
A New Abstraction Framework
for Affine Transformers�

Tushar Sharma1 and Thomas Reps1,2 ��

1 University of Wisconsin; Madison, WI, USA
2 GrammaTech, Inc.; Ithaca, NY, USA

Abstract. This paper addresses the problem of abstracting a set of
affine transformers ÝÑv 1 � ÝÑv �C�

ÝÑ
d , where ÝÑv and ÝÑv 1 represent the pre-

state and post-state, respectively. We introduce a framework to harness
any base abstract domain B in an abstract domain of affine transfor-
mations. Abstract domains are usually used to define constraints on the
variables of a program. In this paper, however, abstract domain B is re-
purposed to constrain the elements of C and

ÝÑ
d —thereby defining a set of

affine transformers on program states. This framework facilitates intra-
and interprocedural analyses to obtain function and loop summaries, as
well as to prove program assertions.

1 Introduction

Most critical applications, such as airplane and rocket controllers, need correct-
ness guarantees. Usually these correctness guarantees can be described as safety
properties in the form of assertions. Verifying an assertion amounts to showing
that the assertion holds true for all possible runs of an application. Proving an
assertion is, in general, an undecidable problem. Nevertheless, there exist static-
analysis techniques that are able to verify automatically some kinds of program
assertions. One such technique is abstract interpretation [3], which soundly ab-
stracts the concrete executions of the program to elements in an abstract domain,
and checks the correctness guarantees using the abstraction.

In this paper, we provide analysis techniques to abstract the behavior of the
program as a set of affine transformations over bit-vectors. An affine transformer
is a relation on states, defined by ÝÑv 1 � ÝÑv � C �

ÝÑ
d , where ÝÑv 1 and ÝÑv are row

vectors that represent the post-transformation state and the pre-transformation
state, respectively. C is the linear component of the transformation and

ÝÑ
d is

a constant vector. For example, r x1 y1 s � r x y s
�
1 0
2 0

�
� r 10 0 s denotes the affine

� Supported, in part, by a gift from Rajiv and Ritu Batra; DARPA MUSE award
FA8750-14-2-0270 and DARPA STAC award FA8750-15-C-0082; and by the UW-
Madison Office of the Vice Chancellor for Research and Graduate Education with
funding from the Wisconsin Alumni Research Foundation. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the
authors, and do not necessarily reflect the views of the sponsoring agencies.

�� T. Reps has an ownership interest in GrammaTech, Inc., which has licensed elements
of the technology discussed in this publication.

2 Tushar Sharma and Thomas Reps

transformation px1 � x � 2y � 10 ^ y1 � 0q over variables tx, yu. We denote an
affine transformation by C :

ÝÑ
d . The paper is based on the following observation:

Observation 1 Abstract domains are usually used to define constraints on the
variables of a program. However, they can be re-purposed to constrain the ele-
ments of C :

ÝÑ
d —thereby defining a set of affine transformers on program states.

The need for abstraction over affine transformers. Abstractions of affine
transformers can be used to obtain affine-relation invariants at each program
point in the program [13]. An affine relation is a linear-equality constraint be-

tween numeric-valued variables of the form
n°
i�1

aivi � b � 0. For a given set of

variables tviu, affine-relation analysis (ARA) identifies affine relations that are
invariants of a program. The results of ARA can be used to determine a more
precise abstract value for a variable via semantic reduction [4], or detect the
relationship between program variables and loop-counter variables.

Furthermore, when the abstract-domain elements are abstractions of affine
transformers, abstract interpretation can be used to provide useful function sum-
maries or loop summaries [2, 19]. In principle, summaries can be computed offline
for large libraries of code so that client static analyses can use them to provide
verification results more efficiently.

Previous work [6] compared two abstract domains for affine-relation anal-
ysis over bitvectors: (i) an affine-closed abstraction of relations over program
variables (AG), and (ii) an affine-closed abstraction of affine transformers over
program variables (MOS). Müller-Olm and Seidl [14] introduced the MOS do-
main, whose elements are the affine-closed sets of affine transformers. An MOS
element can be represented by a set of square matrices. Each matrix T is an

affine transformer of the form T �
�
1
ÝÑ
d

0 C

�
, which represents the state transfor-

mation ÝÑv 1 :� ÝÑv �C�
ÝÑ
d , or, equivalently,

�
1|ÝÑv 1

�
:� r1|ÝÑv sT . In [6], the authors

observe that the MOS domain can encode two-vocabulary relations that are not
affine-closed even though the affine transformers themselves are affine closed.
(See §2.5 for an example.) Thus, moving the abstraction from affine relations
over program variables to affine relations over affine transformations possibly
offers some advantages because it allows some non-affine-closed sets to be rep-
resentable.

While the MOS domain is useful for finding affine-relation invariants in a
program, the join operation used at confluence points can lose precision in many
cases, leading to imprecise function summaries. Furthermore, the analysis does
not scale well as the number of variables in the vocabulary increases. In other
words, it has one baked-in performance-versus-precision aspect.

Problem Statement. Our goal is to generalize the ideas used in the MOS
domain—in particular, to have an abstraction of sets of affine transformers—but
to provide a way for a client of the abstract domain to have some control over
the performance/precision trade-off. Toward this end, we define a new family
of numerical abstract domains, denoted by ATArBs. (ATA stands for Affine-
Transformers Abstraction.) Following Obs. 1, ATArBs is parameterized by a

A New Abstraction Framework for Affine Transformers 3

base numerical abstract domain B, and allows one to represent a set of affine
transformers (or, alternatively, certain disjunctions of transition formulas).

Summary of the Approach. Let the pk�k2q-tuple pd1, d2, . . ., dk, c11, c12, . . .,

c1k, c21, c22, ..., ckkq denote the affine transformation
k�
j�1

�
v1j �

k°
i�1

pcijviq � dj

,

also written as “C :
ÝÑ
d .” The key idea is that we will use pk � k2q symbolic

constants to represent the pk�k2q coefficients in a transformation of the form C :
ÝÑ
d , and use a base abstract domain B—provided by a client of the framework—to
represent sets of possible values for these symbolic constants. In particular, B is
an abstract domain for which, for all b P B, γpbq is a set of pk�k2q-tuples—each
tuple of which provides values for tdiu Y tciju, and can thus be interpreted as

an affine transformation C :
ÝÑ
d .

With this approach, a given b P B represents the disjunction
�
tpC :

ÝÑ
d q P γpbqu. When B is a non-relational domain, each b P B constrains
the values of tdiu Y tciju independently. When B is a relational domain,
each b P B can impose intra-component constraints on the allowed tuples
pd1, d2, . . . , dk, c11, c12, . . . , c1k, c21, c22, . . . , ckkq.

ATArBs generalizes the MOS domain, in the sense that the MOS domain
is exactly ATArAGs, where AG is a relational abstract domain that captures
affine equalities of the form

°
i aiki � b, where ai, b P Z2w and Z2w is the set

of w-bit bitvectors [9, 6] (see §2.4). For instance, an element in ATArAGs can
capture the set of affine transformers “x1 � k1 � x � k1 � y � k2, where k1 is
odd, k2 is even, and k1 is the coefficient of both x and y.” On the other hand,

an element in the abstract domain ATArIpk�k
2q

Z2w
s, where Ipk�k

2q
Z2w

is the abstract

domain of pk� k2q-tuples of intervals over bitvectors, can capture a set of affine
transformers such as x1 � k3 � x� k4 � y � k5, where k3 P r0, 1s, k4 P r2, 2s, and
k5 P r0, 10s.

This paper addresses a wide variety of issues that arise in defining the ATArBs
framework, including describing the abstract-domain operations of ATArBs in
terms of the abstract-domain operations available in the base domain B.

Contributions. The overall contribution of our work is the framework ATArBs,
for which we present

– methods to perform basic abstract-domain operations, such as equality and
join.

– a method to perform abstract composition, which is needed to perform ab-
stract interpretation.

– a faster method to perform abstract composition when the base domain is
non-relational.

§2 introduces the terminology used in the paper; and presents some needed
background material. §3 demonstrates the framework with the help of an ex-
ample. §4 formally introduces the parameterized abstract domain ATArBs. §5
provides discussion and related work. Proofs are given in App. A, App. B, and
App. C.

4 Tushar Sharma and Thomas Reps

2 Preliminaries

All numeric values in this paper are integers in Z2w for some bit width w. That
is, values are w-bit machine integers with the standard operations for machine
addition and multiplication. Addition and multiplication in Z2w form a ring, not
a field, so some facets of standard linear algebra do not apply.

Throughout the paper, k is the size of the vocabulary V � tv1, v2, .., vku—
i.e., the variable-set under analysis. We use ÝÑv to denote the vector rv1v2..vks
of variables in vocabulary V . A two-vocabulary relation RrV ;V 1s is a transition
relation between values of variables in the pre-state vocabulary V and values
of variables in the post-state vocabulary V 1. For instance, a transition relation
RrV ;V 1s in the concrete collecting semantics is a subset of Zk2w � Zk2w (which is
isomorphic to Z2k

2w).
Matrix addition and multiplication are defined as usual, forming a matrix

ring. We denote the transpose of a matrix M by M t. A one-vocabulary matrix
is a matrix with k� 1 columns. A two-vocabulary matrix is a matrix with 2k� 1
columns. In each case, the “�1” is related to the fact that we capture affine rather
than linear relations. In denotes the n � n identity matrix. Given a matrix C,
we use Cri, js to refer to the entry at the i-th column and j-th row of C. Given
a vector

ÝÑ
d , we use

ÝÑ
d rjs to refer to the j-th entry in

ÝÑ
d .

2.1 Affine Programs

xBlocky :: l : pxStmty ;q� xNexty
xNexty :: jump l;

| jump xCondy ? l1 : l2
xCondy :: ? | xExpry Op xExpry
xOpy :: � | � | ¥ | ¤

xExpry :: c0 �
k°
i�1

ci � vi

xStmty :: vj :� xExpry
| vj :� ?

We borrow the notion of affine programs
from [14]. We restrict our affine programs to
consist of a single procedure. The statements
are restricted to either affine assignments or
non-deterministic assignments. The control-
flow instruction consists of either an uncon-
ditional jump statement, or a conditional
jump with an affine equality, an affine dis-
equality, an affine inequality, or unknown
guard condition.

2.2 Abstract-Domain Operations

The two important steps in abstract interpretation (AI) are:
1. Abstraction: The abstraction of the program is constructed using the ab-

stract domain and abstract semantics.
2. Fixpoint analysis: Fixpoint iteration is performed on the abstraction of the

program to identify invariants.
For the purpose of our analysis, the program is abstracted to a control-flow

graph, where each edge in the graph is labeled with an abstract transformer. An
abstract transformer is a two-vocabulary transition relation RrV ;V 1s. Concrete
states described by an abstract transformer are represented by row vectors of

A New Abstraction Framework for Affine Transformers 5

Table 1. Abstract-domain operations.

