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Abstract
Algorithms for the synchronisation of clocks across networks are both common and impor-
tant within distributed systems. We here address not only the formal modelling of these
algorithms, but also the formal verification of their behaviour. Of particular importance is
the strong link between the very different levels of abstraction at which the algorithms may
be verified. Our contribution is primarily the formalisation of this connection between indi-
vidual models and population-based models, and the subsequent verification that is then
possible. While the technique is applicable across a range of synchronisation algorithms,
we particularly focus on the synchronisation of (biologically-inspired) pulse-coupled oscil-
lators, a widely used approach in practical distributed systems. For this application domain,
different levels of abstraction are crucial: models based on the behaviour of an individ-
ual process are able to capture the details of distinguished nodes in possibly heterogenous
networks, where each node may exhibit different behaviour. On the other hand, collective
models assume homogeneous sets of processes, and allow the behaviour of the network to
be analysed at the global level. System-wide parameters may be easily adjusted, for example
environmental factors inhibiting the reliability of the shared communication medium. This
work provides a formal bridge across the “abstraction gap” separating the individual models
and the population-based models for this important class of synchronisation algorithms.

Keywords Synchronisation · Pulse-coupled oscillators · Abstraction · Probabilistic
verification · Weak bisimulation

1 Introduction

Small computing devices comprising networks, be it commercial wireless sensor networks,
or communicating devices in the Internet of Things, are becoming increasingly common.
However, to enable these devices to communicate efficiently, they have to employmethods to
use the shared communication mediumwhile avoiding conflicting messages on this medium,
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in particular in the form of collisions. Collisions occur if two or more devices simultaneously
try to access the communicationmedium, and often result in neither message being delivered.
Several protocols to organise sharedmediumaccess have been developed and analysed [1,51].
These protocols typically identify a common time frame and divide this frame into slots
associated to each node. Thus every node has an allocated time slot that it may use to send
its messages onto the shared medium.

Such an approach introduces the need for a common clock between the nodes, i.e., they
need to synchronise. A valuable approach to achieve synchrony of nodes is the implemen-
tation of biologically-inspired pulse-coupled oscillators (PCOs) [38]. A network of PCOs
synchronises in the followingway: all oscillators have a similar clock cycle at the end ofwhich
they fire. That is, they transmit a broadcast message which is received by all oscillators in
their communication range. These oscillators then adjust their own positionwithin their clock
cycle according to a phase response function. Depending on the concrete implementation,
they may move their current position within the clock cycle closer to its end, or closer to its
start.

Most analyses of the synchronisation behaviour of PCOs are concerned with continouous
clock cycles, i.e., where clocks take real values from the interval [0, 1]. However, the smaller
devices get, the more important it is to save memory and computing time for such a low-level
functionality. Even a floating point number may need too much memory, compared to an
implementation with, for example, a four-bit vector. Hence, in previous work, we chose to
analyse the behaviour of discrete time PCOs [24].

In contrast to continuous time PCOs, networks of discrete time PCOs are not always
guaranteed to synchronise. Instead, whether they synchronise or not depends on the type of
coupling between the oscillators and their common phase-response function. We analysed
the behaviour of such networks for different parameters via model-checking, to check both
qualitatively for which parameters the networks synchronise, as well as quantitatively for
how long they need to achieve a synchronised state and how much energy is used to achieve
this [25]. In the context of large numbers of single oscillators, for example in the context
of wireless sensor networks, the well-known state-space explosion problem of the model-
checking approach is extremely important [14]. We formalised a network of oscillators as
population models [20] which exploit the behavioural homogeneity of the nodes to encode
the global state efficiently. This allows the network size to be increased above what would
be feasible when distinguishing each node, with the restriction that only fully-connected
networks, where all sensors can communicate with all other sensors, can bemodelled. But the
construction of a populationmodel froma given oscillator specification is not straightforward,
and in particular, it is not obvious whether the constructed populationmodel correctly reflects
the behaviour of the oscillators. This results in an ‘abstraction gap’: after abstracting into
populations, how can we be sure that the abstraction process was correct and that the results
of verification of population models actually hold for the concrete models on which they are
based?

In this paper, we remedy this lack of certainty, by proving the correspondence of our
population model with an explicit formalisation of the oscillators. To that end, we present
the concrete oscillator model as well as its formalisation as a discrete-time Markov chain.
Subsequently we describe the corresponding population model, and show how we can, in
addition to the abstraction created by the populations, reduce the state space even further
to facilitate the analysis. Finally, we prove that the behaviour of a network of concrete
oscillators and the population model are probabilistically weakly bisimilar. We cannot prove
a one-to-one correspondence, since the concrete model implicitly includes the possibility of
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identifying individual oscillators, which is exactly what the population model abstracts from.
In particular, our contributions are:

– the definition of a model for fully-connected networks of pulse-coupled oscillators
(Sect. 4),

– the detailed definition of a population model (Sect. 5), based on previous work [24,25],
– a way of reducing the size of the formal population models (Sect. 5.5),
– a proof that these two models are probabilistic weak-bisimilar (Theorem 3), and
– an evaluation of synchronisation behaviour using probabilistic model-checking (Sect. 7).

The paper is structured as follows. In Sect. 2, we review a selection of related work,
both for models of pulse-coupled oscillators, as well as approaches for their verification.
After an introduction of preliminary notions in Sect. 3, we present the concrete model of
single oscillators as a discrete-time Markov chain in Sect. 4. The abstract model in terms of
population models and proofs about their properties are contained in Sect. 5. In Sect. 6, we
prove the correspondence between the two types of models. The experimental evaluation of
synchronisation behaviour is presented in Sects. 7, and 8 concludes the paper.

2 Related work

The canonical model of pulse-coupled oscillators, and their synchronisation, was formulated
by Mirollo and Strogatz [38], and based on Peskin’s model of a cardiac pacemaker [43].
Here the progression of an oscillator through its oscillation cycle is given by a real value in
the interval [0, 1]. Mirollo and Strogatz proved that with a convex phase response function,
a network of mutually coupled oscillators always converges, i.e., their position within the
oscillation cycle eventually coincides. Such a model has been shown to be applicable to the
clock synchronisation of wireless sensor nodes [47] and swarms of robots [41].

Synchronisation algorithms based on pulse-coupled oscillators are often beneficial in unre-
liable, decentralised networks, where other synchronisation algorithms are not appropriate.
For example, the Flooding Time Synchronisation Protocol (FTSP) [36] requires the use of an
arbitrary root node. In situations where the root becomes unavailable due to communication
failure or power outage, FTSP will have to assign another root node. When implemented on
unreliable, decentralised networks, FTSP may spend considerable resources on repeatedly
assigning root nodes, which may slow down or prevent synchronisation [11]. Other algo-
rithms such as the Berkeley algorithm [26] and Cristian’s algorithm [16] require the use of
centralised time servers, which is problematic for unreliable, decentralised networks.

Several decentralised network algorithms for synchronisation are based on pulse-coupled
oscillators [47,50]. For example, the Gradient Time Synchronisation Protocol (GTSP) by
Sommer and Wattenhofer [46] achieves synchronisation by having nodes send their current
clock value to their neighbours. Each node then calculates the average of the clock values
received and its own clock value. This process is then repeated to maintain synchronisation.
Another approach to synchronisation, the Pulse-Coupled Oscillator Protocol [39], makes
use of refractory periods after sending messages containing time information. During the
refractory period, no more messages are sent, which reduces network bandwidth and energy
usage. A similar approach is used in the FiGo protocol [11], which combines biologically
inspired synchronisation with information distribution via gossiping. All of these approaches
use different phase response functions.

In general, synchronisation algorithms based on PCOs are more robust for unreliable
networks, as they do not require centralised nodes and can work with only partial network
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connectivity [11]. They are particularly useful for battery-powered nodes in wireless net-
works, as the node can be placed in a low-power mode during the refractory period, thus
reducing energy usage. (The clock keeps ticking even in low-power mode, thanks to the
design of microcontrollers such as the ‘Atmel ATmega128L’ [6].)

Synchronisation of clocks for networks of nodes has been investigated from different
perspectives. Heidarian et al. [29] analysed the behaviour of a synchronisation protocol based
on time allocation slots for up to four nodes and different topologies, from fully connected
networks to line topologies. They modelled the protocol as timed automata [3], and used the
model-checker UPPAAL [10] to examine its worst-case behaviour. Their model is based on
continuous time, and in particular, they did not model pulse-coupled oscillators.

Bartocci et al. [8] described pulse-coupled oscillators as extended timed automata with
suitable semantics to model their peculiarities. They defined a dedicated logic to analyse the
behaviour of a network of such automata along traces, and used a pacemaker as a case study
to verify the eventual synchronisation and the time needed to achieve this.

Our models and methods are different from all of these approaches. A key difference in
our work from that of others analysing PCOs is that we define the oscillation cycle to consist
of discrete steps. To the best of our knowledge, with the exception of the paper by Webster
et al. (including some of the authors of this paper) [49] and our previous work [24,25], there
is no other work concerned with PCOs with discrete oscillation cycles. Furthermore, all of
these approaches distinguish between single oscillators in the network, while the properties
of interest relate to global behaviour. This discrepancy between local modelling and global
analysis restricts the size of networks that can be analysed, due to the state-space explosion. To
extend the size of analysable networks, we employ populationmodels, a counting-abstraction
of such networks [19]. Instead of identifying each oscillator on its own, we record howmany
oscillators are in each step of the oscillation cycle. This significantly reduces the state-space
by exploiting the symmetries in the model [20], and we are hence able to extend the size of
networks.

The notion of population models should not be confused with population protocols [5],
a formalism to express distributed algorithms. In contrast to our setting, communication in
population protocols is always between two agents, where one agent initiates the communi-
cation and the other responds. Furthermore, even though the agents cannot identify the other
agents in the network, within the global model each agent is uniquely associated with a state.
In ourmodel, we cannot distinguish between two different agents sharing the same state, even
at the global level. Finally, our oscillators may change their state without interacting with
other oscillators, while the agents in a population protocol must communicate with another
agent to change their internal state.

Other techniques have been used to model populations of processes. For example
population-based models using PEPA, a stochastic process algebra, are discussed in [30].
The modelling of individuals using PEPA is introduced and if the identification of individu-
als is not necessary (similar to our work) a population-based approach is advocated to allow
larger populations to be modelled. Unlike our approach the population-based models make
use of a continuous approximation of the discrete behaviour.

Chemical ReactionNetworks (CRNs), see for example [12,45] have been used to represent
the behaviour of reactions between chemicals in a solution. These have been provided with
different semantics including both deterministic and stochastic semantics. CRNs have been
used to model asynchronous logic circuits with properties of the models being verified using
the probabilistic model checker PRISM [13]. They have also been investigated to analyse
their capacity to represent discrete probability distributions focusing on their steady state
[12]. In our work we model both a fully connected network of oscillators and the population
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models directly as stochastic processes, in particular discrete-time Markov chains. We focus
on synchronisation properties rather than their steady state. Like [13] we use PRISM to verify
these properties.

