesyisthe extended progression rule (1) is reduced
to its initial definition in the centralised case, i.ép € AP.Yo € Y. P(p,0, AP1) = P(p,o). Moreover, no past
goal is generated, i.e., the extended progression ruls ¢(&\er applied. O

A.3 Proofs for Section 6
Let us first formalize a bit more Algorithm L by introducingree additional notation.

— send(i, t, j) € {true, false} is a predicate indicating whether or not the moniteends a formula to monitgrat
timet with ¢ # j.

— send(s,t) € {true, false} is a predicate indicating whether or not the monitsends a formula to some monitor
at timet.

— kept(i,t) € LTL is the local obligation kept by moniterat timet¢ for the next round (time + 1).

— received(i, t, j) € LTL is the obligation received by monitoat timet¢ by monitorj with i # j.

— received(i, t) € LTL is the obligation received by monitoat timet from all monitors.

— inlo(4,t,) € LTL is the local obligation of monitorat timet when monitoring the global specification formula
v, before applying the progression functioni.e, after ajpyystep L3 of Algorithm L.

— lo(i,t,») € LTL is the local obligation of monitarat timet when monitoring the global specification formya
after applying the progression function, i.e, after appdystep L4 of Algorithm L.

— mou(y) € sus(yp) is the most urgent formula belonging to the set of urgentaubdlae ofp.

— ulo(i, t,) = sus (lo(i,t,¢)) is the set of urgent local obligation of monitbmt timet when monitoring the
global specification formula.

Based on the previous notation and Algorithm L, we have thHewiing relations:

— send(i, t, j) is true if monitor M; is the first monitor containing the most urgent obligationtedned in the local
obligation of M;, according to the order ifi, m|. Formally:

send(i, 1,) = true if M; = Mon (M;, Prop(ulo(i, t,¢))) Aulo(i, t, @) # 0
N5 1) false otherwise

— send(i, t) is true if monitor M; sends his local obligation to some monitor. Formadlyid(i,¢) = 35 € [1,n] \

{i}. send(i,t, 7).
— kept(i,t) € LTL is either # ifM; sends its local obligation to some monitor at time 1 or its local obligation at
timet — 1 otherwise. Formally:

N # if 35 € [1,n]\ {i}.send(i,t — 1,)
kept (i, 1) = {lo(i,t —1,¢) else

21

— received(i, t, 7) is the local obligation of\/; received byM; at timet if ¢ > 1 and M, sends actually something
to M;. Formally:

received(i, t,j) = {ﬁ(]’t -1 glsﬂé € [Ln]\ {i}. send(j,t —1,i) At > 1

— received(i, t) is the conjunction of all obligations received by monitérom all other monitors at time Formally:

M|
received(i, t) = /\ received(i, t, j)
J=1,5#1
— inlo(4,t,) is
e attimet > 1 what was kept by\/; at timet — 1 and the received obligation at tinig
e attimet = 0 the initial obligation, i.e., the global specificatign
Formally:
S e ift=0
inlo(i, t, ¢) = {kept(t — 1) Areceived(i, t) else
— lo(i,t,p) is
e attimet > 1 the result of progressing what was kepthly at timet — 1 and the received obligation at time

t with the current local event;(t);
e attimet = 0 the result of progressing the initial obligation, i.e., tiiebal specification with the current local
eventu;(0).
Formally:

- _ | P(p,ui(0), AP;) if t =0
lo(i,t,) = {P(kept(z,t 1) A received(i, t), u;(t), AP;) else

Now, we can clearly state the theorem:
Vt € N20y € LTL.Yi € [1,n].¥X p € ulo(i, t,¢). d < min(n, ¢ + 1)

Preliminaries to the proofLet us first start with some remarks. At step L3 in Algorithmtlhe local obligation of a
monitor M; is defined to bep! A /\je[LmL#i ©; Wherey; is an obligation received from monitd?; andy! is the

local obligation kept from time — 1 (if ¢ = 0, ¢! =). Let us note that the local obligation kept by the monitonir
timet — 1 to timet, with ¢ > 1, are not urgent. The result should thus be established onrgjemtlocal obligations
transmitted and rewritten by local monitors. More formathyjs is stated by the following lemma.