Type Operation Description Type Operation Description

A K bottom element A αpvj :�?q abstraction for
bool pa1 �� a2q equality nondeterministic assignments

A pa1 \ a2q join A αpvj :� c0 �
k°
i�1

cij � viq abstraction for

A pa1∇a2q widen affine assignments
A Id identity element A pa1 � a2q composition

length 2k. A (two-vocabulary) concrete state is sometimes called an assignment
to the variables of the pre-state and the post-state vocabulary.

Tab. 1 lists the abstract-domain operations needed to generate the program
abstraction and perform fixpoint analysis on it. Bottom, equality, and join are
standard abstract-domain operations. The widen operation is needed for do-
mains with infinite ascending chains to ensure termination. The two operations
of the form αpStmtq perform abstraction on an assignment statement Stmt to
generate an abstract transformer. Id is the identity element; which represents
the identity transformation p

�k
i�1 v

1
i � viq. Finally, the abstract-composition

operation a1 � a2 returns a sound overapproximation of the composition of the
abstract transformation a1 with the abstract transformation a2.

2.3 The Müller-Olm/Seidl Domain

An element in the Müller-Olm/Seidl domain (MOS) is an affine-closed set of
affine transformers, as detailed in [14]. An MOS element is represented by a set
of pk�1q-by-pk�1q matrices. Each matrix T is a one-vocabulary transformer of

the form T �
�
1 b
0 M

�
, which represents the state transformation ÝÑv 1 :� ÝÑv �M�b,

or, equivalently,
�
1|ÝÑv 1

�
:� r1|ÝÑv sT .

An MOS element M, consisting of a set of matrices, represents the

affine span of the set, denoted by 〈M〉. 〈M〉 is defined as follows: 〈M〉 def
�!

T
��� DÝÑu P Z|M|

2w : T �
°
MPM uMM ^ T1,1 � 1

)
. The meaning of M is the

union of the graphs of the affine transformers in 〈M〉. Thus, γMOS pMq
def
�

pÝÑv ,ÝÑv 1q
��ÝÑv ,ÝÑv 1 P Zk2w ^ DT P 〈M〉 : r1|vsT � r1|v1s

(
.

Example 1. If w � 4, the MOS element M �

"�
1 0 0
0 1 0
0 0 0

�
,

�
1 0 2
0 1 0
0 0 0

�*
represents the

affine span 〈M〉 �
"�

1 0 0
0 1 0
0 0 0

�
,

�
1 0 2
0 1 0
0 0 0

�
,

�
1 0 4
0 1 0
0 0 0

�
, . . . ,

�
1 0 12
0 1 0
0 0 0

�
,

�
1 0 14
0 1 0
0 0 0

�*
, which

corresponds to the transition relation in which v11 � v1, v2 can have any value,
and v12 can have any even value. l

Tab. 2 gives the abstract-domain operations for the MOS domain. The bot-
tom element of the MOS domain is the empty set H, and the MOS element that
represents the identity relation is the singleton set tIu. The equality check can be
done by checking if the span of the matrices in the two values is equal. [6] provides
an normal form for the MOS domain, which can be used to reduce the equality

6 Tushar Sharma and Thomas Reps

check to syntactic equality checks on the matrices in M1 and M2. The widening
operation is not needed for MOS because it is a finite-height lattice. The abstrac-

tion operation for the affine-assignment statement αpvj :� d0�
k°
i�1

cij � viq gives

back an MOS-element with a single matrix where every variable v P V � tvju
is left unchanged, and the variable vj is transformed to reflect the assignment
by updating the corresponding column in the matrix with the assignment coeffi-
cients. The abstraction operation for the non-deterministic assignment statement
αpvj :�?q gives back an MOS-element containing two matrices. Similar to the
abstraction for affine assignment operation, every variable v P V � vj is left
unchanged in both the matrices. vj is set to 0 in the first and and 1 in the
second matrix. The affine-closed set of these two matrices ensures that vj is
assigned to non-deterministically. The abstract-composition operation performs
multiplication for each pair of the matrices in M1 and M2.

Table 2. Abstract-domain operations for the MOS-domain.

Type Operation Description

A KMOS H
bool pM1 ��M2q 〈M1〉 �� 〈M2〉
A pM1 \M2q M1 YM2

A pa1∇a2q not applicable

A αpvj :� d0 �
k°
i�1

cij � viq

$''''&
''''%

�
�����
1 0 d0 0

0 Ij�1 rc1j , c2j , ...cpj�1qjs
t 0

0 0 cjj 0
0 0 rcpj�1qj , cpj�2qj , ...ckjs

t Ik�j

�
�����

,////.
////-

A αpvj :�?q

$''''&
''''%

�
�����
1 0 0 0

0 Ij�1 0 0
0 0 0 0
0 0 0 Ik�j

�
����� ,

�
�����
1 0 1 0

0 Ij�1 0 0
0 0 0 0
0 0 0 Ik�j

�
�����

,////.
////-

A Id tIk�1u
A pM1 �M2q tA2A1|Ai PMiu

2.4 The Affine-Generator Domain

An element in the Affine Generator domain (AGrÝÑv ;ÝÑv 1s) is a two-vocabulary
matrix whose rows are the affine generators of a two-vocabulary relation over
variables ÝÑv . An AGrÝÑv ;ÝÑv 1s element is an r-by-p2k� 1q matrix G, with 0 r ¤
2k � 1. The concretization of an AGrÝÑv ;ÝÑv 1s element is

γAG pGq
def
�

pÝÑv ,ÝÑv 1q | ÝÑv ,ÝÑv 1 P Zk2w ^

�
1|v v1

�
P rowG

(
.

The row space of a matrix G is defined by rowG
def
� tr | DÝÑu : ÝÑu G � ru.

The AGrÝÑv ;ÝÑv 1s domain captures all two-vocabulary affine spaces, and treats
them as relations between pre-states and post-states.

The bottom element of the AG domain is the empty matrix, and the

AGrÝÑv ;ÝÑv 1s element that represents the identity relation is the matrix
� 1 ÝÑv ÝÑv 1

1 0 0
1 I I

�
.

A New Abstraction Framework for Affine Transformers 7

The AGrtv1, v2u; tv
1
1, v

1
2us element

�
���

1 v1 v2 v11 v12
1 0 0 0 0
1 1 0 1 0
1 0 1 0 0
1 0 0 0 2

�
��� represents the transition rela-

tion in which v11 � v1, v2 can have any value, and v12 can have any even value.
To compute the join of two AG elements, stack the two matrices vertically

and get the canonical form of the result [6, §2.1].

2.5 Relating MOS and AG

There are two ways to relate the MOS and AG domains. One way is to use them
as abstractions of two-vocabulary relations and provide (approximate) inter-
conversion methods. The other is to use a variant of the AG domain to represent
the elements of the MOS domain exactly.

Comparison of MOS and AG elements as abstraction of two-
vocabulary relations. As shown in [6, §4.1], the MOS and AG domains are
incomparable: some relations are expressible in each domain that are not ex-
pressible in the other. Intuitively, the central difference is that MOS is a domain
of sets of functions, while AG is a domain of relations.

AG can capture 1-vocabulary guards on both the pre-state and post-state
vocabularies, while MOS can capture 1-vocabulary guards only on its post-state
vocabulary.

Example 2. For example, when k � 1, the AG element for “assume x � 2”

is
� 1 x x1

1 2 2
�
, i.e., “x � 2 ^ x1 � 2”. In contrast, there is no MOS element that

represents x � 2 ^ x1 � 2. The smallest MOS element that over-approximates

“assume x � 2” is the identity transformer
!�

1 0
0 1

�)
. [\

On the other hand, the MOS-domain can encode two-vocabulary relations
that are not affine-closed.

Example 3. One example is the matrix basis M �

"�
1 0 0
0 1 1
0 0 0

�
,

�
1 0 0
0 0 0
0 1 1

�*
. The set

that M encodes is

γMOS pMq �

$''&
''%
�
x y x1 y1

�
��������
Du0, u1 :

�
1 x y

� �� 1 0 0
0 u0 u0

0 u1 u1

�
� �

�
1 x1 y1

�

^ u0 � u1 � 1

,//.
//-

�
 �
x y x1 y1

� �� Du0 : x
1 � y

1 � u0x� p1� u0qy
(

�
 �
x y x1 y1

� �� Du0 : x
1 � y

1 � x� p1� u0qpy � xq
(

�
 �
x y x1 y1

� �� Dp : x1 � y
1 � x� ppy � xq

(
(1)

Affine spaces are closed under affine combinations of their elements. Thus,
γMOS pMq is not an affine space because some affine combinations of its elements
are not in γMOS pMq. For instance, let a �

�
1 �1 1 1

�
, b �

�
2 �2 6 6

�
, and c ��

0 0 �4 �4
�
. By Eqn. (1), we have a P γMOS pMq when p � 0 in Eqn. (1),

b P γMOS pMq when p � �1, and c R γMOS pMq (the equation “�4 � 0� pp0� 0q”

8 Tushar Sharma and Thomas Reps

has no solution for p). Moreover, 2a � b � c, so c is an affine combination of a
and b. Thus, γMOS pMq is not closed under affine combinations of its elements,
and so γMOS pMq is not an affine space. [\

Soundly converting an MOS element M to an overapproximating AG element
is equivalent to stating two-vocabulary affine constraints satisfied by M [6, §4.2]).

Reformulation of MOS elements as AG elements. An MOS element M �
tM1,M2, ...,Mnu represents the set of pk�1q�pk�1qmatrices in the affine closure
of the matrices in M . Each matrix can be thought of as a pk�1q�pk�1q vector,
and hence M can be represented by an AG element of size n�ppk�1q�pk�1qq.

Example 4. Tab. 3 shows the two ways MOS and AG elements can be related.
Column 1 shows the MOS element M from Ex. 3, which represents the set
of matrices in the affine closure of the two pk � 1q � pk � 1q matrices, with
k � 2. The second column gives the AG element A1 (a matrix with 2k � 1
columns) representing the affine-closed space over tx, y, x1, y1u satisfied by M .
Consequently, γAGpA1q � γMOSpMq. Column 3 shows the two matrices of M as
the 2 � ppk � 1q � pk � 1qq AG element A2. Because A2 is just a reformulation
of M , γAGpA2q � γMOSpMq. [\

Table 3. Example demonstrating two ways of relating MOS and AG.