Similarly to typical definitions of counter abstractions [9,21], we use counters to model
concurrent entities that are indistinguishable for our purposes. For example, to analyse the
probability of eventually reaching a synchronised state, we are not interested in an order of
oscillators, which would be artificial anyway. However, in contrast to these approaches, we
do not include means to introduce new oscillators into a model. That is, the values within our
population models are naturally bounded by the number of oscillators within the network.

3 Preliminaries

In this section we define discrete-time Markov chains (DTMCs), stochastic processes with
discrete state space and discrete time, and introduce Probabilistic Computation Tree Logic
(PCTL), a logic that can be used to reason about probabilistic reachability and rewards in
these processes.

Throughout this paper, we use the notation f ⊕[x �→ y], where f is a function, to express
updating f at x by y. That is, the function that coincides with f , except for x , where it takes
the value y.

3.1 Discrete-timeMarkov chains

DTMCs can be used to model systems where the discrete-time evolution of the system can
be represented by a discrete probabilistic choice over several outcomes at each step.

Definition 1 Adiscrete-timeMarkov chain D is a tuple (S, σI ,P, L)where S is a finite set of
states. σI is the initial state, and L : S → P(L) is a labelling function that assigns properties
of interest from a set of labels L to states. P : S × S → [0, 1] is the transition probability
matrix subject to

∑
σ ′∈S P(σ, σ ′) = 1 for all σ ∈ S, where P(σ, σ ′) gives the probability of

transitioning from σ to σ ′. We say that there is a transition between two states σ, σ ′ ∈ S if
P(σ, σ ′) > 0.

Intuitively, a DTMC is a state transition system where transitions between states are
labelled with probabilities greater than 0 and where states are labelled with properties of
interest. An execution path ω of a DTMC D = (S, σI ,P, L) is a non-empty finite, or
infinite, sequence σ0σ1σ2 · · · where σi ∈ S and P(σi , σi+1) > 0 for i � 0. We denote the
set of all paths starting in state σ by PathsD(σ ), and the set of all finite paths starting in σ

by PathsDf (σ ). For paths where the first state along that path is the initial state σI we will

simply use PathsD and PathsDf . Furthermore, we will use Paths and Paths f if D is clear from
the context. For a finite path ω f ∈ Paths f (σ ) for some state σ , the cylinder set of ω f is
the set of all infinite paths in Paths(σ ) that share ω f as a prefix. The probability of taking
a finite path σ0σ1 · · · σn is given by

∏n
i=1 P(σi−1, σi ). This measure over finite paths can

be extended to a probability measure Prσ over the set of infinite paths Paths(σ ), where the
smallest sigma-algebra over Paths(σ ) is the smallest set containing all cylinder sets for paths
in Paths f (σ ). For the probability measure over paths where the first state is the initial state
σI we will simply use Pr. For a detailed description of the construction of the probability
measure we refer the reader to [31].
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3.2 Probabilistic computation tree logic

ProbabilisticComputationTree Logic [28] (PCTL) is a probabilistic extension of the temporal
logic CTL. Properties for DTMCs can be formulated in PCTL and then checked against the
DTMCs using model checking.

Definition 2 The syntax of PCTL is given by:

Φ = p | ¬Φ | (Φ ∧ Φ) | P�	λ[Ψ ]
Ψ = Φ U Φ

where p is an atomic proposition taken from the set of labels L, �	 ∈ {<,�,�,>} and
λ ∈ [0, 1].
Formulas denoted by Φ are state formulas and formulas denoted by Ψ are path formulas.
A PCTL formula is always a state formula, and a path formula can only occur inside the P
operator. We now give the semantics of PCTL over a DTMC.

Definition 3 Given a DTMC D = (S, σI ,P, L), we inductively define the satisfaction rela-
tion |
 for any state σ ∈ S as follows:

σ |
 p iff p ∈ L(σ )

σ |
 ¬Φ iff σ �|
 Φ

σ |
 (Φ ∧ Φ ′) iff σ |
 Φ and σ |
 Φ ′

σ |
 P�	λ[Ψ ] iff Pr{ω ∈ Paths(σ ) | ω |
 Ψ } �	 λ

where p ∈ L, and for any path ω = σ0σ1σ2 · · · of D as follows:

ω |
 Φ U Φ ′ iff there exists i ∈ N s.t. ωi |
 Φ ′ and for all j < i .ω j |
 Φ.

Disjunction, true, false, and implication are derived as usual, and we define eventuality as
F Φ ≡ true U Φ. When model checking any PCTL formula of the form P�	λ[Ψ ] the actual
probability is first calculated and then compared to the bound �	 λ [35]. We will denote this
calculated probability value by P=?[Ψ ].

While probabilistic reachability properties allow us to quantitatively analyse models with
respect to the likelihood of reaching some set of states, they do not allow us to reason about
other properties of interest, for instance the expected time taken for a network to synchronise
[24], or the expected energy consumption of a network [25]. Therefore, we will often want
to augment the DTMC corresponding to a population model with rewards. We do this by
annotating states and transitions with real-valued rewards (respectively costs, should values
be negative) that are awarded when states are visited, or transitions taken.

Definition 4 Given a DTMC D = (S, σI ,P, L) a reward structure for D is a pair R =
(Rs, Rt ) where Rs : S → R and Rt : S ×S → R are the state reward and transition reward
functions that respectively map states and transitions in D to real valued rewards.

For any finite path ω = σ0 · · · σk of D we define the total reward accumulated along that
path up to, but not including, σk as

totR(σ0 · · · σk) =
k−1∑

i=0

(Rs(σi ) + Rt (σi , σi+1)) . (1)
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Given a DTMC D = (S, σI ,P, L) augmented with a reward structure R, and some
state σ0 ∈ S, we will often want to reason about the reward that is accumulated along a
path ω = σ0σ1σ2 · · · ∈ Paths(σ0) that eventually passes through some set of target states
Ω ⊂ S. We first define a random variable over the set of infinite paths starting in state σ0,
VΩ,σ0 : Paths(σ0) → R ∪ {∞}. If σ0 = σI then we will simply use VΩ . Given the set
ωΩ = { j | σ j ∈ ω ∩Ω} of indices of states in ω that are in Ω we define the random variable

VΩ,σ0(ω) =
{

∞ if ωΩ = ∅
totR(σ0 · · · σk) otherwise, where k = minωΩ,

and define the expectation of VΩ,σ0 with respect to Prσ0 by

E[VΩ,σ0 ] =
∫

ω∈Paths(σ0)
VΩ,σ0(ω) dPr =

∑

ω∈Pathsσ0
VΩ,σ0(ω)Pr{ω}.

The logic of PCTL can be extended to include reward properties by introducing the state
formula R�	r [F Φ], where �	∈ {<,�,�,>} and r ∈ R [33]. Given a state σ ∈ S, a real
value r , and a PCTL path formula Φ, the semantics of this formula is given by

σ |
 R�	r [F Φ] iff E[VSat(Φ)] �	 r ,

where Sat(Φ) denotes the set of states in S that satisfyΦ. Similarly to the operator P, for any
PCTL formula of the form R�	r [Ψ ]we will denote the calculated expected value by R=?[Ψ ].

4 Concretemodel of a network of pulse-coupled oscillators

In this section we give a brief introduction to the formal model of a single pulse-coupled
oscillator, as originally presented in previous work [24]. Subsequently, we encode fully-
coupled networks of such oscillators as discrete time Markov chains.

4.1 Pulse-coupled oscillator model

Amodel of a pulse-coupled oscillator is composed of two features. Firstly, we need to model
the oscillation, a periodic variation of the state of the oscillator. In our model the phase of an
oscillator indicates its progression through an oscillation cycle, which is divided into discrete
steps. We assume that the oscillation frequency is the same for all oscillators; the internal
clocks of all oscillators are running at the same speed. Secondly, the model must encapsulate
the interactions between the oscillators. Oscillators that are pulse-coupled interact with each
other at discrete times during their oscillation cycles.At somedistinguished point an oscillator
transmits a message to other oscillators that react to the reception of the message by adjusting
their phase. We assume that the duration of time corresponding to an increment of 1 to the
phase of an oscillator is long enough to perceive all messages coming from other oscillators.
That is, the only way a message may be lost is if the sending oscillator fails to transmit its
message.

The phase of an oscillator u at time t is denoted by φu(t). The phase of each u progresses
through a sequence of discrete integer values bounded by some T � 1, itsmaximal phase. The
phase progression over time of a single uncoupled oscillator is determined by the successor
function, where the phase increases over time until it exceeds T , at which point the oscillator
will fire in the next moment in time and the phase will reset to one. The phase progression

123



178 Formal Methods in System Design (2020) 55:171–221

of an uncoupled oscillator is therefore cyclic with period T , and we refer to one cycle as an
oscillation cycle.

When an oscillator fires, it may happen that its firing is not perceived by any of the
other oscillators coupled to it. We call this a broadcast failure and denote its probability
by μ ∈ [0, 1]. Note that μ is a global parameter, hence the chance of broadcast failure is
identical for all oscillators. When an oscillator fires, and a broadcast failure does not occur, it
perturbs the phase of all oscillators to which it is coupled; we use αu(t) to denote the number
of all other oscillators that are coupled to u and will fire at time t .

Definition 5 The phase response function is a positive increasing function Δ : {1, . . . , T } ×
N×R

+ → N that maps the phase of an oscillator u, the number of other oscillators perceived
to be firing by u, and a real value defining the strength of the coupling between oscillators, to
an integer value corresponding to the perturbation to phase induced by the firing of oscillators
where broadcast failures did not occur. We require Δ(Φ, 0, ε) = 0 for all possible phase
response functions, that is, oscillators are only perturbed if they perceive at least one other
firing oscillator.

We can introduce a refractory period into the oscillation cycle of each oscillator. A refrac-
tory period is an interval of discrete values [1, R] ⊆ [1, T ] where R � T is the size of the
refractory period, such that if φu(t) is inside the interval, for some oscillator u at time t ,
then u cannot be perturbed by other oscillators to which it is coupled. If R = 0 then we set
[1, R] = ∅, and there is no refractory period at all.

Definition 6 The refractory function ref : {1, . . . , T } ×N → N is defined as ref(Φ, δ) = Φ

if Φ ∈ [1, R], or ref(Φ, δ) = Φ + δ otherwise, and takes as parameters δ, the degree of
perturbance to the phase of an oscillator, and Φ, the phase, and returns Φ if it is in the
refractory period, or Φ + δ otherwise.

The phase evolution of an oscillator u over time is then defined as follows, where the
update function and firing predicate, respectively denote the updated phase and firing of
oscillator u,

updateu(t) = 1 + ref(φu(t),Δ(φu(t), αu(t), ε)),

fireu(t) = updateu(t) > T ,

φu(t + 1) =
{
1 if fireu(t)

updateu(t) otherwise.

For real deployments of synchronisation protocols it is often the case that the duration of
a single oscillation cycle will be at least several seconds [15,42]. The perturbation induced
by the firing of a group of oscillators may lead to groups of other oscillators to which they are
coupled firing in turn. The firing of these other oscillators may then cause further oscillators
to fire, and so forth, leading to a “chain reaction”, where each group of oscillators triggered
to fire is absorbed by the initial group of firing oscillators. Since the whole chain reaction
of absorptions may occur within just a few milliseconds, and in our model the oscillation
cycle is a sequence of discrete states, when a chain reaction occurs the phases of all perturbed
oscillators should be updated in one single time step.