Lemma 5. According to Algorithm L, we have:
|M|
ulo(i,t,0) = | sus (P(received(i, t), ui(t), AP;))
J=1,j#i
Proof. First let us notice that the formulae kept by any monitéy at any timet are not urgent. Indeed, we have:
Vi € [1,n].Vt € N20,

sus(#) if 35 € [1,n]\ {i}. send(,t, j)

sus(kept (i, t)) = { lo(i,t — 1,¢)) if sus(lo(i,t —1,¢)) =0

s(
ThatisVi € [1,n].Vt > 0. sus(kept(i, t)) = 0. Thus,¥i € [1,n].Vt € N=.¥p € LTL.

ulo(2, ¢,)
= sus (P(received(i, t), u;(t), AP;))

P(/\‘fﬁ‘ i received(i, t,), ui(t), AP;)) (definition ofreceived(i, ., 7))

(/\J 1 ;i P (received(i, t) (), AP;)) (progression on events)

= UJ 1441 SuS (P(received(i, t), us(t), AP;)) (definition ofsus)

(
= sus (
(

= sus

22

Another last lemma will be needed before entering spedyidato the proof. This lemma states that if a past
oingationXdp is part of a progressed formula, then the past obligaﬁgﬁlp is part of its un-progressed form. More
formally, this is stated by the following lemma.

Lemma 6. Let us considetM = {M;,..., M, } where each monitod/; has a set of local atomic propositions
AP; = II,(AP) and observes the set of evefts we have:

Vi € [1,n].Vo € 5, ¥p € LTLYX" € sus (P(p, 0, AP;)). d > 1= X" 'p € sus(p)

Proof. Let us consides € X', X; C Y. The proof is done by a structural induction gre LTL.
Base Casep € {T, L,p' € AP}

— Casep = T. Inthis case, the proof s trivial sind®(T, o, AP;) = T andsus(T) = 0.

— Casep = 1. This case is similar to the previous one.

— Casep =p' € AP.Ifp' € AP;, thenP(p',0,AP;) € {T, L} andsus(P(p’, 0, AP;)) = 0. Else ¢/ ¢ AP;),
P(p',0,AP;) = Xp' andsus (P(p', o, APZ-)) = 0.

Induction Caseip € {—¢’, p1 V p2, 01 A <p2,Xd P, Gy, Fo' X' o1 Ups}. Our induction hypothesis states that
the result holds for some formulag, ¢1, ps € LTL.

— Casep = —¢'. On one hand, we have

sus (P(—¢',0,AP;)) = sus (=P(¢', 0, AP;))
=sus (P(¢', 0, AP;)).
On the other hand, we hawes(—¢’) = sus(¢’). Thus, by applying directly the induction hypothesis@nwe

obtain the expected result.
— Casep = ;1 V 2. On one hand, we have

sus (P(cpl V 2, 0, APZ-)) = sus (P(cpl, o, AP;)V P(p2,0, APi))
= sus (P(¢1,0, AP;)) Usus (P(p2,0,X)).

Thus,id € sus (P(gol A 2,0, APZ-)) implies that)_(dp € sus (P(cpl,a, APi)) Oridp € sus (P(gog, o, APi)).
On the other handus(p1 A p2) = sus(p1)Usus(p2). Hence, the result can be obtained by applying the induction

hypothesis on eithes; or ¢» depending on wheth& 'p € sus (P(¢1,0,AP;)) orX"p € sus (P(gog, 0, AP;)).
— Casep = x* p 'forsomed’ € Nandp’ € AP Oneone hand, ji' € AP;, thenitimplies thaP(X p', o, AP i) €
{T, J_} Else ¢’ ¢ AP;), we haveP(X p' o, AP;) = X7

(X' p}.
— Casep = Gy'. By definition of the progression rule f&@ and the definition ofus, we have

p’. On the other hand, we ha‘ms(X p)

sus (P(Gy',0,AP;))
=sus (P(¢',0,AP;) AN Gy)
=sus (P(¢, 0, AP;)).