MOS element Overapproximating Reformulation as abstraction
(M) AG element (A1) over affine transformers (A2)$''''&
''''%

�
�

1 x y

1 0 0
0 1 1
0 0 0

�
�,

�
�

1 x y

1 0 0
0 0 0
0 1 1

�
�
,////.
////-

� 1 x y x1 y1

1 0 0 0 0
1 0 0 1 1

� � 1 a01 a02 a10 a11 a12 a20 a21 a22

1 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 1

�

3 Overview

In this section, we motivate and illustrate the ATArBs framework, with the help
of several examples. The first two examples illustrate the following principle,
which restates Obs. 1 more formally:

Observation 2 Each affine transformation C :
ÝÑ
d in a set of affine transfor-

mations involves pk � 1q2 coefficients P Z2w : p1, d1, d2, . . . , dk, 0, c11, c12, . . . ,
0, c21, ...ckkq.

3 Thus, we may use any abstract domain whose elements concretize

to subsets of Zpk�1q2

2w as a method for representing a set of affine transformers.
[\

3 k of the coefficients are always 0, and one coefficient is always 1 (i.e., the first column
is always p1| 0 0 ... 0qt). For this reason, we really need only k � k2 elements, but
we will sometimes refer to pk � 1q2 elements for brevity.

A New Abstraction Framework for Affine Transformers 9

Example 5. The AG element A2 in column 3 of Tab. 3 illustrates how an AG
element with pk � 1q2 columns represents the same set of affine transformers
as the MOS element M shown in column 1. For instance, the first row of A2

represents the first matrix in M . [\

Example 6. Consider the element E � pr1, 1s, r0, 10s, r0, 0s, r0, 0s, r1, 1s, r2, 3s, r0, 0s, r0, 0s,

r1, 1sq of I9
Z2w

. E can be depicted more mnemonically as the following matrix:

�
�

1 x y

r1, 1s r0, 10s r0, 0s
r0, 0s r1, 1s r2, 3s
r0, 0s r0, 0s r1, 1s

�
�, where every element in E is an interval pIZ2w

q. E represents

the point set tpx1, y1, x, yq : Di1, i2 P Z2w : x1 � x� i1 ^ y1 � i2x� y ^ 0 ¤ i1 ¤
10^ 2 ¤ i2 ¤ 3u. [\

Examples 5 and 6 both exploit Observation 2, but use different abstract
domains. Ex. 5 uses the AG domain with pk � 1q2 columns, whereas Ex. 6 uses

the domain Ipk�1q2

Z2w
. In particular, an abstract-domain element in our framework

ATArBs is a set of affine transformations ÝÑv 1 � ÝÑv �C�
ÝÑ
d , such that the allowed

coefficients in the matrix C and the vector
ÝÑ
d are abstracted by a base abstract

domain B.

The remainder of this section shows how different instantiations of Observa-
tion 2 allow different properties of a program to be recovered.

Example 7. In this example, the variable r of function f is initialized to 0 and
conditionally incremented by 2x inside a loop with 10 iterations.

ENT: int f(int x) {
L0: int i = 0, r = 0;

L1: while(i <= 10) {
L2: if(*)

L3: r = r + 2*x;

L4: i = i + 1;

}
L5: return r;

}

The exact function summary for function
f , denoted by Sf , is pDk.r1 � 2kx ^ 0 ¤
k ¤ 10q. Note that Sf expresses two impor-
tant properties of the function: (i) the return
value r1 is an even multiple of x, and (ii) the
multiplicative factor is contained in an in-
terval.

[\

B � AG with pk � 1q2 columns: Fig. 1(a) shows the abstract transformers gen-

erated with the MOS domain.4 Each matrix of the form

�
1 d1 d2 d3
0 c11 c12 c13
0 c21 c22 c23
0 c31 c32 c33

�
represents

the state transformation px1 � d1 � c11x � c21i � c31rq ^ pi
1 � d2 � c12x � c22i �

c32rq ^ pr
1 � d3 � c13x� c23i� c33rq.

For instance, the abstract transformer for L3 Ñ L4 is an MOS-domain
element with a single matrix that represents the affine transformation: px1 �
xq ^ pi1 � iq ^ pr1 � 2x � rq. The edges absent from Fig. 1(a), e.g., L1 Ñ L2,
have the identity MOS-domain element.

4 We will continue to refer to the MOS domain directly, rather than “the instantiation
of Observation 2 with an AG element containing pk � 1q2 columns” (à la Ex. 5).

10 Tushar Sharma and Thomas Reps

Edge Transformer

L0 Ñ L1

$'&
'%

�
��
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

�
��
,/.
/-

L3 Ñ L4

$'&
'%

�
��
1 0 0 0
0 1 0 2
0 0 1 0
0 0 0 1

�
��
,/.
/-

L4 Ñ L1

$'&
'%

�
��
1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

�
��
,/.
/-

Iteration Node L1

(i)

$'&
'%

�
��
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

�
��
,/.
/-

(ii)

$'&
'%

�
��
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

�
�� ,

�
��
1 0 1 0
0 1 0 2
0 0 0 0
0 0 0 0

�
��
,/.
/-

(iii)

$'&
'%

�
��
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

�
�� ,

�
��
1 0 1 0
0 1 0 2
0 0 0 0
0 0 0 0

�
�� ,

�
��
1 0 2 0
0 1 0 4
0 0 0 0
0 0 0 0

�
��
,/.
/-

(a) (b)

Fig. 1. Abstract transformers and snapshots in the fixpoint analysis with the
MOS domain for Ex. 7.

To obtain function summaries, an iterative fixed-point computation needs
to be performed. An abstract-domain element a is a summary at some pro-
gram point L, if it describes a two-vocabulary transition relation that over-
approximates the (compound) transition relation from the beginning of the
function to program point L. Fig. 1(b) provides the iteration results for the
summary at the program point L1. After iteration (i), the result represents
px1 � xq ^ pi1 � 0q ^ pr1 � 0q. After iteration (ii), it adds the affine transformer
px1 � xq ^ pi1 � 1q ^ pr1 � 2xq to the summary. Quiescence is discovered on
the third iteration because the affine-closure of the three matrices is the same
as the affine-closure of the two matrices after the second iteration. As a result,
the function summary that MOS learns, denoted by SMOS, is Dk.r1 � 2kx, which
is an overapproximation of the exact function summary Sf . Imprecision occurs
because the MOS-domain is not able to represent inequality guards. Hence, the
summary captures the evenness property, but not the bounds property.

B � Ipk�1q2

Z2w
: By using different Bs, an analyzer will be able to recover different

properties of a program. Now consider what happens when the program above
is analyzed with ATArBs instantiated with the non-relational base domain of

environments of intervals pIpk�1q2

Z2w
q. The identity transformation for the abstract

domain ATArIpk�1q2

Z2w
s is

�
��
1 r0, 0s r0, 0s r0, 0s
0 r1, 1s r0, 0s r0, 0s
0 r0, 0s r1, 1s r0, 0s
0 r0, 0s r0, 0s r1, 1s

�
��. The bottom element for the abstract

domain ATArIpk�1q2

Z2w
s, denoted by K

ATArIpk�1q2

Z2w
s

is

�
����

1 KIZ2w
KIZ2w

KIZ2w
0 KIZ2w

KIZ2w
KIZ2w

0 KIZ2w
KIZ2w

KIZ2w
0 KIZ2w

KIZ2w
KIZ2w

�
����.5

5 The abstract domain Ipk�1q2

Z2w
is the product domain of pk � 1q2 interval domains,

that is, Ipk�1q2

Z2w
� IZ2w

� IZ2w
� . . . � IZ2w

. Ipk�1q2

Z2w
uses smash product to main-

tain a canonical representation for K
ATArIpk�1q2

Z2w
s
. Thus, if any of the coefficients

A New Abstraction Framework for Affine Transformers 11

Edge Transformer

L0 Ñ L1

�
��
1 r0, 0s r0, 0s r0, 0s
0 r1, 1s r0, 0s r0, 0s
0 r0, 0s r0, 0s r0, 0s
0 r0, 0s r0, 0s r0, 0s

�
��

L1 Ñ L2

�
��
1 r0, 0s r0, 10s r0, 0s
0 r1, 1s r0, 0s r0, 0s
0 r0, 0s r0, 0s r0, 0s
0 r0, 0s r0, 0s r1, 1s

�
��

L3 Ñ L4

�
��
1 r0, 0s r0, 0s r0, 0s
0 r1, 1s r0, 0s r2, 2s
0 r0, 0s r1, 1s r0, 0s
0 r0, 0s r0, 0s r1, 1s

�
��

L4 Ñ L1

�
��
1 r0, 0s r1, 1s r0, 0s
0 r1, 1s r0, 0s r0, 0s
0 r0, 0s r1, 1s r0, 0s
0 r0, 0s r0, 0s r1, 1s

�
��

Iteration Node L1

(i)

�
��
1 r0, 0s r0, 0s r0, 0s
0 r1, 1s r0, 0s r0, 0s
0 r0, 0s r0, 0s r0, 0s
0 r0, 0s r0, 0s r0, 0s

�
��

(ii)

�
��
1 r0, 0s r0, 1s r0, 0s
0 r1, 1s r0, 0s r0, 2s
0 r0, 0s r0, 0s r0, 0s
0 r0, 0s r0, 0s r0, 0s

�
��

... ...

(xi)

�
��
1 r0, 0s r0, 10s r0, 0s
0 r1, 1s r0, 0s r0, 20s
0 r0, 0s r0, 0s r0, 0s
0 r0, 0s r0, 0s r0, 0s

�
��

(a) (b)

Fig. 2. Abstract transformers and fixpoint analysis with the ATArIpk�1q2

Z2w
s do-

main for Ex. 7.

Fig. 2 shows the abstract transformers and the fixpoint analysis for the node

L1 with the ATArIpk�1q2

Z2w
s domain. One advantage of using intervals as the base

domain is that they can express inequalities. For instance, the abstract trans-
former for the edge L1 Ñ L2 specifies the transformation px1 � xq ^ p0 ¤ i1 ¤

10q ^ pr1 � rq. Consequently, the function summary that ATArIpk�1q2

Z2w
s learns,

denoted by S
ATArIpk�1q2

Z2w
s
, is r1 � r0, 20sx. This summary captures the bounds

property, but not the evenness property. Notice that, Sf � S
ATArIpk�1q2

Z2w
s
^SMOS.

Consider the instantiation of the ATA framework with strided-intervals over
bitvectors [15], denoted by SIpk�1q2

Z2w
. A strided interval represents a set of the

form tl, l � s, l � 2s, ..., l � pn � 1qsu. Here, l is the beginning of the interval, s

is the stride, and n is the interval size. Consequently, ATArSIpk�1q2

Z2w
s learns the

function summary Dk.r1 � kx ^ k � 2r0, 10s, which captures both the evenness
property and the bounds property. Note that a traditional (non-ATA-framework)
analysis based on the strided-interval domain alone would not be able to capture
the desired summary because the strided-interval domain is non-relational.