4.2 Modelling the network as a DTMC

In this section, we present our model of a fully-connected network of pulse-coupled oscilla-
tors. Observe that by the definition of single PCOs, the reaction of an oscillator u to incoming
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communication of other oscillators depends on the number of oscillators communicating and
the implementation of the perturbation function. We choose to present the full semantics of
such a network, instead of defining it as the parallel composition of single oscillators. After
presenting the semantics, we will discuss this decision.

We model the whole, fully-connected network of oscillators as a single DTMC D =
(S, sI ,P, L), where each state s ∈ S denotes a global state of the network, with the exception
of sI , which is a distinguished initial state. More precisely, each state of the DTMC contains
the internal states of each oscillator, as well as an abstraction of the environment.

Wemodel each transition of an oscillator as a single transitionwithin theDTMC.However,
since the oscillators may influence each other within a single time step (that is, when they
are firing), we cannot simply allow for arbitrary sequences of transitions. For instance, as
stated in Sect. 4.1, all oscillators run with the same clock-speed. Hence we need to prevent
a single oscillator from taking a transition and thus progressing its phase without giving the
other oscillators a chance to do the same. We achieve this by the following means:

– we divide the internal computation of each oscillator into two modes: start and update,
and

– we add a counter to the model, containing the number of oscillators that fire.

The counter also possesses bothmodes, and resets at the start of each “round” of computation.
First, in the start mode, each oscillator checks whether it would fire, according to its phase
response function and the current number of oscillators that already fired, as given by the
counter. If it does, it increases the counter and updates its mode to update, otherwise it just
updates its mode. If all oscillators are in the update mode, they compute their new phases in a
single step, according to the phase response function and the current state of the environment
counter. Furthermore, we impose an order on the evaluation of the oscillators in the start
mode if at least one oscillator fires, starting from the highest phase to the lowest. In this way,
we model that firing oscillators are always perceived by the other nodes, and thus may lead
to the firing of the latter. In particular, this reflects the absorptions of messages as defined in
the previous section.

The general idea of the progress of the network of oscillators is visualised in Fig. 1. In
the figure, each rounded rectangle shows a state of a network of four oscillators. The circles
represent the nodes,wherewe inscribe their current phases and an abbreviation of theirmodes.
A node that is about to fire is indicated by a starred circle, while a shaded circle indicates a
node that is within the refractory period. The rectangle denotes the environment counter, with
its corresponding value and mode. The phase response function is Δ(Φ, α, ε) = [Φ · α · ε],
where [·] denotes rounding to the nearest integer. We set ε = 0.3, and μ = 0.2.

In the first state, all outgoing transitions only check whether to increase the counter. Since
no oscillator is in the firing phase, all oscillators just update their mode (observe that the
single arrow actually denotes four transitions). In the next step, all oscillators increase their
phase by one, and reset their mode to start. In the next four transitions, oscillator 2 fires
and increases the counter, which in turn is sufficient for oscillator 3 to fire as well, since
7 + [7 · 1 · 0.3] + 1 = 7 + [2.1] + 1 = 7 + 2 + 1 = 10 > T . Oscillator 3, however, then
fails to fire, and does not increase the counter. Neither oscillator 1 nor 4 get perturbed to fire.
The latter because it is still in its refractory period, and thus ignores the firing oscillator, and
the former since 4 + [4 · 1 · 0.3] + 1 = 4 + [1.2] + 1 = 4 + 1 + 1 = 6 � T . During the
last transition of the example, oscillator 2 and 3 reset their phase to one, while oscillator 1
is perturbed and increases its phase by two steps at once. Oscillator 4 is within its refractory
period, which means that it is not perturbed, and simply increments its phase. In addition
to these transitions, we also need some bookkeeping transitions, to ensure that the counter
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is reset before the oscillators check their phase response. Furthermore, observe that in the
example, it is crucial that oscillator 3 checks its response after oscillator 2 increased the
counter, since otherwise oscillator 3 would not have been perturbed to fire.

Formally, we combine the states of the oscillators and the environment into a single state
of the DTMC. Each oscillator can be described by a tuple consisting of the current phase Φ

of the oscillator and the modemode within this phase. The phase ranges from 1 to T , while
the mode takes values from {start, update}. Furthermore, we use a single counter to keep
track of the number of oscillators that fired successfully within a single phase computation.

For a network of N oscillators, a state of the DTMC consists of a function osc that
associates a phase and mode with each oscillator,

osc : {1, . . . , N } → ({1, . . . , T } × {start, update}),
and the state of the environment env counting the number of oscillators that fired,

env ∈ {0, . . . , N } × {start, update}.
A state is therefore a tuple s = (env, osc), where env is the state of the environment, and
osc is the state of the network. We denote the set of all concrete system states by Sc. For
simplicity, we will use the notation φ(s, u) to refer to the phase of oscillator u in state s,
and similarly, mode(s, u) to refer to its mode. By abuse of notation, we will also write
mode(s, env) to denote the mode of the environment and count(s) to refer to the value of
the environment counter in state s. We sometimes need to denote that an oscillator changes
neither its phase nor its mode in the definitions of the transitions. To that end, we define the
stability of oscillator u between s and s′ as

stableu(s, s′) ≡ φ(s, u) = φ(s′, u) ∧ mode(s, u) = mode(s′, u) .

Similarly, we define stability of the environment:

stableenv(s, s′) ≡ count(s) = count(s′) ∧ mode(s, env) = mode(s′, env)

We use the notation initΦ(s) = {u | mode(s, u) = start ∧ φ(s, u) = Φ} for the set of
all oscillators sharing phase Φ and mode start in the state s. Furthermore, we also use the
notation init(s) = {u | mode(s, u) = start}.

We now define the transition probabilities between states. To do this we first distinguish
the following cases:

1. the environment resets its counter;
2. no oscillator has a clock value of T ;
3. an oscillator is in the mode start, has a clock value lower than T , is perturbed, but not

enough to fire;
4. an oscillator is in the mode start, has a clock value lower than T and is perturbed enough

to fire;
5. an oscillator is in the mode start, has a clock value lower than T and is perturbed enough

to fire, but fails to do so;
6. an oscillator is in the mode start, has a clock value of T , and broadcasts its pulse;
7. an oscillator is in the mode start, has a clock value of T , and fails to broadcast its pulse;
8. all oscillators are in the mode update, update their clock and reset their state to start.

We will impose an order on certain transitions for two reasons. Firstly, we will restrict
transitions that are only used for bookkeeping purposes. For example, we will require that
the reset transition of the environment is taken before any of the transitions for the oscillators
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Fig. 1 Transitions in the Concrete Oscillator Model (N = 4, T = 9, R = 2)
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within a phase are activated. In particular, this means that each computation starts with a
transition of the type 1. Secondly, we need to ensure that, if at least one oscillator fires, the
phase response of all oscillators is evaluated starting with oscillators in the highest phase,
down to the lowest phase, as described above. The cases stated above are reflected in the
following definitions for the transition probability between two states s = (env, osc) and
s′ = (env′, osc′).

Case 1, where the environment resetting its counter is treated as follows. In the precon-
dition, we require that the mode of the counter is start, and the state of the oscillators does
not change from s to s′. Furthermore, the mode of the counter changes to update in s′, and
its value is set to 0. Since this transition is mandatory at the beginning of each round, its
probability is 1. An example for this transition can be found in Fig. 1 in the transition from
state (c) to (d).

If mode(s, env) = start ∧ mode(s′, env) = update ∧ count(s′) = 0

∧ ∀u : stableu(s, s′),
then P(s, s′) = 1. (2)

If no oscillator is at the end of its cycle, that is, in case 2, we define the probability of
one oscillator updating its mode as follows. Observe that we have to normalise the transition
probability by the number of all oscillators that have not transitioned to their updatemode yet.
This is correct, since no oscillator fires, which also means that no oscillator can be activated
beyond the maximum phase. This implies in particular that the order of oscillator transitions
does not matter in this round. For example, all outgoing transitions from state (a) in Fig. 1
have probability 1

4 , while the subsequent transitions (which are not shown in the figure) occur
with probability 1

3 , and so on.

Ifmode(s, env) = update and there is a w s.t.

mode(s, w) = start ∧ mode(s′, w) = update ∧ φ(s, w) = φ(s′, w)

∧ ∀u : φ(s, u) < T ∧ ∀u : u �= w → stableu(s, s′) ∧ stableenv(s, s′)

then P(s, s′) = 1

|init(s)| . (3)

Now we will consider the cases 3, 4 and 5, where some oscillator already fired (i.e.,
count(s) > 0), and other oscillators are perturbed. In all three cases, one common precon-
dition is that the counter is in its update mode and that there is an appropriate oscillator in
the start mode. One complication arises: we have to ensure that the messages of firing oscil-
lators lead to the perturbation of the other oscillators. Recall that the perturbation function
is increasing, and thus a higher phase of an oscillator may result in a higher perturbation.
That is, oscillators with a higher phase need to be perturbed by fewer firing oscillators before
their phase is increased beyond the threshold and they in turn fire. However, if the oscillators
with high phases fire, their additional messages may be enough to perturb oscillators with
lower phases to fire as well. Hence, if we did not enforce an order from high to low phases,
oscillators with a lower phase might not be perturbed when oscillators with a higher phase
fire. To solve this, we only allow the oscillators to update their mode once all oscillators with
a higher phase have been considered. Observe that we normalise the transition probabilities
according to the number of oscillators satisfying similar conditions. Formally, this means that
we need to normalise on the number of oscillators with the same phase in the start mode. To
model case 3, we only change the mode of the corresponding oscillator to update, and keep
the rest of the state. The precondition is, that all oscillators with higher phases have already
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been considered, and the oscillator under consideration is not perturbed enough to fire, still
within its refractory period, or both. For example, from state ( f ) on, the oscillators 1 and 4
are possibly perturbed, but not enough to fire. In this case, we will still first update oscillator
1, due to its higher phase.

If mode(s, env) = update and there is a w s.t.

mode(s, w) = start ∧ mode(s′, w) = update ∧ φ(s, w) = φ(s′, w)

∧ φ(s, w) < T ∧ ∃u : φ(s, u) = T

∧ ∀u : u �= w → (mode(s, u) = update ∨ φ(s, u) � φ(s, w))

∧ φ(s, w) + Δ(φ(s, w), count(s), ε) + 1 � T ∨ φ(s, w) � R

∧ ∀u : u �= w → stableu(s, s′)
∧ stableenv(s, s′)

then P(s, s′) = 1

|initφ(s,w)(s)| . (4)

If an oscillator is perturbed, and actually fires, we update its mode to update, and increase
the counter of the environment.Weonly allow for this transition, if the oscillator is perturbed to
fire, and is outside of refractory period. This definition corresponds to case 4. The probability
of such a transition is the probability that a broadcaset failure does not occur, 1−μ, normalised
by the number of oscillators in the same phase that have not yet been considered.