Sincey’ is behind a future temporal operator, the only case whesé P(¢', o, AP;)) # 0 is wheny' is a

state-formula. In that case, we haYéip € sus (P(¢',0, AP;)) implies thatd = 1.
— Casesp € {F¢', X¢', p1Upy }. These cases are similar to the previous one.
O

Back to the proof of Theorem AWNe have to prove that for ai¥X' p € LTL, a local obligation of some monitor
M; € M, m < min(]M|,t+ 1) at any timet € N=9. We will suppose that there are at least two components in the
system (otherwise, the proof is trivial), i.€M| > 2. The proof is done by distinguishing three cases accorditiget
value oft € N=0,

23

First case: ¢t = 0. In this case, we shall prove that < 1. The proof is done by a structural induction grne LTL.
Recall that for this case, whete= 0, we havevi € [1,|M]]. 1o(i,0,¢) = P(p, u;(0), AP;).
Base casep € {T,L,pc AP}.

— Casep = T. Inthis case we havei € [1, |M]]. 10(:,0, T) = P(T,u;(0), AP;) = T. Moreovergus(T) = 0.
— Casep = 1. This case is symmetrical to the previous one.
— Casep = p € AP. We distinguish two caseg:c AP; andp ¢ AP;.If p € AP,, thenlo(i,0,p) € {T l}and

sus (lo(i,0,p)) = 0. Else p ¢ AP;), we haveo(i, 0, p) = Xp, andsus (lo(i,0,p)) = {Xp} = {X D}

Structural Induction Casep € {—¢', 01 V p2, 01 A p2, G’ Fo', X', 01 Ups }. Our induction hypothesis states
that the result holds for some formulaé o1, 2 € LTL.

— Casep = 1 V 2. We have:

1o(4,0, 1 V ¢2)

= P(p1V pa2,u;(0), AP;) (lo definition fort = 0)

= P(p1,u;(0), AP;) V P(p2,u;(0), AP;) (progression on events)

=10(4,0, 1) V1o(4,0, p2) (lo definition fort = 0)
sus (1o(i,0, 1 V ¢2))

—Sllb(0(2,0, 1) V lo(z, ,(pg))
= sus (lo(i,0, 1)) Usus (1o(,0,¢2)) (sus definition)

We can apply the induction hypothesis gnandyp, to obtain successively:

vt > N20vyp € LTL.VKmp € sus (1o(i,t, 301)). m <1
vt > N20vyp e LTL.VKmp € sus (1o(i,t, 302)). m <1
vt > N20Vp € LTL.YX 'p € sus (lo(i, t, 1)) Usus (lo(i,t,p2)). m < 1

— Casep = —¢'. We have:

lo(4,0, ~¢') = P(—¢’,u;(0), AP;) (lo definition)
= -P(¢’,u;(0), AP;) (progression on events)
sus (lo(,0, ~¢")) = sus (~P(¢/, ul(), AP;))
= sus (go ul 0), AP;)) (sus definition)
=sus (lo(4,0,¢’))

— Casep = X¢'. We have:

lo(4,0,X¢") = P(X¢',u;(0), AP;) (lo definition)
= ¢ (progression on events)
sus (lo(i,0, X¢")) = sus(¢’)

Sincey’ is behind a future temporal operator, we haug(¢') = 0.
— Casep = Gy'. We have:

lo(4,0, G¢’) = P(G¢',u;(0) APi) (lo definition)
= P(¢',u;(0), AP;) A Gy’ (progression on events)
=lo(4, 0, ’) A G(p (lo definition fory’)
sus (lo(i,0, G¢')) = sus (10(,0,¢") A G¢')
= sus (lo(i, O7 cp) Usus(G¢’) (sus definition)
= sus (1o(4,0,¢")) (sus(G¢') = 0)

— Casep = F¢'. This case is similar to the previous one.

24

— Casep = p1 Uyps. We have:

lo(4, 0, 91 Uepo)
(lo definition)
= P(p1Upa,u;(0), AP;)
(progression on events)
= P(p2,ui(0), AP;) V (P(p1,ui(0), AP;) A 1 Ups)
(lo definition fory; andys)
=10(4,0,¢2) V10(i,0,01) A 91U

sus (1o(i,0, 01 Ups))

= sus (lo(i, 0,¢1) V1o(,0,p2) A cplUgog)
(sus definition)

= sus (1o(4,0, p2)) Usus (lo(i,0,¢1)) Usus(¢1 Ups)
(sus(p1Upz = 0)

= sus (1o(4,0, p2)) Usus (1o(i,0, ¢1))

Fort > 1, the proof is done byeductio ad absurdurrLet us consider somee N and suppose that the theorem does
not hold at time. It means that:

Jp € LTL.3i € [1,|M[].3X%p € ulo(i, t,). d > min(|M|, ¢ + 1).