Widening concerns. In principle, abstract domains Ipk�1q2

Z2w
and SIpk�1q2

Z2w
do not

need widening operations because the lattice height is finite. However, the height
is exponential in the bitwidth w of the program variables, and thus in practice
we need widening operations to speed-up the fixpoint iteration. In the presence

of widening, neither ATArIpk�1q2

Z2w
s nor ATArSIpk�1q2

Z2w
s will be able to capture

the bounds property for Ex. 7, because they are missing relational information
between the loop counter i and the variable r. However, the reduced product

of ATArIpk�1q2

Z2w
s (or ATArSIpk�1q2

Z2w
s) and MOS can learn the exact function

summary.

in an abstract-domain element b P ATArIpk�1q2

Z2w
s is KIZ2w

, then b is smashed to
K

ATArIpk�1q2

Z2w
s
.

12 Tushar Sharma and Thomas Reps

4 Affine-Transformer-Abstraction Framework

In this section, we formally introduce the Affine-Transformer-Abstraction frame-
work (ATA) and describe abstract-domain operations for the framework. We also
discuss some specific instantiations.

ATArBs Definition. Let C be a k-by-k matrix: rcijs, where each cij is a symbolic

constant for the entry at i-th row and j-th column. Let
ÝÑ
d be a k-vector, rdis,

where each di is a symbolic constant for the i-th entry in the vector. As mentioned
in §1, an affine transformer, denoted by C :

ÝÑ
d , describes the relation ÝÑv 1 �

ÝÑv � C �
ÝÑ
d , where ÝÑv 1 and ÝÑv are row vectors of size k that represent the post-

transformation state and the pre-transformation state, respectively, on program
variables.

Given a base abstract domain B, the ATA framework generates a corre-
sponding abstract domain ATArBs whose elements represent a transition rela-
tion between the pre-state and the post-state program vocabulary. Each element
a P ATArBs is represented using an element basepaq P B, such that:

γpaq � tpÝÑv ,ÝÑv 1q| DpC :
ÝÑ
d q P γpbasepaqq : ÝÑv 1 � ÝÑv � C �

ÝÑ
d u.

4.1 Abstract-Domain Operations for ATArBs

In this subsection, we provide all the abstract-domain operations for ATArBs,
with the exception of abstract composition, which is discussed in §4.2.

In the ATArBs framework, the symbolic constants in the base domain B are
denoted by symbolspC:

ÝÑ
d q, where symbolspC:

ÝÑ
d q � pd1, d2, . . . , dn, c11, c12, . . . ,

c1k, c21, c22, . . . , c2k, . . . , ckkq is the tuple of k�k2 symbolic constants in the affine
transformation. Tab. 4 lists the abstract-domain interface for the base abstract
domain B needed to implement these operations for ATArBs. The first five op-
erations in the interface are standard abstract-domain operations. havocpb1, Sq
takes an element b1 and a subset S � symbolspC:

ÝÑ
d q of symbolic constants, and

returns an element without any constraints on the symbolic constants in S. The
last operation in Tab. 4 defines an abstraction for a concrete affine transformer
ct. A concrete affine transformer is a mapping from the symbolic constants in
the affine transformer to bitvectors of size w. We represent concrete state ct with

the pk� 1q � pk� 1q matrix:

�
�������

1 ctpd1q ctpd2q ... ctpdkq

0 ctpc11q ctpc12q ... ctpc1kq
0 ctpc21q ctpc22q ... ctpc2kq
...
0 ctpck1q ctpck2q ... ctpckkq

�
�������

, where ctpsq denotes the

concrete value in Z2w of symbol s in the concrete state ct.
Tab. 5 gives the abstract-domain operations for ATArBs in terms of the base

abstract-domain operations in B. The first operation is the K element, which is
simply defined as KB, the bottom element in the base domain. Similarly, equality,
join, and widen operations are defined as the equality, join, and widen operations
in the base domain. The equality operation is not the exact equality operation;

A New Abstraction Framework for Affine Transformers 13

Table 4. Base abstract-domain operations.

Type Operation Description

B K bottom element
B J top element
bool pb1 �� b2q equality
B pb1 \ b2q join
B pb1∇b2q widen
B havocpb1, Sq remove all constraints on symbolic constants in S
B αpctq abstraction for the concrete affine transformer ct,

where ct P symbolspC :
ÝÑ
d q Ñ Z2w

that is, pa1���a2q can return false, even if γpa1q � γpa2q. However, the equality
operation is sound; that is, when pa1���a2q returns true, then γpa1q � γpa2q.
The \̃ operation for the ATArBs is a quasi-join operation [7]. In other words,
the least upper bound does not necessarily exist for ATArBs, but a sound upper-
bound operation \̃ is available.

The abstraction operation for the affine-assignment statement αpvj :� d0 �
k°
i�1

cij � viq gives back an ATArBs-element with a single transformer where every

variable v P V �tvju is left unchanged and the variable vj is transformed to reflect
the assignment by updating the coefficients of the corresponding column. The
abstraction operation for the non-deterministic assignment statement αpvj :�?q
gives back an ATArBs-element, such that every variable v P V � tvju is left
unchanged but the symbolic constant corresponding to the coefficients in the
column j of the affine transformation can be any value. This operation is carried
out by performing havoc on the identity transformation with respect to the
set tdj , c1j , c2j , ..., ckju of symbolic constants. The identity transformation Id is
obtained by abstracting the concrete affine transformer ct that represents the
identity transformer. We provide proofs of soundness for these abstract-domain
operations in App. A.

Table 5. Abstract-domain operations for the ATArBs-domain.

Type Operation Description

A K KB
bool pa1���a2q pbasepa1q �� basepa2qq
A pa1\̃a2q pbasepa1q \ basepa2qq
A pa1∇a2q pbasepa1q∇basepa2qq

A αpvj :� dj �
k°
i�1

cij � viq α

�
�����

�
�����
1 0 dj 0

0 Ij�1 rc1j , c2j , ...cpj�1qjs
t 0

0 0 cjj 0
0 0 rcpj�1qj , cpj�2qj , ...ckjs

t Ik�j

�
�����

�
����

A αpvj :�?q havocpαpIk�1q, tdj , c1j , c2j , ..., ckjuq
A Id αpIk�1q

4.2 Abstract Composition

We have shown that all the abstract-domain operations for ATArBs can be im-
plemented in terms of abstract-domain operations in B, with the exception of

14 Tushar Sharma and Thomas Reps

abstract composition. Let us consider the composition of two abstract values
a, a1 P ATArBs, representing the two-vocabulary relations RrÝÑv ;ÝÑv 1s � γpaq and
R1rÝÑv 1;ÝÑv 2s � γpa1q. An abstract operation �7 is a sound abstract-composition
operation if, for all a2 � a1�7a, γpa2q � t pÝÑv ;ÝÑv 2q| DÝÑv 1.RrÝÑv ;ÝÑv 1s^R1rÝÑv 1;ÝÑv 2s u.
This condition translates to:

γpbasepa2qq �tpÝÑv ,ÝÑv 2q | DpC :
ÝÑ
d q P γpbasepaqq, pC 1 :

ÝÑ
d
1
q P γpbasepa1qq, (2)

pC2 :
ÝÑ
d
2
q : pÝÑv 2 � ÝÑv � C2 �

ÝÑ
d
2
q ^ pC2 � C � C 1q

^ p
ÝÑ
d
2
�
ÝÑ
d � C 1 �

ÝÑ
d
1
qu

The presence of the quadratic components C � C 1 and
ÝÑ
d � C 1 makes the

implementation of abstract composition non-trivial. One extremely expensive
method to implement abstract composition is to enumerate the set of all con-

crete transformers pC :
ÝÑ
d q P γpbasepaqq and pC 1 :

ÝÑ
d
1
q P γpbasepa1qq, perform

matrix multiplication for each pair of concrete transformers, and perform join
over all pairs of them. This approach is impractical because the set of all concrete
transformers in an abstract value can be very large.

First, we provide a general method to implement abstract composition. Then,
we provide methods for abstract composition when the base domain B has certain
properties, like non-relationality and weak convexity. The latter methods are
faster, but are only applicable to certain classes of base abstract domains.

General Case. We present a general method to perform abstract composition
by reducing it to the symbolic-abstraction problem. The symbolic abstraction
of a formula ϕ in logic L, denoted by pαpϕq, is the best value in B that over-
approximates the set of all concrete affine transformers pC :

ÝÑ
d q that satisfy

ϕ [16, 22]. For all b P B, the symbolic concretization of B, denoted by pγpbq, maps
b to a formula pγpbq P L such that b and pγpbq represent the same set of concrete
affine transformers (i.e., γpbq � rrpγpbqss). We expect the base domain B to pro-
vide the pγ operation. In our framework, there are slightly different variants ofpα and pγ according to which vocabulary of symbolic constants are involved. For
instance, we use pγ1 to denote symbolic concretization in terms of the primed

symbolic constants symbolspC 1 :
ÝÑ
d
1
q. Similarly, pα2 denotes symbolic abstrac-

tion in terms of the double-primed symbolic constants symbolspC2 :
ÝÑ
d
2
q. The

function dropPrimes shifts the vocabulary of symbolic constants by removing
the primes from the symbolic constants that an abstract value represents.

We use L � QF BV , i.e., quantifier-free bit-vector logic, to express abstract
composition symbolically as follows:

basepa2q � dropPrimes
�pα2pϕq�, where (3)

ϕ � pC2 � C � C 1q ^ p
ÝÑ
d
2
�
ÝÑ
d � C 1 �

ÝÑ
d
1
q

^ pγpbasepaqq ^ pγ1pbasepa1qq.
(Note that pγpbasepaqq and pγ1pbasepa1qq are formulas over symbolspC :

ÝÑ
d q and

symbolspC 1 :
ÝÑ
d
1
q respectively.) Past literature [16, 22, 6] provides various al-

gorithms to implement symbolic abstraction. Symbolic-abstraction methods are

A New Abstraction Framework for Affine Transformers 15

usually slow because they make repeated calls to an SMT solver. Specifically, the
symbolic-abstraction algorithms in [16, 22] require Oph2q calls to SMT , where
h2 is the height of the abstract-domain element — i.e., basepa2q in the lattice B.

Alg. 1 is a variant of the symbolic-abstraction algorithm from [16]. Alg. 1
needs a method to enumerate a generator set gs for each b P B. Such a set
can easily be obtained from the generator representation of B. For instance,
each row in an AG element is an affine transformer, and a generator set for
the AG element is the set of all rows in the AG matrix: the affine combination
of the rows generate the concrete affine transformers that the AG element (see
§2.4) represents. Note that the generator set for an abstract value b is usually
much smaller than the set of all affine transformers in b. For the AG domain,
the generating set is worst-case polynomial size, whereas the set of all affine
transformers is worst-case exponential in the number of variables k.