If mode(s, env) = update and there is a w s.t.

mode(s, w) = start ∧ mode(s′, w) = update ∧ φ(s, w) = φ(s′, w)

∧ φ(s, w) < T ∧ ∃u : φ(s, u) = T

∧ ∀u : u �= w → (mode(s, u) = update ∨ φ(s, u) � φ(s, w))

∧ φ(s, w) + Δ(φ(s, w), count(s), ε) + 1 > T ∧ φ(s, w) > R

∧ ∀u : u �= w → stableu(s, s′)
∧ count(s′) = count(s) + 1

∧ mode(s, env) = mode(s′, env)

then P(s, s′) = 1 − μ

|initφ(s,w)(s)| (5)

If the oscillator fails to fire, as described by case 5, the only differences to the preceeding
case is that we do not increase the counter, and that the probability of the transition is the
normalised broadcast failure probability. As an example, consider the transition in Fig. 1
from state e to f , where oscillator 3 is indeed perturbed to the end of its cycle, but fails to
fire. That is, the environment counter is not increased. The probability of this transition is
μ
1 = 0.2, since it is the only oscillator with the phase value 7.

If mode(s, env) = update and there is a w s.t.

mode(s, w) = start ∧ mode(s′, w) = update ∧ φ(s, w) = φ(s′, w)

∧ φ(s, w) < T ∧ ∃u : φ(s, u) = T

∧ ∀u : u �= w → (mode(s, u) = update ∨ φ(s, u) � φ(s, w))

∧ φ(s, w) + Δ(φ(s, w), count(s), ε) + 1 > T ∧ φ(s, w) > R

∧ ∀u : u �= w → stableu(s, s′)
∧ stableenv(s, s′)
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then P(s, s′) = μ

|initφ(s,w)(s)| . (6)

Now we turn to the cases 6 and 7 where some oscillator is at the end of its cycle. The
preconditions of both cases are similar to the preceeding cases: the counter is required to
be in the update mode, and there is an oscillator w, whose phase is T and mode is start.
Furthermore, in s′, the mode of w is update, and the state of all other oscillators does not
change. The difference between the cases is whether the counter is increased, that is, whether
the oscillator manages to broadcast its signal. The probability of succeeding is 1−μ

|initT (s)| , since
there may be more than one oscillator in phase T at state s. Hence we have to normalise
the tranistion probability accordingly. Similarly, the probability of failing to fire is μ

|initT (s)| .
So, the probability of the transition from state (d) to (e) is 1−0.2

1 = 0.8, since it is the only
oscillator in the firing phase.

Ifmode(s, env) = update and there is a w s.t.

mode(s, w) = start ∧ φ(s, w) = T ∧ mode(s′, w) = update

∧ φ(s, w) = φ(s′, w) ∧ ∀u : u �= w → stableu(s, s′)
∧ count(s′) = count(s) + 1

then P(s, s′) = 1 − μ

|initT (s)| . (7)

Ifmode(s, env) = update and there is a w s.t.

mode(s, w) = start ∧ φ(s, w) = T ∧ mode(s′, w) = update

∧ φ(s, w) = φ(s′, w) ∧ ∀u : u �= w → stableu(s, s′)
∧ count(s′) = count(s)

then P(s, s′) = μ

|initT (s)| . (8)

The final case 8, where all oscillators update their clock values simultaneously, is given
by the following formula. It requires that all oscillators have finished their computation,
whether they fire, and both the counter and the oscillators will reset their mode to start after
the transition.

Ifmode(s, env) = update andmode(s′, env) = start and

for all u we have mode(s, u) = update ∧ mode(s′, u) = start ∧ Fupdate
then P(s, s′) = 1. (9)

The formula Fupdate is an abbreviation for the conjunction of the following four conditions,
which model the update of the phases of the oscillators, according to the phase response
function. Observe that the phases of the oscillators had not been updated by the previously
defined transitions. Hence, we now update the phases of all oscillators at once.

∀u : φ(s, u) = T →
φ(s′, u) = 1 (9a)

∀u : φ(s, u) < T ∧ φ(s, u) � R →
φ(s′, u) = φ(s, u) + 1 (9b)

∀u : φ(s, u) < T ∧ φ(s, u) > R ∧
φ(s, u) + Δ(φ(s, u), count(s), ε) + 1 � T →
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φ(s′, u) = φ(s, u) + Δ(φ(s, u), count(s), ε) + 1 (9c)

∀u : φ(s, u) < T ∧ φ(s, u) > R ∧
φ(s, u) + Δ(φ(s, u), count(s), ε) + 1 > T →
φ(s′, u) = 1. (9d)

In this formula, (9a) handles the simple case of firing oscillators, while (9b) defines the
behaviour of oscillators within their refractory period. The formulas (9c) and (9d) reflect
the two cases where oscillators are perturbed, either not exceeding their oscillation cycle,
or firing, respectively. For example, in the transition from state (b) to (c) in the figure,
oscillators 1 to 3 satisfy clause 9c (where Δ(Φ, 0, 0.3) = 0 by definition for all phases Φ),
while oscillator 4 is updated due to clause 9b. In the transition from (g) to (h), however,
oscillator 1 is again updated due to clause 9c, oscillator 2 due to clause 9a, oscillator 3 due
to 9d and oscillator 4 again due to 9b.

Finally, we define the transitions from the initial state, that form a distribution over all
possible initial configurations for the network. As explained above, states where any compo-
nent (i.e., an oscillator or the environment) is in the mode update are considered intermediate
states. Hence, we only allow for transitions from the initial state to states, where every com-
ponent is in the start mode, and furthermore, the counter of the environment is set to 0. Let
us denote this set of states by S ′, i.e.,

S ′ = {s ∈ S | count(s) = 0 ∧ mode(s, env) = start ∧ ∀u : mode(s, u) = start} .

Then, for each state s ∈ S ′, we have

P(sI , s) = 1

|S ′| . (10)

As stated above, this model directly models a fully-connected network of N oscillators.
It would certainly be possible to define such a model as a parallel composition of single
oscillators, but we will in the following argue that such a definition would not increase the
readability of the definitions, and even obscure the behaviour of the network. In particular,
the probability for an oscillator to end up in a certain state after such a step is dependent on
the overall number of oscillators in the system. For example, consider the third state shown
in the example network of Fig. 1. That is, oscillator 2 is about to fire and oscillator 4 is still
in the refractory period. If we added another oscillator, which we name “5”, to the network,
the possible transitions from this state depend on the phase of this oscillator. If it is not at
the end of its cycle, the only outgoing transitions are due to oscillator 2 firing (and either
succeeding or failing). However, oscillator 5 may be perturbed enough to fire, thus increasing
the chance of oscillator 1 being perturbed enough to fire as well. Similarly, if oscillator 5 is
also at the end of its cycle, the activation of oscillators 1 and 3 is increased, depending on the
perturbation function. In the final transition of the sequence (i.e., after all oscillators changed
their mode from start to update), the resulting state will be different then the corresponding
state in the original model with four oscillators. Even in this small example, the necessary
case distinctions for the definition of a parallel composition grow quite large, and would still
not allow us to refer to already existing transitions, but require the creation of completely
new ones.

With this model, we could begin to analyse the synchronisation behaviour with respect
to different phase response functions or broadcast failure probabilities. However, the state
space of the model increases exponentially with the number of oscillators, which makes an
analysis beyond small numbers infeasible. To overcome this restriction, we increase the level
of abstraction as presented in the next section.
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5 Populationmodel

In this section, we define a population model of a network of pulse-coupled oscillators for
parameters as defined in Sect. 4.1 as P = (Δ, N , T , R, ε, μ). Oscillators in our model have
identical dynamics, and two oscillators are indistinguishable if they share the same phase.
That is, we can reason about groups of oscillators, instead of individuals.We therefore encode
the global state of themodel as a tuple 〈k1, . . . , kT 〉where each kΦ is the number of oscillators
sharing a phase value of Φ. The population model does not account for the introduction of
additional oscillators to a network, or the loss of existing coupled oscillators. That is, the
population N remains constant.

Definition 7 A global state of a population model P = (Δ, N , T , R, ε, μ) is a T -tuple
σ ∈ {0, . . . , N }T , where σ = 〈k1, . . . , kT 〉 and ∑T

Φ=1 kΦ = N . The set of all global states
of P is Γ (P), or simply Γ when P is clear from the context.

Example 1 Figure 2 shows four global states for an instantiated population model of N = 8
oscillators with T = 10 discrete values for their phase and a refractory period of length
R = 2. We use the linear phase response function Δ(Φ, α, ε) = [Φ · α · ε] where [·]
denotes rounding to the closest integer. Furthermore, let ε = 0.115. For example σ0 =
〈0, 0, 2, 1, 0, 0, 5, 0, 0, 0〉 is the global state where two oscillators have a phase of three, one
oscillator has a phase of four, and five oscillators have a phase of seven. The starred node
indicates the number of oscillators with phase ten that will fire in the next moment in time,
while the shaded nodes indicate oscillators with phases that lie within the refractory period
(one and two). If no oscillators have some phase Φ then we omit the 0 in the corresponding
node. Observe that, while going from σi−1 to σi (1 � i � 3), the oscillator phases increase
by one. In the next section, we will explain how transitions between these global states are
made. Note that directional arrows indicate cyclic direction, and do not represent transitions.

With every state σ ∈ Γ we associate a non-empty set of failure vectors, where each failure
vector is a tuple of broadcast failures that could occur in σ .

Definition 8 A failure vector is a T -tuple F = 〈 f1, . . . , fT 〉 ∈ ({0, . . . , N } ∪ {�})T , where
fi = � implies f j = � for all 1 � j � i . We denote the set of all possible failure vectors by
F .

Given a failure vector F = 〈 f1, . . . , fT 〉, fΦ ∈ {0, . . . , N } indicates the number of broadcast
failures that occur for all oscillators with a phase of Φ. If fΦ = � then no oscillators with a
phase of Φ fire. Semantically, fΦ = 0 and fΦ = � differ in that the former indicates that all
(if any) oscillators with phaseΦ fire and no broadcast failures occur, while the latter indicates
that all (if any) oscillators with a phase of Φ do not fire. If no oscillators fire at all in a global
state then we have only one possible failure vector, namely {�}T .
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1

σ0σ0σ0

5

σ0σ0σ0 σ1 k1k1σ1
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5

σ1σ1 σ2 k1k1σ2
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σ2σ2σ2

2

σ21 σ2σ2σ2
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Fig. 2 Evolution of the global state over four discrete time steps
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5.1 Transitions

In Sect. 5.2 we will describe how we can calculate the set of all possible failure vectors for a
global state, and thereby identify all of its successor states. However we must first show how
we can calculate the single successor state of a global state σ , given some failure vector F .

Absorptions Since we are considering a fully connected network of oscillators, two oscil-
lators sharing the same phase will have their phase updated to the same value in the next
time step. They will always perceive the same number of other oscillators firing. Therefore,
for each phase Φ we define the function αΦ : Γ × F → {0, . . . , N }, where αΦ(σ, F) is
the number of oscillators with a phase greater than Φ perceived to be firing by oscillators
with phase Φ, in some global state, incorporating the broadcast failures defined in the failure
vector F . This allows us to encode the aforementioned chain reactions of firing oscillators.
Note that our encoding of chain reactions results in a global semantics that differs from
typical parallelisation operations, for example, the construction of the cross product of the
individual oscillators. Observe that, in the concrete model of Sect. 4.2, we modelled such a
behaviour by case 4.