According to Lemma 5, sincelo(i, ¢, ¢) = U,‘j/;/tl‘,jqﬁi sus (P(received(i, t), u;(t))), it means thaBj; € [1,[M]]\
{i}.Xdp € sus (P(received(i, t, j1), u;(t), AP;)). Using Lemma 6, we hade_lp € sus(received(i, ¢, j1)). It
implies thatsend(j1, ¢ — 1,4) = true andM; = Mon (M, , Prop(ulo(j1,t — 1,¢))). We deduce that= min {;j €
[1, M\ {j1} | 3p € Prop(ulo(j,t — 1,¢)). p € AP; }. Moreover, fromXp € ulo(i, t,), we findp ¢ AP, with
i<,

We can apply the same reasoningiﬁ_lp to find thati < j; < ¢ andp ¢ II,,(AP). Following the same
reasoning and using Lemma 6, we can find a set of indgxes. ., jq} S.t.

{j17" '7jd} 2 [11 |M|]
AVj € {jl,...,jd}.p¢APj/\j S [1,|M|]

Moreover, due to the ordering between components, we knatwv'ih, ke € [1,d]. k1 < ko = ji, < Jk,-

Case0 < t < |M|. Inthis case we havé > t + 1, and thus, we havK" p € sus (lo(j¢, 0,)) with @ > 1 which is
a contradiction with the result shown for= 0.

Caset > |M|. Inthis caseyki, k2 € [1,d]. k1 < kg = ji, < jx, implies thatvjx, , jr, € {j1,...,Ja}- k1 # k2 =
ks 7 Jk,- Hence, we have ¢ JJ2, AP; O AP. This is impossible. O

Proof of Theorem 3We shall prove that the decentralised monitoring algoritersound, i.e., whenever the decen-
tralised monitoring algorithm yields a verdict for a giveade, then the corresponding centralized algorithm yiglds
same verdicts.

Some intermediate lemmaBefore proving the main result of this paper, we introduc@edntermediate lemmas.
The following lemma extends Lemma 1 to the decentralised,das, it states that the progression function mimics
LTL semantics in the decentralised case.

Lemma 7. Let p be anLTL formula,c € X an eventg; a local event observed by monitdf;, andw an infinite
trace, we have - w = ¢ & (0 - w)! | P(p,0:, X5).

25

Proof. We shall prove that:

Vi € [1,n]. Vo € LTL.Yo € X.Yo; € S;.N¥w € 5%
oc-wkEpe (0wl E P(p o, AP;).

The proof is done by induction on the formutac LTL. Notice that wherp is not an atomic proposition, the lemma
reduces to Lemma 1. Thus, we just need to treat the gcase € AP.
If o =p e AP. We haves - w = p & p € o. Let us considei € [1,n], according to the definition of the
progression function (1):
T if p € oy,
P(p,o;, AP))=<¢ L ifp¢o,Ape AP;,
Xp otherwise

Let us distinguish three cases.

— Suppose € g;. On one hand, we hayec o and therv - w |= p. On the other hand, we haw(p, o;, AP;) = T
and thusw E P(p,0;, AP;).

— Suppose ¢ o0; andp € AP;. One one hand, we hayee o, and, becausg € AP; we havep ¢ o; and thus
o - w £ p. On the other hand, we hav&(p, o;, AP;) = L.

— Suppose ¢ o; andp ¢ AP;, we have(o - w)! =Xp < ((o - u;)*l)1 EXp&o-wkp.
O

The following lemma states that “the satisfaction of an Lbriula” is propagated by the decentralised monitoring
algorithm.

Lemma 8.
vt € N20Vi € [1,n].Vp € LTL.Yw € X*.

inlo(i, t, @) # # = w | ¢ & w' [inlo(4,t,)
Proof. The proof is done by induction anc N=9.

— Fort = 0, the proof is trivial sinc&/i € [1,n].Vy € LTL. inlo(i, 0, ¢) = ¢ andw® = w.
— Let us consider somee N=° and suppose that the lemma holds. Let us consigell, n], we have:

inlo(i,t + 1, ¢) = kept(i, t) A received(1,t + 1).