In Alg. 1, line 3 initializes the value lower to the product of each pair of

abstract transformers. The product t � t1, where t �
�
1
ÝÑ
d

0 C

�
and t1 �

�
1
ÝÑ
d
1

0 C1

�
is

�
1
ÝÑ
d � C1 �

ÝÑ
d
1

0 C � C1

�
. Because lower is initialized to tt� t1 | t P gs1, t

1 P gs2u rather than

K, the number of SMT calls in the symbolic abstraction is significantly reduced,
compared to the algorithm from [16]. The function GetModel, used at line 5,

returns the model M P symbolspC2 :
ÝÑ
d
2
q Ñ Z2w satisfying the formula pϕ ^

 pγplowerqq given to the SMT solver at line 4. Thus, the model M is a concrete
affine transformer in a2. The representation function β, used at line 6, maps
a singleton model M to the least value in B that overapproximates tMu [16].
While the SMT call at line 4 is satisfiable, the loop keeps improving the value of
lower by adding the satisfying model M to lower via the representation function
β and the join operation. When line 4 is unsatisfiable, the loop terminates and
returns lower. This method is sound because the unsatisfiable call proves that
ϕñ pγplowerq. The loop terminates when the height of the base domain B is
finite.

Algorithm 1 Abstract Composition via Symbolic Abstraction

1: gs1 Ð tt1, t2, ..., tl1u � where basepaq �
�l1

i�0 ti

2: gs2 Ð

t11, t

1
2, ..., t

1
l2

(
� where basepa1q �

�l2
i�0 t

1
i

3: lower Ð

t� t1 | t P gs1, t

1 P gs2
(

4: while r Ð SMTCallpϕ^ pγplowerqq is Sat do
5: M Ð GetModelprq
6: lower Ð lower\ βpMq

7: return lower

Non-relational base domains. In this section, we present a method to im-
plement abstract composition for ATArBs, when B is non-relational. We focus
on the non-relational case separately because it allows us to implement a sound
abstract-composition operation efficiently.

16 Tushar Sharma and Thomas Reps

Foundation domain. Each element in the non-relational domain B is a mapping
from symbols S to a subset of Z2w . We introduce the concept of a foundation
domain, denoted by FB, to represent the abstractions of subsets of Z2w in the
base abstract-domain elements. We can define a non-relational base domain in
terms of the foundation domain as follows: B def

� S Ñ FB. For instance, the non-

relational domain of intervals Ipk�1q2

Z2w
can be represented by S Ñ IZ2w

, where

IZ2w
represents the interval lattice over Z2w , and S is a set of pk� 1q2 symbolic

constants that represent the coefficients of an affine transformer.
A foundation domain F is a lattice whose elements concretize to subsets of

Z2w . Tab. 6 present the foundation-domain operations for F . Bottom, equality,
join, widen, and αpbvq are standard abstract-domain operations. The abstract
addition and multiplication operations provide a sound reinterpretation of the
collecting semantics of concrete addition and multiplication. For instance, with
the interval foundation domain, r0, 7s�7r�3, 17s � r�3, 24s and r0, 6s�7r�3, 3s �
r�18, 18s.

Table 6. Foundation-domain operations.

Type Operation Description Type Operation Description

F K empty set F αpbvq abstraction for the
bool pf1 �� f2q equality bitvector value bv P Z2w

F pf1 \ f2q join F pf1 �
7 f2q abstract addition

F pf1∇f2q widen F pf1 �
7 f2q abstract multiplication

Abstract composition for a non-relational domain is defined as follows:

a1 �NR a �
!
pÝÑv ,ÝÑv 1q|DpC :

ÝÑ
d q : pÝÑv 1 � ÝÑv � C �

ÝÑ
d q ^ b P psymbolspC :

ÝÑ
d q Ñ Fq (4)

^
� ©
1¤i,j¤k

p brcijs � Σ7

1¤l¤k
pbasepaqrcils �

7 basepa1qrcljsq
	

^
� ©
1¤j¤k

brdjs � Σ7

1¤l¤k
pbasepaqrdls �

7 basepa1qrcljsq �
7 basepa1qrdjs

)
.

The term brss, where b P B and s P symbolspC :
ÝÑ
d q, refers to the element

in the foundation domain f P FB, that corresponds to the symbol s. Σ7
1¤l¤k

is calculated by abstractly adding the k terms indexed by l. Abstract compo-
sition for a non-relational domain uses abstract addition and abstract multipli-
cation to soundly overapproximate the quadratic terms occurring in Eqn. (2).
We provide a proof of the soundness for a1 �NR a in App. B.1. The abstract-
composition operation requires Opk3q abstract-addition operations and Opk3q
abstract-multiplication operations.

Examples of foundation domains. We now present a few foundation domains
that allow to construct the non-relational small-set, interval [2], and strided-
interval [15] base domains.

Small sets. FSSn

def
� tJu Y tS|S � Z2w ^ |S| ¤ nu. The join operation is

defined by: pf1 \ f2q �

#
f1 Y f2 if |f1 Y fs| ¤ n

J otherwise

A New Abstraction Framework for Affine Transformers 17

n denotes the maximum cardinality allowed in the non-top elements of FSSn
.

Other abstract operators, including abstract addition and multiplication, are
implemented in a similar manner.

Intervals. FIZ2w

def
� tKu Y tra, bs| a, b P Z2w , a ¤ bu. Most abstract operations

are straightforward (See [2] for details). The abstract-addition and abstract-
multiplication operations need to be careful about overflows to preserve sound-
ness. For instance,

ra1, b1s �
7 ra2, b2s �

$'&'%
ra1 � a2, b1 � b2s if neither a1 � a2 nor b1 � b2

overflows

rmin,maxs otherwise

Strided Interval. FSIZ2w

def
� tKu Y tsra, bs | a, b, s P Z2w , a ¤ bu, where

γpsra, bsq � ti | a ¤ i ¤ b, i � apmod squ . (See [15, 18] for the details of
the abstract-domain operations.)

Affine-Closed Base Domain. We discuss the special case when the base
domain B is affine-closed, i.e., B � AG. The abstract composition is defined as:

a1 �AG a � a2, where basepa2q �
〈
ti � t

1
j | 1 ¤ i ¤ l, 1 ¤ j ¤ l1

(〉
^ (5)

basepaq � 〈tt1, t2, ...tlu〉^ basepa1q �
〈
t11, t

1
2, ...t

1
l1
(〉

Lemma 5.1 in [14] asserts that the above abstract composition method is
sound by linearity of affine-closed abstractions. The abstract composition has
time complexity Ophh1k3q, h (respectively h1) is the height of the abstract-
domain element basepaq (or basepa1q) in the AG lattice. Because the height of
the AG lattice with pk � 1q2 columns is Opk2q, the time complexity for the ab-
stract composition operation translates to Opk7q. Alg. 1 essentially implements
Eqn. (5), but makes an extra SMT call to ensure that the result is sound. Be-
cause Eqn. (5) is sound by linearity for the AG domain, the very first SMT call
in the while-loop condition at line 4 in Alg. 1 will be unsatisfiable.

Weakly-Convex Base Domain We present methods to perform abstract com-
position when the base domain B satisfies a property we call weak convexity. Base
domain B is weakly convex iff
– The abstraction of a single concrete affine transformer is exact: γpαptiqq =
ttiu.

– All abstract-domain elements b P B are contained in a convex space over
rationals: For any set of concrete affine transformers tt0, t1, ..., tlu, such that

b �
�l
i�0 ti, and any t P γpbq:

Dλ1, λ2, . . . , λl P Q.p0 ¤ λ1, λ2, ..., λl ¤ 1q ^
l

Σ
i�0
λi � 1^ castQptq �

l

Σ
i�0
λi castQptiq.

The castQ function is used to specify the convexity property by moving
the point space from bitvectors to rationals. For instance, the expression
Σl
i�0λi.castQptiq specifies the convex combination of the concrete affine

transformers mi in the rational space cast
pk�k2q
Q .

18 Tushar Sharma and Thomas Reps

Any convex abstract domain over rationals, such as polyhedra [5] or oc-
tagons [11], can be used to create a weakly-convex domain over bitvectors [21,
20]. Abstract composition for weakly-convex base domains is defined as follows:

a1 �WC a � a2, where basepa2q � (6)$'&'%

ti � t

1
j | 1 ¤ i ¤ l, 1 ¤ j ¤ l1

(
if there are no overflows in any

matrix multiplication ti � t
1
j

JB otherwise

where basepaq � tt1, t2, ..., tlu and basepa1q �

t11, t

1
2, ..., t

1
l1
(
.

The intuition is that the weak-convexity properties are preserved under ma-
trix multiplication in the absence of overflows. This principle is similar to the
linearity argument used to show that abstract composition is sound when the
base domain is affine-closed. (See above for more details.) We provide a proof
of the soundness for a1 �WC a in App. B.2. Similar to the affine-closed case, ab-
stract composition has time complexity OpH2k3q, where H is the height of the
B lattice.

Practical concerns. With the exception of the non-relational base domain, the
complexity of the abstract-composition algorithms is dependent on the height
of the abstract-domain elements involved in the composition, i.e., h and h1.
Practical implementations of abstract composition might decide to return J
for abstract composition if the number of matrices to multiply is beyond some
threshold, say t, so that the complexity of the abstract composition is Optk3q.

4.3 Merge Function

Knoop and Steffen [10] extended the Sharir and Pnueli [19] algorithm for in-
terprocedural dataflow analysis to handle local variables. Suppose at a call site
CS, procedure P calls procedure Q. The global variables, denoted by ÝÑg , are
accessible to Q, but the local variables, denoted by

ÝÑ
l , in P are inaccessible

to Q. Thus, the values of local variables after the call site CS come from the
values before the call point, and the values of global variables after the call site
CS come from the values at the return site in procedure Q. A merge function
is used to combine the abstract-domain element before the call to Q with the
abstract-domain element returned by Q to create the abstract-domain element
to use in P after the call to Q has finished.