Given aglobal stateσ = 〈k1, . . . , kT 〉 and a failure vector F = 〈 f1, . . . , fT 〉, the following
mutually recursive definitions show how we calculate the values α1(σ, F), . . . , αT (σ, F),
and how functions introduced in Sect. 4.1 are modified to indicate the update in phase, and
firing, of all oscillators sharing the same phase Φ. Observe that to calculate any αΦ(σ, F)

we only refer to definitions for phases greater than Φ and the base case is Φ = T , that is,
values are computed from T down to 1. The function ref is the refractory function as defined
in Sect. 4.1.

updateΦ(σ, F) = 1 + ref(Φ,Δ(Φ, αΦ(σ, F), ε)) (11)

fireΦ(σ, F) = updateΦ(σ, F) > T (12)

αΦ(σ, F) =

⎧
⎪⎨

⎪⎩

0 if Φ=T

αΦ+1(σ ,F)+kΦ+1− fΦ+1 if Φ<T , fΦ+1 �=� and fireΦ+1(σ ,F)

αΦ+1(σ, F) otherwise
(13)

Transition function We now define the transition function that maps phase values to their
updated values in the next time step. Note that since we no longer distinguish different
oscillators with the same phase we only need to calculate a single value for their evolution
and perturbation.

Definition 9 The phase transition function τ : Γ × {1, . . . , T } × F → N maps a global
state σ , a phase Φ, and some possible failure vector F for σ , to the updated phase in the next
discrete time step, with respect to the broadcast failures defined in F , and is defined as

τ(σ,Φ, F) =
{
1 if fireΦ(σ, F)

updateΦ(σ, F) otherwise.
(14)

Let UΦ(σ, F) be the set of phase values Ψ where all oscillators with phase Ψ in σ will
have their phase updated to Φ in the next time step, with respect to the broadcast failures
defined in F . Formally,

UΦ(σ, F) = {Ψ | Ψ ∈ {1, . . . , T } ∧ τ(σ, Ψ , F) = Φ}. (15)
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Fig. 3 Evolution of the global state over four discrete time steps

We can now calculate the successor state of a global state σ and define how themodel evolves
over time.

Definition 10 The successor function
→
succ : Γ × F → Γ maps a global state σ and a

failure vector F to a state σ ′, and is defined as →
succ(〈k1, . . . , kT 〉, F) = 〈k′

1, . . . , k
′
T 〉, where

k′
Φ=∑

Ψ ∈UΦ(σ,F) kΨ for 1 � Φ � T .

Example 2 Recall that the perturbation function of our example was given as Δ(Φ, α, ε) =
[Φ · α · ε], where [·] denotes rounding and ε = 0.115. Consider the global state σ2 of Fig. 3
where no oscillators will fire since k10 = 0. We therefore have one possible failure vector for
σ0, namely F = {�}10. Since no oscillators fire the dynamics of the oscillators are determined
solely by their standalone evolution, and all oscillators simply increase their phase by 1 in
the next time step. Now consider the global state σ3 and F = 〈�, �, �, �, �, �, 1, 0, 0, 0〉, a
possible failure vector for σ3, indicating that oscillators with phases of 7 to 10 will fire and
one broadcast failure will occur for the single oscillator that will fire with phase 7. Here a
chain reaction occurs as the perturbation induced by the firing of the 5 oscillators causes the
single oscillator with a phase of 7 to also fire. A broadcast failure occurs when this single
oscillator fires, and the perturbation of the 5 firing oscillators is insufficient to cause the 2
oscillators with a phase of 6 to also fire. In the next state the oscillator with phase 7 has been
absorbed by the group of the 5 oscillators that had phase 10.

More explicitly, since fire10(σ3, F) holds we have that α9(σ3, F) = α10(σ3, F) + k10 −
f10 = 0 + 5 − 0 = 5. Now, since Δ(9, 5, 0.115) = [9 · 5 · 0.115] = [5.175] = 5, we
have update9(σ3, F) = 15 > 10, and thus, fire9 holds. Hence, we have that α8(σ3, F) =
α9(σ3, F) + k9 − f9 = 0 + 5 − 0 = 5, and similarly, due to Δ(8, 5, 0.115) = 5, fire8

holds. That is, we have that α7(σ3, F) = α8(σ3, F) + k8 − f8 = 0 + 5 − 0 = 5. We
then continue calculating αΦ(σ3, F) for 6 � Φ � 1, and noting that Δ(6, 5, 0.115) =
[3.45] = 3. Hence fire6(σ3, F) does not hold, and we obtain α1(σ3, F) = α2(σ3, F) =
α3(σ3, F) = α4(σ3, F) = α5(σ3, F) = α6(σ3, F) = α7(σ3, F) = 5. We conclude that
U1(σ3, F) = {10, 9, 8, 7}, U10(σ3, F) = {6, 5}, U9(σ3, F) = {4, 3}, and UΦ(σ3, F) = ∅
for 9 > Φ > 3. Since R = 2 we have that U3(σ3, F) = {2} and U2(σ3, F) = {1}. We
calculate the successor of σ3 as σ4 = →

succ(〈�, �, �, �, �, �, 1, 0, 0, 0〉, F) = 〈k10 + k9 + k8 +
k7, k1, k2, 0, 0, 0, 0, 0, k4 + k3, k6 + k5〉 = 〈6, 0, 0, 0, 0, 0, 0, 0, 0, 2〉.

Lemma 1 The number of oscillators is invariant during transitions, i.e., the successor func-
tion only creates tuples that are states of the given model. Formally, let σ = 〈k1, . . . , kT 〉
and σ ′ = 〈k′

1, . . . , k
′
T 〉 be two states of a model P such that σ ′ = →

succ(σ, F), where F is

some possible failure vector for σ . Then
∑T

Φ=1 kΦ = ∑T
Φ=1 k

′
Φ = N .

Proof Observe that the range of the function τ is bound by T . By construction we can
see that for any σ , for any possible failure vector F for σ , and for all Φ ∈ {1, . . . , T },
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we have that 1 � τ(σ,Φ, F) � T . Hence for all Ψ with 1 � Ψ � T , there is a Φ

such that Ψ ∈ UΦ(σ, F). This implies
⋃T

Φ=1 UΦ(σ, F) = {1, . . . , T }. Furthermore, there
cannot be more than one Φ such that Ψ ∈ UΦ(σ, F), since τ is functional. Now we have∑T

Φ=1 k
′
Φ = ∑T

Φ=1
∑

Ψ ∈UΦ(σ,F) kΨ = ∑T
Φ=1 kΦ = N . ��

5.2 Failure vector calculation

We construct all possible failure vectors for a global state by considering every group of
oscillators in decreasing order of phase. At each stage we determine if the oscillators would
fire. If they fire then we consider each outcome where any, all, or none of the firings result in
a broadcast failure. We then add a corresponding value to a partially calculated failure vector
and consider the next group of oscillators with a lower phase. If the oscillators do not fire
then there is nothing left to do, since by Definition 5 we know that Δ is increasing, therefore
all oscillators with a lower phase will also not fire. We can then pad the partial failure vector
with � appropriately to indicate that no failure could happen since no oscillator fired.

Table 1 illustrates how a possible failure vector for global state σ3 in Fig. 3 is iteratively
constructed. The first three columns respectively indicate the current iteration i , the global
state σ3 with the currently considered oscillators underlined, and the elements of the failure
vector F computed so far. The fourth column is true if the oscillators with phase T+1−i
would fire given the broadcast failures in the partial failure vector. We must consider all
outcomes of any or all firings resulting in broadcast failure. The final column therefore
indicates whether the value added to the partial failure vector in the current iteration is the
only possible value (false), or a choice from one of several possible values (true).

Initially we have an empty partial failure vector. At the first iteration there are 5 oscillators
with a phase of 10. These oscillators will fire sowemust consider each casewhere 0, 1, 2, 3, 4
or 5 broadcast failures occur. Here we choose 0 broadcast failures, which is then added to
the partial failure vector. At iterations 2 and 3 the oscillators would have fired, but since
there are no oscillators with a phase of 9 or 8 we only have one possible value to add to
the partial failure vector, namely 0. At iteration 4 a single oscillator with a phase of 7 fires,
and we choose the case where the firing resulted in a broadcast failure. In the final iteration
oscillators with a phase of 6 do not fire, hence we can conclude that oscillators with phases
less than 6 also do not fire, and can fill the partial failure vector appropriately with �.

Formally, we define a family of functions fail indexed by Φ, where each failΦ takes as
parameters some global state σ , and V , a vector of length T − Φ. V represents all broadcast
failures for all oscillators with a phase greater than Φ. The function failΦ then computes

Table 1 Construction of a possible failure vector for a global state σ3 = 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉
iteration (i) π1 Failure vector B Fired Branches

0 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉 〈〉 – false

1 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉 〈0〉 true true

2 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉 〈0, 0〉 true false

3 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉 〈0, 0, 0〉 true false

4 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉 〈1, 0, 0, 0〉 true true

5 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉 〈�, �, �, �, �, �, 1, 0, 0, 0〉 false –
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the set of all possible failure vectors for σ with suffix V . Here we use the notation v�v′ to
indicate vector concatenation.

Definition 11 We define failΦ : Γ × {0, . . . , N }T−Φ → P(({0, . . . , N } ∪ {�})T ), for 1 �
Φ � T , as the family of functions indexed by Φ, where σ = 〈k1, . . . , kT 〉 and

failΦ(σ, V ) =

⎧
⎪⎨

⎪⎩

⋃kΦ

k=0 failΦ−1(σ, 〈k〉�V ) if 1 < Φ � T and fireΦ(σ, {�}Φ�
V )

⋃k1
k=0 {〈k〉�V } if Φ = 1 and fire1(σ, 〈�〉�V )

{{�}Φ�
V

}
otherwise

Observe that the result of failT is always a set of well defined failure vectors, since whenever
� is introduced into a failure vector at index Φ, all preceding indices are also filled with �, as
required by Definition 8.

Definition 12 Given a global state σ ∈ Γ , we defineFσ , the set of all possible failure vectors
for that state, as Fσ = failT (σ, 〈〉), and define next(σ ), the set of all successor states of σ , as

next(σ ) = { →
succ(σ, F) | F ∈ Fσ }.

Note that for some global states |next(σ )| < |Fσ |, since we may have that
→
succ(σ, F) =

→
succ(σ, F ′) for some F, F ′ ∈ Fσ with F �= F ′.

Given a global state σ and a failure vector F ∈ Fσ , we will now compute the probability
of a transition being made to state

→
succ(σ, F) in the next time step. Recall that μ is the

probability with which a broadcast failure occurs. Firstly we define the probability mass
function PMF : {1, . . . , N }2 → [0, 1], where PMF(k, f ) gives the probability of f broadcast
failures occurring given that k oscillators fire, as PMF(k, f ) = μ f (1 − μ)k− f

(k
f

)
. We then

denote by PFV : Γ × Fσ → [0, 1] the function mapping a possible broadcast failure vector
F for σ , to the probability of the failures in F occurring. That is,

PFV(〈k1, . . . , kT 〉, 〈 f1, . . . , fT 〉) =
T∏

Φ=1

{
PMF(kΦ, fΦ) if fΦ �= �

1 otherwise
(16)

Lemma 2 For any global state σ , PFV is a discrete probability distribution overFσ . Formally,∑
F∈Fσ

PFV(σ, F) = 1.