Let us now distinguish four cases according to the commtinicaerformed by local monitors at the end of time
t, i.e., according teend(i, t) andsend(y, ¢, 4), for j € [1,n] \ {i}.
e If send(i,t) = false and3j € [1,n] \ {i}. send(j,¢,¢) = true. Then, we have:

inlo(i, t + 1,) = P(inlo(i,t,) A /\ inlo(j, £,), ui(t + 1),).
jedJ
whereVj € J. send(j,t,i) = true. Applying the definition of the progression function, we bav

inlo(,t+ 1,)
= P(inlo(i, t,), ui(t + 1), 2;) A /\jGJP(inlo(j,t, @), ui(t+1), ;).

Now, we have:
wit = inlo(i, t + 1,)
&

(w“‘l = P(inlo(i,t,), ui(t + 1), El))
/\(Vj € J.wt = P(inlo(j, £,), us(t + 1),2i))

26

With:
wt = P(inlo(i,t,), ui(t + 1), X;)

& (w)' | P(inlo(i,t, o), ui(t + 1), Xy) (W' = (w'))
& (w(t) - w*) = P(inlo(i,t, ¢),ui(t + 1), i) ((w')" = (w(t) - w™)h)
& wt Einlo(i, t, @) (Induction Hypothesis

And similarly:
Vj e J.w'th = P(inlo(j, ¢, ¢), ui(t + 1), ;) < w' [= inlo(j, t, @)
It follows that:

w'™ = inlo(i, t 4 1,) < w' | inlo(i, t, p) A /\ w' = inlo(4, ¢,).
JjEJ

And finally:
w'™™ = inlo(i, t 4 1, ¢) < w' = inlo(i,t,).

If send(i,t) = true and3j € [1,n] \ {¢}. send(4, ¢, i) = true. Then, we have:

inlo(i,t 4 1,¢) = P(# A Njesinlo(j, 2,), ui(t + 1), X5)
= P(/\jeJ inlo(j,t,), us(t + 1), ;)

whereVj € J. send(j,t,7) = true. The previous reasoning can be followed in the same manmdtéin the
expected result.
If send(i,t) = false andVj € [1,n]\ {i}. send(j,¢,4) = false. Then, we have:

inlo(i,t + 1,¢) = P(inlo(i, ¢,), u;(t + 1), X).

The previous reasoning can be followed in the exact same enanmmmbtain the expected result.
If send(i,t) = true andVj € [1,n] \ {i}. send(j, ¢, i) = true. Then, we have:

inlo(i,t +1,) = P(#,u;(t + 1), X;) = #

In this case, the result holds vacuously.
O

Back to the proof of Theorem 3The soundness of Algorithm L is now a straightforward consege of the two
previous lemmas (Lemmas 7 and 8). Indeed, let us considet ™ s.t.|u| = t. We haveu =p ¢ = T implies that
3 € [1,n]. lo(i,t,) = T and theninlo(i, ¢ + 1,) = T. Itimplies thatvw € X“. w = inlo(i,t + 1, ¢). Since
|u| = t, it follows thatVw € X%, (u-w)! = inlo(i, t + 1,). Applying Lemma 8, we havéw € X*. u-w = ¢, i.e.,
upEzp=T.

The proofforu Ep ¢ =T = u |E3 ¢ = T is similar. O

Proof of Theorem 4Let us first define some notations. Consiges LTL,u € X*,i € [1,|M]]:

— 1p(p, u) is the formulay where past sub-formulas are removed and replaced by trediragions using the trace
u. Formally:

rp(p, u, i) = match ¢ with
<d T if p e u(lul —d)
| Xp - {i otherwise
| 1 A2 = (1, u) ATp(p2,u)
| o1V @2 = 1p(p1,u) Vrp(p2, u)
| ~¢" = =rp(¢,u)
| - — ¢

27

— rp(y, u, 1) is the formulay where past sub-formulas are removed (if possible) and ceglay their evaluations
using only the sub-trace; of u.

rp(p,u, 1) = match ¢ with

T ifpeu(|ul —d

X = {L ifp¢u(lul—dandpe AP;
X’y otherwise

| 1 A\ w2 = 1p(p1,u,9) ATp(2, 1)

| ¢1 Vo2 = 1p(p1,u,%) V Ip(2, u,1)

| ¢’ — arp(¢’, u,)

| - -

The following lemma exhibits some straightforward projgsrbf the functionp.