We assume that in each function, the local variables are initialized to 0.
To simplify the discussion, assume that all scopes have the same number of
locals, and that each vocabulary ÝÑv consists of subvocabularies ÝÑg and

ÝÑ
l —

that is, ÝÑv � pÝÑg ,
ÝÑ
l q Suppose that we have two relations, RrÝÑg ,

ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
s

and R1rÝÑg ,
ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
s, each of which is a subset of Zk2w � Zk2w , where R is the

transition relation from the start state of the calling procedure P to the call site
CS, and R1 is the transition relation from the start state to the return site of
the called procedure Q. Operationally, after completing the call at the call site

A New Abstraction Framework for Affine Transformers 19

CS, we want MergepRrÝÑg ,
ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
s, R1rÝÑg ,

ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
sq to act as a modified

relational composition in which R1 acts like the identity function on locals, so

that
ÝÑ
l
1
values from R are passed through R1 unchanged to become the

ÝÑ
l
1
values

of the result. This semantics can be specified as follows:

MergepRrÝÑg ,
ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
s, R1rÝÑg ,

ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
sq (7)

� RevertLocalspR1rÝÑg ,
ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
sq � RrÝÑg ,

ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
s

We define RevertLocalspR1rÝÑg ,
ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
sq as follows:

RevertLocalspR1rÝÑg ,
ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
sq
def
� tpÝÑg ,ÝÑq ,ÝÑg 1,ÝÑq q | R1rÝÑg ,

ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
su
(8)

Recall that the k � k2 symbolic constants in an affine transformation,
symbolspC:

ÝÑ
d q, can be padded with a one and k zeroes and arranged as fol-

lows:
�
1
ÝÑ
d

0 C

�
. We can partition symbolspC:

ÝÑ
d q into globals and locals to write the

matrix as

�
����
1
ÝÑ
d g

ÝÑ
dl

0 Cgg Cgl

0 Clg Cll

�
����, which represents the affine transformation

pÝÑg 1 � ÝÑg � Cgg �
ÝÑ
l � Clg �

ÝÑ
dgq ^ p

ÝÑ
l
1
� ÝÑg � Cgl �

ÝÑ
l � Cll �

ÝÑ
dl q

Let a, a1 P ATArBs be the abstract transformers that represents the relations

RrÝÑg ,
ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
s and R1rÝÑg ,

ÝÑ
l ;ÝÑg 1,

ÝÑ
l
1
s, respectively. Then the merge function

for a1 and a2 is defined as follows:

Mergepa, a1q � a2, where (9)

basepa2q � pbg [havocpbasepIdq, gsymsqq � a

bg � havocpbasepa1q, lsymsq,

lsyms � symbolspCglq Y symbolspCllqY

symbolspdlq Y symbolspClgq

gsyms � symbolspCggq Y symbolspdgq

lsyms are the symbols in the affine transformation that involve local variables.
gsyms are the symbols in the affine transformation that are not in lsyms. The
expression bgi � pbg [havocpbasepIdq, gsymsqq transforms each affine trans-

former

�
����
1
ÝÑ
d g

ÝÑ
dl

0 Cgg Cgl

0 Clg Cll

�
����P γpbasepaqq to

�
����
1
ÝÑ
d g 0

0 Cgg 0
0 0 I

�
����. In this way, bgi ensures that the

modifications of the globals at the return point of Q are accounted for, while the
locals for P pass through Q unmodified. We provide the proof of soundness for
the merge-function definition (Eqn. (9)) in App. C.

5 Discussion and Related Work

The abstract-domain elements in our framework abstract two-vocabulary rela-
tionships arising between the pre-transformation state and post-transformation

20 Tushar Sharma and Thomas Reps

state. For the sake of simplicity, we assumed that the variable sets in the pre-
transformation and post-transformation state are the same, and an affine trans-
former is represented by a pk � 1q � pk � 1q matrix, where k is the number
of variables in the pre-transformation state. However, this requirement is not
mandatory. We can easily adapt our abstract-domain operations to work on
pk � 1q � pk1 � 1q matrices where k1 is the number of variables in the post-
transformation state.

The abstract-domain elements in our framework are not necessarily closed
under intersection. Consider the two abstract values a1 and a2 for the vocabulary
V � tv1u. Let a1 represent the affine transformation v11 � 0 and a2 represent
the identity affine transformation v11 � v1. Thus, a1 � αp

�
1 0

0 0

�
), and a2 �

αp
�

1 0

0 1

�
). The intersection of γpa1q and γpa2q is the point p � pv11 � 0, v1 � 0q.

There does not exist an abstract value in ATArBs, that can exactly represent
the point p, because any abstract value containing p must contain at least one
affine transformer of the form v11 � v1 � c, and thus must contain all points of
the form pv11 � t � c, v1 � tq, where t P Z2w . As a consequence, there does not
exist a Galois connection between ATArBs and the concrete domain C of all two-
vocabulary relations RrV ;V 1s, which implies that there does not exist a best
abstraction for a set of concrete points. For instance, consider the abstraction of

the guard statement SG � tv1 ¤ 10u, with the ATArIpk�1q2

Z2w
s domain. Consider

a3 =
�
1 r0, 10s
0 r0, 0s

�
and a4 =

�
1 r0, 0s
0 r1, 1s

�
. a3 specifies the guard constraint 0 ¤ v11 ¤ 10,

while a4 is the identity transformation v11 � v1. Note that these abstract values
are incomparable and can be used to represent the abstract transformer for SG.
Furthermore, a3 [a4 does not exist. Thus, an analysis has to settle for either
a3 or a4. (In §3, we used an abstract transformer similar to a3 for the guard in
the while statement in Ex. 7. Using an identity transfer for the guard statement
would not have been useful to capture the desired bounds constraint.)

The ATA constructor preserves finiteness; that is, if the base domain B is
finite, then the domain ATArBs is finite as well.

It is also possible to use the ATA constructor to infer affine transformations
over rationals or reals. In these cases, the symbolic-composition methods for
weakly-convex base domains (see §4.2) will carry over to affine transformations
over rationals or reals for convex base domains (e.g., polyhedra) with only slight
modifications. For instance. abstract composition for convex base domains over
rationals or reals is defined as follows:

a1 � a � a2, where basepa2q �

ti � t

1
j | 1 ¤ i ¤ l, 1 ¤ j ¤ l1

(
where basepaq � tt1, t2, ..., tlu and basepa1q �

t11, t

1
2, ..., t

1
l1
(
.

Chen et al. [1] devised the interval-polyhedra domain which can express con-
straints of the form Σkrak, bksxk ¤ c over rationals. Interval polyhedra are more
expressive than classic convex polyhedra, and thus can express certain non-
convex properties. Abstract-domain operations for interval polyhedra are con-
structed by linear programming and interval Fourier-Motzkin elimination. The

A New Abstraction Framework for Affine Transformers 21

domain has similarities to the ATArIpk�1q2

Z2w
s domain because the coefficients in

the abstract values are intervals.
Miné [12] introduced weakly relational domains, which are a parameterized

family of relational domains, parameterized by a non-relational base abstract
domain. They can express constraints of the form pvj � viq P F , where F is an
abstraction over PpZq. Similar to ATArBs, Miné’s framework requires the base
non-relational domain to provide abstract-addition and abstract-unary-minus
operations. These operations are used to propagate information between con-
straints via a closure operation that is similar to finding shortest paths.

Sankaranarayanan et al. [17] introduced a domain based on template con-
straint matrices (TCMs) that is less powerful than polyhedra, but more general
than intervals and octagons. Their analysis discovers linear-inequality invariants
using polyhedra with a predefined fixed shape. The predefined shape is given
by the client in the form of a template matrix. Our approach is similar because
an affine transformer with symbolic constants can be seen as a template. How-
ever, the approaches differ because Sankaranarayanan et al. use an LP solver to
find values for template parameters, whereas we use operations and values from
an abstract domain to find and represent a set of allowed values for template
parameters.

An abstract-domain element in ATArBs can be seen as an abstraction over
sets of functions: Zk2w Ñ Zk2w . Jeannet et al. [8] provide a theoretical treat-
ment of the relational abstraction of functions. They describing existing and new
methods of abstracting functions of signature: D1 Ñ D2, resulting in a family
of relational abstract domains. ATArBs is not captured by their framework of
functional abstractions.

References

1. L. Chen, A. Miné, J. Wang, and P. Cousot. Interval polyhedra: An abstract domain
to infer interval linear relationships. In SAS, 2009.

2. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proc. 2nd. Int. Symp on Programming, Paris, Apr. 1976.

3. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In POPL,
pages 238–252, 1977.

4. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL, 1979.

5. P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among
variables of a program. In POPL, 1978.

6. M. Elder, J. Lim, T. Sharma, T. Andersen, and T. Reps. Abstract domains of
affine relations. TOPLAS, 2014.

7. G. Gange, J. Navas, P. Schachte, H. Søndergaard, and P. Stuckey. Abstract inter-
pretation over non-lattice abstract domains. In SAS, 2013.

8. B. Jeannet, D. Gopan, and T. Reps. A relational abstraction for functions. In
SAS, 2005.

9. A. King and H. Søndergaard. Automatic abstraction for congruences. In VMCAI,
2010.

22 Tushar Sharma and Thomas Reps

10. J. Knoop and B. Steffen. The interprocedural coincidence theorem. In CC, 1992.
11. A. Miné. The octagon abstract domain. In WCRE, 2001.
12. A. Miné. A few graph-based relational numerical abstract domains. In SAS, 2002.
13. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-

bra. In POPL, 2004.
14. M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. TOPLAS, 29(5),

2007.
15. T. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from

low-level code. In Part. Eval. and Semantics-Based Prog. Manip., 2006.
16. T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer.

In VMCAI, 2004.
17. S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems

using mathematical programming. In VMCAI, 2005.
18. R. Sen and Y. Srikant. Executable analysis using abstract interpretation with

circular linear progressions. In MEMOCODE, 2007.
19. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.

In Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.
20. T. Sharma and T. Reps. Sound bit-precise numerical domains. In VMCAI, 2017.
21. A. Simon and A. King. Taming the wrapping of integer arithmetic. In SAS, 2007.
22. A. Thakur, M. Elder, and T. Reps. Bilateral algorithms for symbolic abstraction.

In SAS, 2012.

A New Abstraction Framework for Affine Transformers 23

A Soundness of the Abstract-Domain Operations

In this section, we show that the abstract-domain operations for the ATArBs
framework are sound with respect to the concrete semantics of the programming
language.

Lemma 1. The bottom element represents the empty set.

γpKq � H (10)

Proof.

γpKq � tpÝÑv ,ÝÑv 1q : ÝÑv 1 � ÝÑv � C �
ÝÑ
d ^ pC :

ÝÑ
d q P γpKBqu

ñ γpKq � tpÝÑv ,ÝÑv 1q : ÝÑv 1 � ÝÑv � C �
ÝÑ
d ^ pC :

ÝÑ
d q P Hqu

ñ γpKq � H

[\
Lemma 2. The equality operation is sound.

pa1���a2qñpγpa1q �� γpa2qq (11)

Proof. We will prove Lemma 2 by contradiction. Assume that a1���a2 but
γpa1q � γpa2q. Without loss of generality, we can assume that there exists
pÝÑv ,ÝÑv 1q such that:

pÝÑv ,ÝÑv 1q P γpbasepa1qq ^ pÝÑv ,ÝÑv
1q R γpbasepa2qq

ñ ÝÑv 1 � ÝÑv � C �
ÝÑ
d ^ pC :

ÝÑ
d q P γpbasepa1qq ^ pC :

ÝÑ
d q R γpbasepa2qq

ñ Db. b P γpbasepa1qq ^ b R γpbasepa2qq

ñ γpbasepa1qq � γpbasepa2q

ñ basepa1q � basepa2q (by soundness of equality on B)

ñ a1 � a2 (Contradiction!)

[\
Lemma 3. The join operation is sound.