Proof Given a global state σ = 〈k1, . . . , kT 〉 we can construct a tree of depth T where
each leaf node is labelled with a possible failure vector for σ , and each node Λ at depth
Φ is labelled with a vector of length Φ corresponding to the last Φ elements of a possible
failure vector for σ . We denote the label of a node Λ by V (Λ). We label each node Λω with
〈ω〉�V (Λ). We iteratively construct the tree, starting with the root node, root, at depth 0,
which we label with the empty tuple 〈〉. For each node Λ at depth 0 � Φ < T we construct
the children of Λ as follows:

1. If oscillators with phase Φ fire we define the sample space Ω = {0, . . . , nΦ} to be a set
of disjoint events, where each ω ∈ Ω is the event where ω broadcast failures occur, given
that kΦ oscillators fired. For each ω ∈ Ω there is a child Λω of Λ with label 〈ω〉�V (Λ),
and we label the edge from Λ to Λω with PMF(kΦ,ω).

2. If oscillators with phase Φ do not fire then Λ has a single child Λ� labelled with
〈�〉�V (Λ), and we label the edge from Λ to Λ� with 1.

We denote the label of an edge from a node Λ to its child Λ′ by L(Λ,Λ′). For case 2 we
can observe that if oscillators with phase Φ do not fire then we know that oscillators with
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any phase Ψ < Φ will also not fire, since from Definition 5 we know that Δ is an increasing
function. Hence, all descendants of Λ will also have a single child, with an edge labelled
with 1, and each node is labelled with the label of its parent, prefixed with 〈�〉.

After constructing the tree we have a vector of length T associated with each leaf node,
corresponding to a failure vector for σ . The set Fσ of all possible failure vectors for σ is
therefore the set of all vectors labelling leaf nodes. We denote by P↓(Λ) the product of all
labels on edges along the path fromΛ back to the root. Given a global state σ = 〈k1, . . . , kT 〉
and a failure vector F = 〈 f1, . . . , fT 〉 ∈ Fσ labelling some leaf node Λ at depth T , we can
see that

P↓(Λ) = 1 ·
T∏

Φ=1

{
PMF(kΦ, fΦ) if fφ �= �

1 otherwise
= PFV(σ, F).

Let DΦ denote the set of all nodes at depth Φ. We show
∑

d∈DΦ P↓(d) = 1 by induction
on Φ. For Φ = 0, i.e., DΦ = {root}, the property holds by definition. Now assume that∑

d∈DΦ P↓(d) = 1 holds for some 0 � Φ < T . Let Λ be some node in DΦ , and let CΛ be
the set of all children of Λ. Consider the following two cases: If oscillators with phase Φ do
not fire then |CΛ| = 1, and for the only c ∈ CΛ we have that L(Λ, c) = 1. If oscillators with
phase Φ fire observe that PMF is a probability mass function for a random variable defined
on the sample space Ω = {0, . . . , kΦ}. In either case we can see that

∑
c∈CΛ L(Λ, c) = 1.

Note that DΦ+1 = ⋃
d∈DΦ Cd , and recall that L(d, c) · P↓(d) = P↓(c). Therefore,

∑

d∈DΦ+1

P↓(d) =
∑

d∈DΦ

∑

c∈Cd

L(d, c) · P↓(d) =
∑

d∈DΦ

⎛

⎝P↓(d)
∑

c∈Cd

L(d, c)

⎞

⎠ .

Since
∑

c∈Cd L(d, c) = 1 for each d ∈ DΦ , and from the induction hypothesis, we then
have that

∑

d∈DΦ

⎛

⎝P↓(d)
∑

c∈Cd

L(d, c)

⎞

⎠ =
∑

d∈DΦ

P↓(d) = 1.

We have already shown that P↓(Λ) = PFV(σ, F) for any leaf node Λ labelled with a failure
vector F , and since the set of all labels for leaf nodes is Fσ we can conclude that

∑

F∈Fσ

PFV(σ, F) =
∑

d∈DT

P↓(d) = 1.

This proves the lemma. ��

Example 3 We consider again the global states σ3 = 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉 and σ4 =
〈6, 0, 0, 0, 0, 0, 0, 0, 0, 2〉, given in Fig. 3, of the populationmodel instantiated in Example 1,
and the failure vector F = 〈�, �, �, �, �, �, 1, 0, 0, 0〉given inExample 2, noting that F ∈ Fσ3 ,→
succ(σ3, F) = σ4, andμ = 0.1. We calculate the probability of a transition being made from
σ3 to σ4 as

PFV(〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉, 〈�, �, �, �, �, �, 1, 0, 0, 0〉)
= 1 · 1 · 1 · 1 · 1 · 1 · PMF(1, 1) · PMF(0, 0) · PMF(0, 0) · PMF(5, 0)

= (0.11 · 0.90 · 1) · (1) · (1) · (0.10 · 0.95 · 1) = 0.059049
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We now have everything we need to fully describe the evolution of the global state of a
populationmodel over time.An execution path of a populationmodelP is an infinite sequence
of global states ω = σ0σ1σ2σ3 · · · , where σ0 is called the initial state, and σk+1 ∈ next(σ )

for all k � 0.

5.3 Synchronisation

When all oscillators in a population model have the same phase in a global state we say that
the state is synchronised. Formally, a global state σ = 〈k1, . . . , kT 〉 is synchronised if, and
only if, there is some Φ ∈ {1, . . . , T } such that kΦ = N , and hence kΦ ′ = 0 for all Φ ′ �= Φ.
Wewill often want to reason about whether some particular runω of a model leads to a global
state that is synchronised. We say that a path ω = σ0σ1 · · · synchronises if, and only if, there
exists some k � 0 such that σk is synchronised. Once a synchronised global state is reached
any successor states will also be synchronised. Finally we can say that a model synchronises
if, and only if, all runs of the model synchronise.

5.4 Model construction

Given a population model P = (Δ, N , T , R, ε, μ) we construct a DTMC D(P) =
(S, σI ,P, L) where L ranges over the singleton {synch}. We define the set of states S to be
Γ (P)∪{σI }, where σI is the initial state of the DTMC. For each σ = 〈k1, . . . , kT 〉 ∈ Γ (P),
we set L(σ ) = {synch} if there is some 1 � i � T such that ki = N .

To calculate the likelihood of permutations of a population of oscillators we will make
use of multinomial coefficients, for which we provide the standard definition.

Definition 13 The multinomial coefficient is an extension of the binomial coefficient that
gives the number of ordered permutations of the elements of amultiset. Given a finitemultiset
M, a permutation is an ordered arrangement of its elements, where each element appears a
number of times equal to its multiplicity in M. The number of permutations of M is given
by

(
n

m1,m2, . . . ,mi

)

= n!
m1!m2! · · ·mi !=

(
m1

m1

)(
m1 + m2

m2

)

· · ·
(
m1 + m2 + . . . + mi

mi

)

,

where m1, . . .mi are the multiplicities of the elements of M and n is the sum of those
multiplicities.

In the initial state all oscillators are unconfigured. That is, oscillators have not yet been
assigned a value for their phase. For each σ = 〈k1, . . . , kT 〉 ∈ S \ {σI } we define

P(σI , σ ) = 1

T N

(
N

k1, . . . , kT

)

(17)

to be the probability of moving from σI to a state where ki arbitrary oscillators are configured
with the phase value i for 1 � i � T . The multinomial coefficient defines the number of
possible assignments of phases to distinct oscillators that result in the global state σ . The
fractional coefficient normalises the multinomial coefficient with respect to the total number
of possible assignments of phases to all oscillators. In general, given an arbitrary set of
initial configurations (global states) for the oscillators, the total number of possible phase
assignments can be calculated by computing the sum of the multinomial coefficients for each
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configuration (global state) in that set. Since Γ is the set of all possible global states, we have
that

∑

〈k1,...,kT 〉∈Γ

(
N

k1, . . . , kT

)

= T N .

We assign probabilities to the transitions as follows: for every σ ∈ S \ {σI }, we consider
each F ∈ Fσ , and set P(σ,

→
succ(σ, F)) = PFV(σ, F). For every combination of σ and σ ′

where σ ′ /∈ next(σ ) we set P(σ, σ ′) = 0.

5.5 Model reduction

We now describe a reduction of the population model that results in a significant decrease in
the size of the model, but is equivalent to the original model with respect to the unbounded-
time reachability of synchronised states.

We first distinguish between states where one or more oscillators are about to fire, and
states where no oscillators will fire at all.We refer to these states as firing states and non-firing
states respectively. In the following, we fix a population model P and simply refer to the
states by Γ , instead of Γ (P).

Definition 14 Given a population model P , a global state 〈k1, . . . , kT 〉 ∈ Γ is a firing state
if, and only if, kT > 0. We denote by Γ F the set of all firing states of P , and denote by
Γ NF = Γ \ Γ F the set of all non-firing states of P . We will again omit P if it is clear from
the context

The reduction is constructed by collapsing deterministic sequences of transitions. This
allows non-firing states to be eliminated from the model. While this approach may seem
simple, to the best of our knowledge such a reduction is not automatically applied by existing
tools for the automatic analysis of such amodel, for example themodel checkers PRISM [34],
Storm [18], and IscasMC [27]. In addition, collapsing sequences of deterministic transitions
from the initial unconfigured state to firing states is not straightforward, and it is unclear how
this could be easily inferred by automated tools.

Given a DTMC D = (S, σI ,P, L) let |P| = |{(t, t ′) | t, t ′ ∈ S2 and P(t, t ′) > 0}| be the
number of non-zero transitions in P, and |D| = |S| + |P| be the total number of states and
non-zero transitions in D.

Theorem 1 For every population model P and its corresponding DTMC D(P) =
(S, σI ,P, L), there is a reduced model D′(P) = (S ′, σI ,P′, L ′) where |D′(P)| < |D(P)|
and unbounded-time reachability properties with respect to synchronised firing states in
D(P) are preserved in D′(P). In particular, the states and transitions in D(P) are reduced
in D′(P) such that S ′ = S \ Γ NF and

|S ′| = 1 + T (N−1)

(N − 1)! ,
|P′| � |P| − 2|Γ NF|

where x (n) is the rising factorial x (n) = x(x + 1) · · · (x + n − 1).

Observe that only unbounded-time reachability properties are preserved in the reduction
of a model. In the unreduced model precisely T transitions correspond to one oscillation of a
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standalone oscillator. For the reduced model this is not the case, since the length of removed
deterministic transitions sequences are not encoded in the reduction.

We now proceed to prove this theorem. To that end, we need some preliminary properties
of non-firing states and their relation to firing states.

Lemma 3 Every non-firing state σ ∈ Γ NF has exactly one successor state, and in that state
all oscillator phases have increased by 1.