Lemma 9. Let p be anLTL formula,u € X+t be a trace of lengtht + 1, i € [1,|M|] a monitor of one of the
componenty;(t) € X; the last event ofi on component, we have:

1. 1p (P((p, O'i,APi),u) =1p (P(rp((p, w(0) -+ u(t — 1)), O'i,APi),u);
2.1p (P((p,ai,APi),u) = P(p,u(t), AP);

3. P(p,u;(t),AP;) = P(rp(np,u(()) et —1),4), ui(t), APi);

4. Uga’Esus(ga) PI‘Op((p/) CAP; = rp(‘:@a u, Z) = rp((p, u)

5. For{i1,...,in} = [1,|M]]: tp(rp(. . . tp(p, 1, 11), . . .), U, in) = (0, u).

Proof. The proofs of these properties can be done by inductiop enLTL and follow directly from the definitions
of rp and the progression function. O

Lemma 10. Any current local obligation where past sub-formulas hagerbevaluated using the trace read so far is
equal to the initial obligation progressed with this samacte read so far. Formally:

Vu € Xt.Vi e [1,|M]].Vt € N*.
lul =t +1Alo(i,t,) # # = rp(lo(i, t,), u) = P(p,u).

Proof. We shall prove this lemma by induction ore N*. Let us consider some componédt wherei € [1, |M]].

— Fort = 0. Inthis case}u| = 1 and we havep(lo(i, 0,), u) = rp (P (¢, 0i, AP;)) whereo; = II(u(0)). We can
obtain the expected result by doing an inductioncos LTL where the only case interesting caseis p € AP.
According to the definition of the progression function, vesé:

T if p € oy,
P(p,oi, AP))=<¢ L ifp¢o,Ape AP,
Xp otherwise
Moreoverp € o; impliesp € u(0) andp ¢ o; withp € AP; impliesVj € [1,|M|]. p ¢ II;(u(0)), i.e.,p ¢ u(0).
On one hand, according to the definitionrpf we have:
wXpu) = { | 1 S0

Thus, we have:

rp (P(p, 03, AP;)) = {I :; g ; Zgggi

On the other hand, according to the definition of the progoedsinction, we have:
[T if pewu(0),
— Let us consider somee N* and suppose that the property holds. We have:
lo(i,t 4+ 1,¢) = P(kept(i, t) A received(i, t), u;(t + 1), AP;).

Similarly to the proof of Lemma 8, let us distinguish four easccording to the communication that occurred at
the end of time.

28

o If send(i,t) = false andVvj € [1, |M]] \ {i}. send(j,¢,i) = false. Then, we have:
lo(i,t +1,) = P(lo(i, tp), u;(t + 1), AP;)
Let us now computep(lo(é, ¢ + 1, %), u(0) - - - u(t + 1)):

rp(lo(é,t + 1,),u(0) - - u(t + 1)) = rp(P(lo(i, ¢,), u;(t + 1), AP;),u(0) - - - u(t + 1))
(Lemma 9, item 1)
= 1p(P(rp(lo(i, t,), w(0) - - - u(t)),u;(t + 1), AP;),u(0) - - - u(t + 1))
(induction hypothesis)
= rp(P(P(c;_?, w(0) - u(t)),u;(t+1), AP;),u(0) - --u(t + 1))
(Lemma 9, item 2)
= P(P(p,u(0)---u(t)),u(t+ 1), AP)
(P(p,u(0)---u(t)) is a future formula)
= P, u(0) - u(t +1))

o If send(i,t) = true and3j € [1,|M|] \ {¢}. send(j, ¢,7) = true. Then, we have:

lo(i(i,t+1,) = P(\ lo(j,), ui(t + 1), AP;)
jeJ

s.t.Vj € J. send(y,t,4) = true. Then:

rp(lo(é,t + 1,), u(0) - - -u(t + 1))

= rp(P(\\je s 10(j; 1), ui(t + 1), AP;),u(0) - - - u(t + 1))
(definition of the progression function)

=1p(\jes P(lo(j, tp), ui(t + 1), AP;),u(0) - - - u(t + 1))
(definition ofrp)

= Njes1p(P(lo(j,tp), ui(t + 1), AP;),u(0) - - - u(t + 1))
(Lemma 9, item 1)