γpa1\̃a2q � γpa1q Y γpa2q (12)

Proof. Assume that Lemma 3 is incorrect. Then there exists pÝÑv ,ÝÑv 1q R γpa1\̃a2q
such that:

pÝÑv ,ÝÑv 1q P γpa1q Y γpa2q

ñ ÝÑv 1 � ÝÑv � C �
ÝÑ
d ^ pC :

ÝÑ
d q P γpbasepa1qq

(Without loss of generality.)

ñ ÝÑv 1 � ÝÑv � C �
ÝÑ
d ^ pC :

ÝÑ
d q P γpbasepa1q \ basepa2qq

ñ pÝÑv ,ÝÑv 1q P γpa1\̃a2q (Contradiction!)

[\
The soundness of widening, statement abstractions, and identity function are

easy to prove, and follow similar reasoning.

24 Tushar Sharma and Thomas Reps

B Soundness of Abstract Composition

In this section, we show that the abstract-composition operations defined in §4.2
are sound. From Eqn. (2), an abstract composition a2e � a1 � a is exact iff:

γpa2eq � tp
ÝÑv ,ÝÑv 1q | DpC :

ÝÑ
d q P γpbasepaqq, pC 1 :

ÝÑ
d
1
q P γpbasepa1qq, pC2 :

ÝÑ
d
2
q :

pÝÑv 1 � ÝÑv � C2 �
ÝÑ
d
2
q ^ pC2 � C � C 1q ^ p

ÝÑ
d
2
�
ÝÑ
d � C 1 �

ÝÑ
d
1
qu

B.1 Non-Relational Base Domain

In this section, we show that the fast abstract composition for ATArBs (Eqn. (4)),
when B is non-relational, is sound. Remember that any non-relational domain

can be formulated as follows: B def
� symbolspC :

ÝÑ
d q Ñ FB. The term brss,

where b P B and s P symbolspC :
ÝÑ
d q, refers to the element in the foundation

domain f P FB corresponding to the symbol s.

Axiom 1 Abstract addition is sound for FB.

e1 P γpf1q ^ e2 P γpf2qñ e1 � e2 P γpf1 �
7 f2q (13)

Axiom 2 Abstract multiplication is sound for FB.

e1 P γpf1q ^ e2 P γpf2qñ e1 � e2 P γpf1 �
7 f2q (14)

Theorem 1.

γpa2eq � γpa1 �NR aq. (15)

Proof. We will prove Thm. 1 by contradiction. Consider a model m � pÝÑv ,ÝÑv 2q,
such that m P γpa2eq and m R γpa1 �NRaq. We will show that such a model cannot
exists.

m P γpa2eq

ô DpC :
ÝÑ
d q P γpbasepaqq, pC 1 :

ÝÑ
d
1
q P γpbasepa1qq, pC2 :

ÝÑ
d
2
q :

pÝÑv 1 � ÝÑv � C2 �
ÝÑ
d
2
q ^ pC2 � C � C 1q ^ p

ÝÑ
d
2
�
ÝÑ
d � C 1 �

ÝÑ
d
1
q

ô DpC :
ÝÑ
d q, pC 1 :

ÝÑ
d
1
q, pC2 :

ÝÑ
d
2
q : pÝÑv 1 � ÝÑv � C2 �

ÝÑ
d
2
q

^

� ©
1¤i,j¤k

pC2ri, js � Σ
1¤l¤k

pCri, ls � C 1rl, jsqq

�

^

� ©
1¤j¤k

p
ÝÑ
d
2
rjs � p Σ

1¤l¤k
p
ÝÑ
d rls � C 1rl, js1qq �

ÝÑ
d
1
rjsq

�

^

� ©
1¤i,j¤k

Cri, js P γpbasepaqrcijsq

�
^

� ©
1¤j¤k

ÝÑ
d rjs P γpbasepaqrdjsq

�

A New Abstraction Framework for Affine Transformers 25

^

� ©
1¤i,j¤k

C 1ri, js P γpbasepa1qrcijsq

�
^

� ©
1¤j¤k

ÝÑ
d
1
rjs P γpbasepa1qrdjsq

�
ñ DpC2 :

ÝÑ
d
2
q : pÝÑv 1 � ÝÑv � C2 �

ÝÑ
d
2
q

^

� ©
1¤i,j¤k

pC2ri, js P Σ7

1¤l¤k
pbasepaqrcils �

7 basepa1qrcl,jsqq

�

^

� ©
1¤j¤k

p
ÝÑ
d
2
rjs P Σ7

1¤l¤k
pbasepaqrdls �

7 basepa1qrcl,jsq �
7 basepa1qrdjsq

�
(by application of axioms 1 and 2 to the expressions

Σ
1¤l¤k

pCri, ls � C 1rl, jsq and Σ
1¤l¤k

p
ÝÑ
d rls � C 1rl, js1q �

ÝÑ
d
1
rjs)

ô DpC2 :
ÝÑ
d
2
q : pÝÑv 1 � ÝÑv � C2 �

ÝÑ
d
2
q ^ b P psymbolspC2 :

ÝÑ
d
2
q Ñ Fq

^

� ©
1¤i,j¤k

�
brc2ijs � Σ7

1¤l¤k
pbasepaqrcils �

7 basepa1qrcljsq

�

^

� ©
1¤j¤k

brd2j s � Σ7

1¤l¤k
pbasepaqrdls �

7 basepa1qrcljsq �
7 basepa1qrdjs

�
ô m P γpa1 �NR aq (by Eqn. (4))

[\

B.2 Weakly-Convex Base Domain

In this subsection, we present a proof of soundness of abstract composition for
weakly-convex base domains, denoted by a1 �WC a (Eqn. (6)).

We present some useful axioms and lemmas before presenting the soundness
theorem and its proof. Let minZ2w

and maxZ2w
be the minimum and maximum

bitvector values in Z2w . Let minQ � minZ2w
and maxQ � maxZ2w

.

Axiom 3 castQ is distributive over bitvector addition in the absence of over-
flows: that is, if minQ ¤ castQpbv1 � bv2q ¤ maxQ, where bv1, bv2 P Z2w , then

castQpbv1q � castQpbv2q � castQpbv1 � bv2q (16)

Axiom 4 castQ is distributive over bitvector multiplication in the absence of
overflows: that is, if minQ ¤ bv1 � bv2 ¤ maxQ, where bv1, bv2 P Z2w , then

castQpbv1q � castQpbv2q � castQpbv1 � bv2q (17)

Lemma 4. castQ is distributive over matrix multiplication for bitvectors, if
there are no overflows in the matrix multiplication. That is, for n � n matri-
ces M and M 1 where @1¤i,j¤nM ri, js,M

1ri, js P Z2w ,

castQpMq � castQpM
1q � castQpM �M 1q. (18)

26 Tushar Sharma and Thomas Reps

Proof. Let M2 � castQpMq � castQpM
1q. Then,

@1¤i,j¤n : M2ri, js � Σ1¤l¤ncastQpM ri, lsq � castQpM rl, jsq

ñ @1¤i,j¤n : M2ri, js � Σ1¤l¤ncastQpM ri, ls �M rl, jsq (by Axiom 4)

ñ @1¤i,j¤n : M2ri, js � castQpΣ1¤l¤nM ri, ls �M rl, jsq (by Axiom 3)

ñ castQpMq � castQpM
1q � castQpM �M 1q

[\

Lemma 5. A convex combination of a set of rationals is inside bitvector bound-
aries if each of the rational values in the set is inside bitvector boundaries. Given

any 1 ¤ λ1, λ2, . . . , λl ¤ 1, such that p
l

Σ
i�1
λi � 1q.

minQ ¤ q1, q2, � � � , ql ¤ maxQñminQ ¤
l

Σ
i�1
λiqi ¤ maxQ (19)

Proof. Suppose minQ ¡
l

Σ
i�1
λiqi.

minQ ¡
l

Σ
i�1
λiqi ñ pminQ ¡

l

Σ
i�1
λiminQq (because minQ ¤ q1, q2, � � � , ql)

ô minQ ¡
l

Σ
i�1
λiminQ ñ pminQ ¡ minQq (because p

l

Σ
i�1
λi � 1q.)

ô false

Consequently, minQ ¤
l

Σ
i�1
λiqi. The other inequality

l

Σ
i�1
λiqi ¤ maxQ can be

proved in a similar fashion. [\

Lemma 6. There are no overflows in a matrix multiplication of a convex com-
bination of matrices, if there are no overflows in the matrix multiplications of
the underlying matrices involved in the convex combination.

@1¤i¤l,1¤j¤l1 : pti � t
1
jq does not overflow ñ pt� t1q does not overflow, where�

castQ ptq �
l

Σ
i�1
λi castQptiq

^

l©
i�1

p1 ¤ λi ¤ 1q ^
l

Σ
i�1
λi � 1,

(20)

and,

�
castQ

�
t1
�
�

l1

Σ
j�1

λ1j castQpt
1
jq

^

l1©
j�1

p1 ¤ λ1j ¤ 1q ^
l1

Σ
j�1

λ1j � 1.

(21)

Proof. Because pti� t
1
jq does not overflow, we know that each entry in the com-

putation of the matrix multiplication does not overflow:

@1¤p,q¤o : minQ ¤ Σo
n�1castQptirp, nsq � castQpt

1
jrn, qsq ¤ maxQ (22)

A New Abstraction Framework for Affine Transformers 27

where ti and t1j are o� o matrices.

Suppose that l2 � l � l1 and
l2�
m�1

p1 ¤ pλ2m � λrm{l1s � λ
1
pm�1q%l1�1q ¤ 1q. Then,

l2

Σ
m�1

λ2m �
l1

Σ
i�1
λi �

l1

Σ
j�1

λ1j � 1 � 1 � 1. Then, by applying Lem. 5 to Eqn. (22), we

get for all 1 ¤ p, q ¤ o:

minQ ¤ Σl2

m�1λ
2
mpΣ

o
n�1castQptrm{lsrp, nsq � castQpt

1
m%l�1rn, qsqq ¤ maxQ

ô minQ ¤ Σl
i�1Σ

l1

j�1λiλ
1
jpΣ

o
n�1castQptirp, nsq � castQpt

1
jrn, qsqq ¤ maxQ

ô minQ ¤ pΣ
o
n�1pΣ

l
i�1λicastQptirp, nsqq � pΣ

l1

j�1λ
1
jcastQpt

1
jrn, qsqqq ¤ maxQ

(by distributivity of multiplication over addition for rationals)

ô minQ ¤ pΣ
o
n�1castQptrp, nsq � castQpt

1
jrn, qsqq ¤ maxQ

(by the definition of castQptq and castQpt
1q in Eqn. (20) and Eqn. (21))

Hence pt� t1q does not overflow. [\

Theorem 2.
γpa2eq � γpa1 �WC aq. (23)

Proof. Consider any model m � pÝÑv ,ÝÑv 2q, such that m P γpa2eq. To prove Thm. 1,
we need to show that m P γpa1 �WC aq. Eqn. (6) defines a2 � a1 �WC a as follows

basepa2q �

$'&'%

ti � t

1
j | 1 ¤ i ¤ l, 1 ¤ j ¤ l1

(
if there are no overflows in any

matrix multiplication ti � t
1
j

JB otherwise

where basepaq � tt1, t2, ..., tlu and basepa1q �

t11, t

1
2, ..., t

1
l1
(
. (24)

We know that for m � pÝÑv ,ÝÑv 1q,

DpC :
ÝÑ
d q P γpbasepaqq, pC 1 :

ÝÑ
d
1
q P γpbasepa1qq, pC2 :

ÝÑ
d
2
q : (25)

pÝÑv 1 � ÝÑv � C2 �
ÝÑ
d
2
q ^ pC2 � C � C 1q ^ p

ÝÑ
d
2
�
ÝÑ
d � C 1 �

ÝÑ
d
1
q.