Proof Given a non-firing state σ = 〈k1, . . . , kT 〉 observe that as kT = 0 there is only one
possible failure vector for σ , namely {�}T . The set of all successor states of σ is then the
singleton { →

succ(σ, {�}T )}. By construction we can then see that updateΦ(σ, {�}T ) = 1 and
UΦ(σ, {�}T ) = {Φ − 1} for 1 � Φ � T . The single successor state is then given by

→
succ(σ, {�}T ) = 〈0, k1, . . . , kT−1〉. ��
Corollary 1 A transition from any non-firing state is taken deterministically, since for any
σ ∈ Γ NF we have PFV(σ, {�}T ) = 1.

Reachable state reduction Given a path ω = σ0 · · · σn−1σn where σi ∈ Γ NF for 0 < i < n
and σ0, σn ∈ Γ F, we omit transitions (σi , σi+1) for 0 � i < n, and instead introduce a direct
transition from σ0, the first firing state, to σn , the next firing state in the sequence. For any
σ = 〈k1, . . . , kT 〉 ∈ Γ let δσ = max{Φ | kΦ > 0 and 1 � Φ � T } be the highest phase of
any oscillator in σ . The successor state of a non-firing state is then the state where all phases
have increased by T − δσ . Observe that T − δσ = 0 for any σ ∈ Γ F.

Definition 15 The deterministic successor function
�
succ : Γ → Γ F, given by

�
succ(〈k1, . . . , kT 〉) = {0}T−δσ

�〈k1, . . . , kδσ 〉,
maps a stateσ ∈ Γ to the next firing state reachable by taking T−δσ deterministic transitions.

Observe that for any firing state σ we have δσ = T , and hence that
�
succ(σ ) = σ .

We now update the definition for the set of all successor states for some global state σ ∈ Γ

to incorporate the deterministic successor function.

Definition 16 Given a global state σ ∈ Γ , we define
�
next(σ ) to be the set of all successor

states of σ , where
�
next(σ ) = { �

succ(
→
succ(σ, F)) | F ∈ Fσ }.

Definition 17 Given a firing state σ ∈ Γ F let pred(σ ) be the set of all non-firing predecessors
of σ , where σ is reachable from the predecessor by taking some positive number of transitions
deterministically. Formally,

pred(σ ) = {σ ′ | σ ′ ∈ Γ NF and
�
succ(σ ′) = σ }.

We refer to all states σ ′ ∈ pred(σ ) as deterministic predecessors of σ .

Then given D = (S, σI ,P, L) with S = {σI } ∪ Γ , we define S ′ = S \ ⋃
σ∈Γ F pred(σ ) to

be the reduction of S where all non-firing states from which a firing state can be reached
deterministically are removed.

Lemma 4 For any D(P) = (S, σI ,P, L) with S = Γ ∪ {σI }, the reduction S ′ is equal to
Γ F ∪ {σI }.
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Fig. 4 Five possible initial
configurations in S for N = 2,
T = 6

σI

σi = 〈1, 1, 0, 0, 0, 0〉

σi+1 = 〈0, 1, 1, 0, 0, 0〉

σi+2 = 〈0, 0, 1, 1, 0, 0〉

σi+3 = 〈0, 0, 0, 1, 1, 0〉

σi+4 = 〈0, 0, 0, 0, 1, 1〉

P(σI , σi)

P(σI , σi+1)

P(σI , σi+2)

P(σI , σi+3)

P(σI , σi+4)

P(σi, σi+1) = 1

P(σi+1, σi+2) = 1

P(σi+2, σi+3) = 1

P(σi+3, σi+4) = 1

Proof Let P = ⋃
σ∈Γ F pred(σ ) be the set of all predecessors of firing states in Γ F. Since

S = Γ ∪ {σI } and S ′ = S \ P we can see that S ′ = Γ F ∪ {σI } if, and only if, P = Γ NF.
From Definition 17 it follows that P ⊆ Γ NF. In addition, for any σ ∈ Γ NF there is some

state σ ′ such that σ ∈ pred(σ ′) and σ ′ = �
succ(σ ) ∈ Γ F, hence Γ NF ⊆ P and the lemma is

proved. ��

Lemma 5 For a population model P = (Δ, N , T , R, ε, μ) and its corresponding DTMC
D = (S, σI ,P, L) with S = Γ ∪ {σI }, the number of states in the reduction of S is given by

|S ′| = 1 + T (N−1)

(N−1)! .

Proof Observe that there are
(N+T−1

N

)
ways to assign T distinguishable phases to N

indistinguishable oscillators [23]. Since S = Γ ∪ {σI } and Γ is the set of all possible
configurations for oscillators we can see that |S| = (N+T−1

N

) + 1. For any non-firing state

σ = 〈k1, . . . kT 〉 ∈ Γ NF we know from Definition 7 that
∑T

Φ=1 kΦ = N and from Defi-
nition 14 that kT = 0, so it must be the case that

∑T−1
Φ=1 kΦ = N . That is, there must be

(N+T−2
N

)
ways to assign T −1 distinguishable phases to N indistinguishable oscillators, and

so |Γ NF| = (N+T−2
N

)
. From Lemma 4 we know that S ′ = S \Γ NF so it must be the case that

|S ′| = |S| − |Γ NF| = 1 + (N+T−1
N

) − (N+T−2
N

) = 1 + T (N−1)

(N−1)! . ��
Transition matrix reduction Here we describe the reduction in the number of non-zero
transitions in the model. We ilustrate how initial transitions to non-firing states are removed
by using a simple example, and then describe how we remove transitions from firing states
to any successor non-firing states..

Figure 4 shows five possible initial configurations σi , . . . , σi+4 ∈ S for N = 2 oscillators
with T = 6 values for phase, where a transition is taken from σI to each σk with probability
P(σI , σk). Any infinite run of D where a transition is taken from σI to one of the configured
states σi , . . . , σi+3 will pass through σi+4, since all transitions (σi+k, σi+k+1) for 0 � k � 3
are taken deterministically. Also, observe that states σi , . . . , σi+3 are not in S ′, since σi+4

is reachable from each by taking some number of deterministic transitions. We therefore set
the probability of moving from σI to σi+4 in P′ to be the sum of the probabilities of moving
from σI to σi+4 and each of its predecessors in P. Generally, given a state σ ∈ S ′ where
σ �= σI , we set P′(σI , σ ) = P(σI , σ ) + ∑

σ ′∈pred(σ ) P(σI , σ
′).

We now define how we calculate the probability with which a transition is taken from
a firing state to each of its possible successors. For each firing state σ ∈ S ′ we consider

each possible successor σ ′ ∈ �
next(σ ) of σ and define Fσ→σ ′ to be the set of all possible

failure vectors for σ for which the successor of σ is σ ′, given by Fσ→σ ′ = {F ∈ Fσ |
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�
succ(

→
succ(σ, F)) = σ ′}. We then set the probability with which a transition from σ to σ ′ is

taken to P′(σ, σ ′) = ∑
F∈Fσ→σ ′ PFV(σ, F).

Lemma 6 For a population model P = (Δ, N , T , R, ε, μ), the corresponding DTMC D =
(S, σI ,P, L) with S = {σI } ∪ Γ , and its reduction D′(P) = (S ′, σI ,P′, L ′), the transitions
in P are reduced in P′ such that |P′| � |P| − 2|Γ NF|
Proof From Lemma 4 we know that |S ′| = |S \ Γ NF|, and hence that |Γ NF| transitions
from σI to non-firing states are not in P′, and from Lemma 3 we also know that there is one
transition from each non-firing state to its unique successor state that is not in P′. Since no
additional transitions are introduced in the reduction it is clear that |P′| � |P| − 2|Γ NF|.

��
Lemma 7 For every population model DTMC D = (S, σI ,P, L), unbounded-time reacha-
bility properties with respect to synchronised firing states in D are preserved in its reduction
D′.

Proof We want to show that for every �	 ∈ {<,�,�,>} and every λ ∈ [0, 1], if σI |

P�	λ[F synch] holds in D then it also holds in D′. From the semantics of PCTL over a DTMC
we have

σI |
 P�	λ[F synch] ⇔ Pr{ω ∈ PathsD | ω |
 F synch} �	 λ.

Therefore we need to show that

PrD{ω ∈ PathsD | ω |
 F synch} =σ PrD
′ {ω′ ∈ PathsD

′ | ω′ |
 F synch},
where PrD and PrD

′
denote the probability measures with respect to the sets of infinite paths

from σI in D and D′ respectively.
Given a firing state σ F ∈ S we denote by PathsD

σ F the set of all infinite paths of D starting

in σI where the first firing state reached along that path is σ F. All such sets for all firing
states in S form a partition, such that

⋃
σ F∈Γ F PathsD

σ F = PathsD . That is, for all firing states

σ F, σ F′ ∈ S where σ F �= σ F′ we have that PathsD
σ F ∩ PathsD

σ F′ = ∅.
Now observe that any infinite path ω of D can be written in the form ω =

σIω
NF
1 σ F

1ωNF
2 σ F

2 · · · where σ F
i is the i th firing state in the path and each ωNF

i = σ 1
i σ 2

i · · · σ ki
i

is a possibly empty sequence of ki non-firing states. Then for every such path in D there is a
corresponding path ω′ of D′ without non-firing states, and of the form ω′ = σIσ

F
1 σ F

2 σ F
3 · · · ,

as for any i we have σ
j
i ∈ pred(σ F

i ) for all 1 � j � ki . As only deterministic transitions

have been removed in D′ we can see that PrD
σ F
1
{σ F

1ωNF
2 σ F

2 · · · } = PrD
′

σ F
1
{σ F

1 σ F
2 σ F

3 · · · }. Hence,
we only have to consider the finite paths from σI to σ F

1 . To that end, observe that there are∣
∣pred(σ F

1 )
∣
∣ possible prefixes for each path from σI to σ F

1 where the initial transition is taken
from σI to some non-firing predecessor of σ F

1 , plus the single prefix where the initial transi-
tion is taken to σ F

1 itself. Overall there are exactly
∣
∣pred(σ F

1 )
∣
∣ + 1 distinct finite prefixes that

have ω′ as their corresponding path in D′. We denote the set of these prefixes for a path ω′
in D′ by Pref (ω′). Since the measure of each finite prefix extends to a measure over the set
of infinite paths sharing that prefix, it is sufficient to show that the sum of the probabilities
for these finite prefixes is equal to the probability of the unique prefix σ0, σ

F
1 of ω′, that is

PrDPref (ω′) = PrD
′ {σI , σ

F
1 }. We can then write

PrDPref (ω′) = P(σI , σ
F
1 ) +

∑

σ ′∈pred(σ F
1 )

P(σI , σ
′) · 1kσ ′
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= P(σI , σ
F
1 ) +

∑

σ ′∈pred(σ F
1 )

P(σI , σ
′),

where kσ ′ is the number of deterministic transitions that lead from σ ′ to σ F
1 in D. Now recall

that for any σ ∈ S ′ \ {σI } we have
P′(σI , σ ) = P(σI , σ ) +

∑

σ ′∈pred(σ )

P(σI , σ ).