= /\jGJ I'p(P(I’p(lO(j, t(p)a u(O) U ’U,(t)), ui(t + 1)a APi)a U(O) T u(t + 1))
(induction hypothesis)

= Njesp(P(P(e,u(0) - - u(t), ui(t + 1), AP;),u(0) - - -u(t + 1))
(Lemma 9, item 2)

= Njesp(P(@,u(0) - - u(t) - u(t + 1))
(P(p,u(0)---u(t+ 1)) is a future formula)

= Njes Ple,u(0)---u(t+1)) = P(e,u(0)---u(t+1))

o If send(i,t) = falseand3j € [1, |M]]\ {i}. send(j,¢,i) = true. Then, we have:

10(2.3 t+ 1a (p) = P(lO(Z, tv </7) A /\ieJlO(jvta (p)vul(t + 1)7APZ)
= P(lo(i,t, ©),u;(t+ 1), APi) A P(/\iEJ lo(4,t,), ui(t + 1), APZ-)

whereVj € J. send(j,¢,i) = true. The proof this case is just a combination of the proofs ofweprevious
cases.
o If send(7,t) = true andvj € [1,|M]]\ {i}. send(j,¢,4) = false. Then, we havelo(i,t + 1,¢) = #. The
result holds vacuously.
O

Back to the proof of Theorem 4he remainder of the proof consists intuitively in showihgttin a given architecture,
we can take successively two components and merge themdmaiot equivalent architecture in the sense that they
produce the same verdicts. The difference is that if in theged architecture a verdict is emitted, then, in the non-
merged architecture the same verdict will be produced withdditional delay.

29

Lemma 11. In a two-component architecture, if in the centralised caserdict is produced for some traeg then,
in the decentralised case, one of the monitor will produeestihime verdict. Formally:

Vo € LTLYu € X*. P(p,u) = T/L = Vo € ¥*.3i € [1,2]. lo(i, |u-al|,) = T/ L.

Proof. Let us consider a formula € LTL and a trace: € X" s.t.|u| = t. We shall only consider the case where
P(p,u) = T. The other case is symmetrical. Let us supposeltidt ¢, ») # T andlo(2,t,¢) # T (otherwise

the results holds immediately). Because of the correctoiete algorithm (Theorem 3), we know thiaf(1, ¢, ¢) #

1 andlo(2,t,¢) # L. Moreover, according to Lemma 10, we have necessarilyltfat¢, ©) andlo(2,t,) are
urgent formulas?’(lo(1,¢,¢)) > 0 and? (lo(2,t, %)) > 0. Since, there are only two components in the considered
architecture, we have),, ¢ s(10(1,1,0)) PTop(¢") © APz and U, cqus(io(a,1,0)) Prop(¢’) € AP1. According to
Algorithm L, we have themend(1,¢ — 1,2) = true andsend(2,t — 1,¢) = true. Theninlo(1,¢,¢) = lo(2,t —

1,0) AN # =1o(2,t — 1,¢). Hencelo(1,t,) = P(lo(2,t — 1,¢),u1(t), AP1). According to Lemma 9 item 4, we
havelo(1,t,) = P(rp(lo(2,t — 1,¢),u(0) - - - u(t), 1), u1(¢t), AP1). Since

U Prop(¢') C APy,
¢’ esus(lo(2,t,p))

we haverp (1o(2,t —1,¢),u(0) - - -u(t),1) = rp (1o(2,¢ — 1,¢),u(0) - - -u(t)). It follows that:

lo(1,t,¢) = P(xp(lo(2,t — 1,¢),u(0) - - - u(t)), u1(t), AP1)

= P(P(p,u(0) - u(t)) uy(t), APy) (Lemma 10)
:P(T’ul()aAPI)
Symmetrically, we can find thab(2,¢,) = T. O

Given two component§’; andCs with two monitors attached/; and M, observing respectively two partial traces
u1 andus of some global traca. The alphabets of'; andC, areX; and X5 respectively. Consider the architecture
C = {C4,Cy} with the set of monitorst = {M;, M>}. Let us define the new componemntrge(C1, Cs) that
produces events iV, U X5. To the componenterge(Cy, Cs) is attached a monita¥/ observing events in the same
alphabet. Now let us consider the architecitire= {merge(C1, C2)} which is a one-component architecture with the
set of monitors\’ = {merge(M;, M2)}.