By the properties of weakly-convex domains (see §4.2), we know that

castQ

��
1
ÝÑ
d

0 C

�	
�

l

Σ
i�1
λi castQptiq, for some λ1, λ2, . . . , λl P Q such that (26)

l©
i�1

p0 ¤ λi ¤ 1q ^ p
l

Σ
i�1
λi � 1q ^

l©
i�1

�
ti �

�
1
ÝÑ
d i

0 Ci

�	
, and

castQ

��
1
ÝÑ
d
1

0 C1

�	
�

l1

Σ
i�1
λ1i castQpt

1
iq, for some λ11, λ

1
2, . . . , λ

1
l P Q such that (27)

l1©
i�1

p0 ¤ λ1i ¤ 1q ^ p
l1

Σ
i�1
λ1i � 1q ^

l1©
i�1

�
t1i �

�
1
ÝÑ
d
1
i

0 C1
i

�	
.

To show that m P γpa1 �WC aq, we consider two cases.

28 Tushar Sharma and Thomas Reps

Overflows in matrix multiplication. If there is an overflow encountered in any
matrix multiplication ti�t

1
j , then basepa2q � JB and consequently, m P γpa1�WC

aq is true trivially.

No overflows in matrix multiplication. If there is no overflow encountered in any
of the matrix multiplications ti � t

1
j , then it suffices to prove that

pC2 :
ÝÑ
d
2
q P

l§
i�1

l1§
j�1

tti � t
1
ju. (28)

Eqn. (28) translates to proving that for some tλ21, λ
2
2, ..., λ

2
l2u:

pcastQ

��
1
ÝÑ
d
2

0 C2

�	
�

l2

Σ
i�1
λ2i castQpt

2
i qq, for some λ21, λ

2
2, . . . , λ

2
l2 P Q such that

(29)

l2©
i�1

p0 ¤ λ2i ¤ 1q ^ p
l2

Σ
i�1
λ2i � 1q ^

l2©
i�1

�
t2i �

�
1
ÝÑ
d
2
i

0 C2
i

�	
.

castQ

��
1
ÝÑ
d
2

0 C2

�	
� castQ

��
1
ÝÑ
d

0 C

�
�
�
1
ÝÑ
d
1

0 C1

�	
(by Eqn. (25))

� castQ

��
1
ÝÑ
d

0 C

�	
� castQ

��
1
ÝÑ
d
1

0 C1

�	
(by Lem. 6, because

�
1
ÝÑ
d

0 C

�
�
�
1
ÝÑ
d
1

0 C1

�
does not overflow)

�
l

Σ
i�1
λi castQptiq �

l1

Σ
j�1

λ1j castQpt
1
jq

(by Eqn. (26) and Eqn. (27).)

�
l

Σ
i�1

l1

Σ
j�1

λiλ
1
j castQptiq � castQpt

1
jq

(by distributivity of matrix multiplication over addition)

�
l

Σ
i�1

l1

Σ
j�1

λiλ
1
j castQpti � t

1
jq

(by Lem. 4)

�
l2

Σ
m�1

λ2m castQpt
2
mq

where l2 � l � l1,
l2�
m�1

p1 ¤ pλ2m � λrm{l1s � λ
1
pm�1q%l1�1q ¤ 1q, and

l2

Σ
m�1

λ2m �
l1

Σ
i�1
λi �

l1

Σ
j�1

λ1j � 1 � 1 � 1.

[\

A New Abstraction Framework for Affine Transformers 29

C Soundness of Merge Function

In this section, we show that the merge operation defined in §4.3 is sound. Recall
that the merge function is defined as:

Mergepa, a1q � a2, where (30)

basepa2q � pbg [havocpbasepIdq, gsymsqq � a

bg � havocpbasepa1q, lsymsq,

lsyms � symbolspCglq Y symbolspCllqY

symbolspdlq Y symbolspClgq

gsyms � symbolspCggq Y symbolspdgq

As mentioned in Eqn. (7), the exact merge-function semantics are specified as
follows:

Mergepγpaq, γpa1qq � RevertLocalspγpa1qq � γpaq (31)

Theorem 3.
Mergepγpaq, γpa1qq � γpMergepa, a1qq. (32)

Proof. We will prove Thm. 3 by contradiction. Consider a model m �

pÝÑgm,
ÝÑ
lm;ÝÑgm

1,
ÝÑ
lm

1
q, such that m P Mergepγpaq, γpa1qq and m R γpMergepa, a1qq.

Let aRevLocs P ATArBs be an abstract domain value such that

basepaRevLocsq � havocpbasepa1q, lsymsq [havocpbasepIdq, gsymsq (33)

By the soundness of abstract composition, existence of m implies existence of

n � pÝÑgn,
ÝÑ
ln ;ÝÑgn

1,
ÝÑ
ln

1
q, such that n P RevertLocalspγpa1qq and n R γpaRevLocsq.

We will show that n cannot exist. Consequently, m cannot exist, and thus merge
is sound.

n P RevertLocalspγpa1qq

ô pÝÑgn,
ÝÑ
ln ;ÝÑgn

1,
ÝÑ
ln

1
q P tpÝÑg ,ÝÑq ,ÝÑg 1,ÝÑq q | pÝÑg ,

ÝÑ
l ,ÝÑg 1,

ÝÑ
l
1
q P γpa1qu (by Eqn. (8))

ô D

��
Cgg Cgl
Clg Cll

�
: p
ÝÑ
dg,
ÝÑ
dl q

P γpbasepa1qq,

ÝÑ
l ,
ÝÑ
l
1
,ÝÑq :

pÝÑgn
1 � ÝÑgn � Cgg �

ÝÑ
l � Clg �

ÝÑ
dgq ^ p

ÝÑ
l
1
� ÝÑgn � Cgl �

ÝÑ
l � Cll �

ÝÑ
dl q,

^ p
ÝÑ
ln � ÝÑq q ^ p

ÝÑ
ln

1
� ÝÑq q ^ p

ÝÑ
l �

ÝÑ
0 q

(
ÝÑ
l are initialized to 0 in each function)

ô D

��
Cgg Cgl
Clg Cll

�
: p
ÝÑ
dg,
ÝÑ
dl q

P γpbasepa1qq :

pÝÑgn
1 � ÝÑgn � Cgg �

ÝÑ
dgq ^ p

ÝÑ
ln �

ÝÑ
ln

1
q

(by removing the existential variables
ÝÑ
l ,
ÝÑ
l ’ and ÝÑq)

ô D

��
Cgg Cgl
Clg Cll

�
: p
ÝÑ
dg,
ÝÑ
dl q

P γpbasepa1qq :

30 Tushar Sharma and Thomas Reps

havocp
�
1 ÝÑgn

ÝÑ
ln

���1
ÝÑ
dg

ÝÑ
dl

0 Cgg Cgl
0 0 Cll

�� � �
1 ÝÑgn

1 ÝÑln
1
�
, lsymsq ^ p

ÝÑ
ln

1
�
ÝÑ
ln q

(because pÝÑgn
1 � ÝÑgn � Cgg �

ÝÑ
dgq is the result of havoc on lsyms for

pÝÑgn
1 � ÝÑgn � Cgg �

ÝÑ
dgq ^ p

ÝÑ
ln

1
� ÝÑgn � Cgl �

ÝÑ
ln � Cll �

ÝÑ
dl q)

ô D

��
Cgg Cgl
Clg Cll

�
: p
ÝÑ
dg,
ÝÑ
dl q

P γpbasepa1qq :

havocp
�
1 ÝÑgn

ÝÑ
ln

���1
ÝÑ
dg

ÝÑ
dl

0 Cgg Cgl
0 Cgl Cll

�� � �
1 ÝÑgn

1 ÝÑln
1
�
, lsymsq ^ p

ÝÑ
ln

1
�
ÝÑ
ln q

(because
ÝÑ
ln are initialized to zero)

ô D

��
Cgg Cgl
Clg Cll

�
: p
ÝÑ
dg,
ÝÑ
dl q

P γpbasepa1qq :

havocp
�
1 ÝÑgn

ÝÑ
ln

���1
ÝÑ
dg

ÝÑ
dl

0 Cgg Cgl
0 Cgl Cll

�� � �
1 ÝÑgn

1 ÝÑln
1
�
, lsymsq^

havocp
�
1 ÝÑgn

ÝÑ
ln

���1 0 0
0 I 0
0 0 I

�� � �
1 ÝÑgn

1 ÝÑln
1
�
, gsymsq

(because havoc of gsyms on the identity transformation yields
ÝÑ
ln

1
�
ÝÑ
ln)

ô

�
D

��
Cgg Cgl
Clg Cll

�
: p
ÝÑ
dg,
ÝÑ
dl q

P γphavocpbasepa1q, lsymsqq :

�
1 ÝÑgn

ÝÑ
ln

���1
ÝÑ
dg

ÝÑ
dl

0 Cgg Cgl
0 Cgl Cll

�� � �
1 ÝÑgn

1 ÝÑln
1
��©

�
D

��
Cgg Cgl
Clg Cll

�
: p
ÝÑ
dg,
ÝÑ
dl q

P γphavocpbasepIdq, gsymsqq :

�
1 ÝÑgn

ÝÑ
ln

���1
ÝÑ
dg

ÝÑ
dl

0 Cgg Cgl
0 Cgl Cll

�� � �
1 ÝÑgn

1 ÝÑln
1
��

ô pÝÑgn,
ÝÑ
ln ,ÝÑgn

1,
ÝÑ
ln

1
q P γpaRevLocsq

ô Model pÝÑgn,
ÝÑ
ln ,ÝÑgn

1,
ÝÑ
ln

1
q does not exist.

ñ Model pÝÑgm,
ÝÑ
lm,ÝÑgm

1,
ÝÑ
lm

1
q does not exist. (Contradiction.)

(by soundness of abstract composition)

If the abstract composition operation is exact, then the implication in the last
step of the proof becomes biconditional. Thus, if abstract composition is exact
then the merge operation is exact. [\