We can parameterise the satisfaction relatioh @i, formula according to the considered architecture. Theiogla
l=p becomes=7' whereM is the considered architecture. The definition=g! is the same as the definition [efp
(Definition 6).

Lemma 12. For a monitoring architecture\! = { M, M} and the monitoring architectutdt’ = {merge(M;, M2)}
where monitors ofM have been merged, we have:

Vue Xt Vo e LTL.u =l o =T/L=>Voe Xt u-o =N o =T/L.

Proof. This is a direct consequence of Lemma 11 and Corollary 1.dddet’ is a one-component architecture, thus
u =" o =T/Limpliesu =3 ¢ = T/L,i.e., P(p,u) = T/L. Now, sinceM is a two-component architecture,
using Lemma 11, for alk € X, there exists € [1, |M|] s.t.lo(i, |u-o|,p) = T/L. Thatisu-oc =M ¢ = L/T. O

The following lemma relates verdict production imaomponent architecture and in the same architecture where
two components with the lowest priority have been merged.

Lemma 13. Let M be an-component architecture, with > 2 such that the priority between componentdis <
M, < ... < M,,i.e., M, and M, are the two components with the lowest pridtitiet us consider the architecture
= {merge(M;, Ms), M3, ..., M,}, then we have:

Vue Xt Vo e LTL.u =3 o =T/L=Voe X.u-0 =5'=T/L.

® Here, without loss of generality, we assume that monitove leeen sorted according to their index. If this hypothesisschot
hold initially, the indexes of components can be re-arrdregethat this hypothesis holds.

30

Proof. We give a proof for the case where the verdictTis(the other case is symmetrical). Let us considee

Xt p e LTLs.t.u |:/L‘,/‘/ ¢ = T.Letu be the smallest prefix af s.t. P(¢,v’) = T. From the theorem about the
maximal delay (Theorem 2, we have that — |u/| < (n — 1). Now each of the local obligations in the architecture
M’ will transit through at most. monitors following the ordering between components. Thain the worst case
(i.e., if a verdictis not produced before timg), any obligation will be progressed according to all comgus. More
precisely, each time a local obligation is progressed onescomponent’;, past obligations w.r.t. componefif are
removed (Lemma 9 - item 3). Using the compositionality-pfand the progression function on conjunction, in the
worst case the local obligation at time&| + n will be a conjunction of formulas of the form

P(
P(rp('"rp(rp(¢7u/7i)7u,7il)'" 7u/7in)7ui(|u,|)7APi)
7ui1(|u,| + 17AP’i1)7

uin (lu,| + n)7 APin)

wherey is a local obligation at timé/| and{i1, ...,i,} 2 [1,|M’|] (because of the ordering between components).
Now according to Lemma 9 - item 5:

I‘p(M rp(rp(% Ul, 'L)v ’LL/, 7’1) e aln) = I‘p((ﬂ, u/) =T.

Following the definition of the progression function for we have that necessarily, the resulting local obligation a
time|u'| +nisT. O

Lemma 14. Let M be an-component architecture, with > 2 such that the priority between componentdis <
M, < ... < M,. Letus consider the architectuyet’ = {merge(M,, merge(. .., merge(Ma, M;)}, then we have:

Vue XtVo e LTL.u =Y o =T/L=>Vu e X1 o/ | > n=u-u =M= T/L.
Proof. By an easy induction on the number of components merged usimgna 13. O

Back to the proof of Theorem Based on the previous results, we can easily show Theorem 4.

Proof. Let us consider an-component architectut®t = {M,..., M, }, atraceu € X+ and a formulap € LTL.
Let us suppose that =3 ¢ = T/L. As the alphabets of monitors are respectivEly . .. X~,, and each monitoi/;
is observing a sub-tracg of « where the hypothesis about alphabets partitionning meatian Section 2 holds, we
can consider the architectute’ = {merge(M,,, merge(. .., merge(Ms, M)} where there is a uniqgue monitdf
observing the same traee Now, sinceM’ is a one-component architecture, fram=; ¢ = T /L, by Corollary 1
we getu =p p = T/L. Using Lemma 13, we obtain thet’ € Y. u - v’ 3= T/L. O

31