So we have shown that PrDPref (ω′) = PrD
′ {σI , σ

F
1 } and the lemma is proved. ��

Proof of Theorem 1 Follows from Lemmas 5 and 6 for the reduction of states and transi-
tions respectively, and from Lemma 7 for the preservation of unbounded time reachability
properties. ��

5.6 Reward structures for reductions

We now show how a reward structure for a reduced model can be derived from any reward
structure for the unreduced model, and prove that these reward structures are equivalent with
respect to the reachability of synchronised firing states.

Theorem 2 For every population model P with corresponding DTMC D = (S, σI ,P, L)

and a reduction D′ = (S ′, σI ,P′, L ′) of D, and for every reward structureR = (Rs, Rt ) for
D, there is a reward structure R′ = (R′

s, R
′
t ) for D

′ such that unbounded-time reachability
reward properties with respect to synchronised firing states in D are preserved in D′.

Given any reward structure R = (Rs, Rt ) on D we construct the corresponding reward
structure R′ = (R′

s, R
′
t ) as follows:

– There is no reward for the initial state and we set Rs(σI ) = 0.
– For every firing state σ F in S with Rs(σ

F) = r we set R′
s(σ

F) = r .
– For every pair of distinct firing states σ F

1 , σ F
2 ∈ S ′, where there is a non-zero transition

from σ F
1 to σ F

2 in D′, there is a (possibly empty) sequence σNF
1 · · · σNF

k of k deterministic
predecessors of σ F

2 in S such that k > 0 implies P(σ F
1 , σNF

1 ) > 0, P(σNF
k , σ F

2 ) = 1, and
P(σNF

i , σNF
i+1) = 1 for 1 � i < k. We set the reward for taking the transition from σ F

1 to
σ F
2 in D′ to be the sum of the rewards that would be accumulated across that sequence

by a path in D, formally

R′
t (σ

F
1 , σ F

2 ) = totR(σ F
1 σNF

1 · · · σNF
k σ F

2 ).

– For every firing state σ F in S ′ there is a non-zero transition from the initial state σI to σ F

in P′. Therefore, all paths of D′ where σ F is the first firing state along that path share the
same prefix, namely σI , σ

F. For paths of D this is not necessarily the case, since σ F is the
first firing state not only along the path where the initial transition is taken to σ F itself, but
also along any path where the initial transition is taken to a non-firing state from which a
sequence of deterministic transitions leads to σ F (that state is a deterministic predecessor
of σ F). We therefore set the reward along a path ω′ = σIσ

F
1 σ F

2 · · · for taking the initial
transition to σ F in D′ to be the sum of the total rewards accumulated along all distinct
path prefixes of the form σIω

NFσ F, normalised by the total probabilitiy of taking any of
these paths, where ωNF is a possibly empty sequence of deterministic predecessors of
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σ F, and where the total reward for each prefix is weighted by the probability of taking
the transitions along that sequence,

R′
t (σI , σ

F) =
∑

ωpre∈Pref (ω′) totR(ωpre)PrD{ωpre}
PrD

′ {σIσ
F
1 } (18)

Proof of Theorem 2 We want to show that for every reward structure R for D and cor-
responding reward structure R′ for D′, every �	 ∈ {<,�,�,>} and every r ∈ R, if
σI |
 R�	r [F synch] holds in D then it also holds in D′. Let VSat(Fsynch) and V ′

Sat(Fsynch)

respectively denote the random variables over PathsD and PathsD
′
whose expectations cor-

respond to R and R′. From the semantics of PCTL over a DTMC we have

σI |
 R�	r [F synch] ⇔ E[VSat(synch)] �	 r

⇔
∑

ω∈Paths
VSat(synch)(ω)PrD{ω} �	 r .

Therefore, we need to show that
∑

ω∈PathsD
VSat(synch)(ω)PrD{ω} =

∑

ω′∈PathsD′
V ′
Sat(synch)(ω

′)PrD′ {ω′}, (19)

where PrD and PrD
′
denote the probability measures with respect to the sets of infinite paths

from σI in D and D′ respectively. There are two cases:
Firstly, if there exists some path of D that does not synchronise then by definition

VSat(synch) = ∞. Also, from Lemma 7 we know that there is a corresponding path of D′
that does not synchronise, and hence that V ′

Sat(synch) = ∞. By definition the probability mea-
sure of all paths of D and D′ are strictly positive. Therefore, all summands of Equation 19
are defined, and the expectation of both VSat(synch) and V ′

Sat(synch) is ∞.
Secondly, we consider the case where all possible paths of D and D′ synchronise. First we

define the function reduce : PathsD → PathsD
′
that maps paths of D to their corresponding

path in the reduction D′,

reduce(σIω
NF
1 σ F

1ωNF
2 σ F

2 · · · ) = σIσ
F
1 σ F

2 · · · ,

where ωNF
i is the (possibly empty) sequence of deterministic predecessors of the firing state

σ F
i . Let reduce

−1(ω) denote the preimage of ω under reduce. Then, we can rewrite the left
side of (19) to

∑

ω′∈PathsD′

∑

ω∈reduce−1(ω′)

VSat(synch)(ω)PrD{ω}.

For any path ω of D or D′ let pres(ω) be the prefix of that path whose last state is the first
firing state along that path that is in the set Sat(synch). So we want to show that the following
holds for any path ω′ of D′,

∑

ω∈reduce−1(ω′)

VSat(synch)(ω)PrD{ω} = V ′
Sat(synch)(ω

′)PrD′ {ω′}
∑

ω∈reduce−1(ω′)

totR(pres(ω))PrD{ω} = totR′(pres(ω
′))PrD′ {ω′}. (20)
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Given some path ω let ω[i : j] denote the sequence of states in ω from the i th firing
state to the j th firing state along that path (inclusively). The notation ω[− : j] indi-
cates that no states are removed from the start of the path i.e. the first state is σI , and
the notation ω[i : −] indicates that no states are removed from the end of the path.
By recalling that Pr(σ0σ1 · · · σn) = ∏n

i=1 P(σi−1, σi ) we can see that Pr(σ0σ1 · · · σn) =
Pr(σ0 · · · σi )Pr(σi · · · σn) for any 0 < i < n. Also from (1) it is clear that for any reward
structure R, totR(σI · · · σn) = totR(σI · · · σi ) + totR(σi · · · σn) holds for all 0 < i < n.
Now we can rewrite (20) to

∑

ω∈reduce−1(ω′)

(
totR(pres(ω)[− : 1]) + totR(pres(ω)[1 : −]))PrD{ω[− : 1]}

= (
totR′(pres(ω

′)[− : 1]) + totR′(pres(ω
′)[1 : −]))PrD′ {ω′[− : 1]}.

(21)

By the definition of R′ we can write the right hand side of (21) as

((∑
ωpre∈Pref (ω′) totR(ωpre)PrD{ωpre}

PrD
′ {ω′[− : 1]}

)

+ totR′(pres(ω
′)[1 : −])

)

PrD
′ {ω′[− : 1]}

=
∑

ωpre∈Pref (ω′)

(
totR(ωpre)Pr

D{ωpre}
)

+ totR′(pres(ω
′)[1 : −])PrD′ {ω′[− : 1]}.

From Lemma 7 we know that

PrD
′ {ω′[− : 1]} = PrDPref (ω′) =

∑

ωpre∈Pref (ω′)
PrD{ωpre},

and hence obtain
∑

ωpre∈Pref (ω′)

(
totR(ωpre)Pr

D{ωpre}
)

+
∑

ωpre∈Pref (ω′)
totR′(pres(ω

′)[1 : −])PrD{ωpre}

=
∑

ωpre∈Pref (ω′)

(
totR(ωpre) + totR′(pres(ω

′)[1 : −]))PrD{ωpre}.
(22)

Since Pref (ω′) is the set of all possible finite prefixes from the initial state σI to the first
firing state σ F

1 , and since ω[− : 1] = pres(ω)[− : 1] clearly holds, we know that

⋃

ωpre∈Pref (ω′)
{ωpre} =

⋃

ω∈reduce−1(ω′)

{ω[− : 1]}. =
⋃

ω∈reduce−1(ω′)

{pres(ω)[− : 1]}.

Using this fact, and by observing that by definition

totR′(pres(ω
′)[1 : −]) = totR(pres(ω)[1 : −]),

we can write (22) as

∑

ω∈reduce−1(ω′)

(
totR(pres(ω)[− : 1]) + totR′(pres(ω

′)[1 : −]))PrD{ω[− : 1]}.

This is the same as the left hand side of (21) and the theorem is proved. ��
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6 Connecting the concrete model and the populationmodel

In this section, we define the abstraction function to connect a concrete model with a popula-
tion model. To that end, let Dc = (Sc, sI ,Pc) be a concrete model of a network of N PCOs
with a clock cycle length T , a refractory period R, a phase response function Δ, a coupling
ε and broadcast failure probability of μ. Furthermore, let Dp = (Sp, σI ,Pp) be the DTMC
of a population model for the same parameters. For a finite path ω = σ0, . . . , σn we denote
its last element by last(ω) = σn .

The correspondence we want to show is that the initial states of the twomodels are weakly
bisimulation equivalent [7]. Since we do not employ any actions except for the silent action
in our models, we first define a simplified version of weak bisimulations. To that end, we
use the definition of Baier and Hermanns [7], but with slightly altered notations to fit to our
setting, and by ignoring all references to sequences of actions.

Definition 18 (Weak Bisimulation [7]) A weak bisimulation on D = (S, sI ,P) is an equiv-
alence relation R on S such that for all (s, s′) ∈ R, and all equivalence classes E ∈ S/R, we
have

P(s, E) = P(s′, E)

whereP(s, E) = ∑
ω∈PathsDf (s)∧last(ω)∈E P(ω) for any set E ⊆ S.We say that two states s and

s′ are weakly bisimilar, if, and only if, there is a weak bisimulation R such that (s, s′) ∈ R.

6.1 Proving the correspondence between concrete and populationmodels

In this section, we will formally define a weak bisimulation relation between states in the
concrete model Dc and the corresponding population model Dp . Since weak bisimulations
are defined on a single DTMC, we will define a single DTMC combining both the concrete
and the population model.

Definition 19 Let Dc = (Sc, sI ,Pc) be a concrete model of a network and let Dp =
(Sp, σI ,Pp) be the DTMC of a corresponding population model. The combination of Dc

and Dp is the DTMC D = (S, i,P), where S = Sc ∪Sp ∪{i}, i is a new state (i /∈ Sc ∪Sp),
and P is defined as follows:

P(s, s′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pc(s, s′) if s, s′ ∈ Sc
Pp(s, s′) if s, s′ ∈ Sp
1
2 if s = i and s′ ∈ {sI , σI }
0 otherwise.

The initial transitions from the newstate i formauniformdistribution over the twobehaviours,
and hence the combination DTMC could behave like either model. However, for simplicity
we will often refer to the original models Dc and Dp .

We need to associate states in Dc to states in Dp . In general, several concrete states will
be mapped to a single population state, since we do not distinguish between different orders
of oscillators in the latter, while we do in the former.

Furthermore, we want to abstract from different modes of the oscillators. However, it
is not sensible to associate all modes within a phase to the same population state, since in
the transitions from one mode to the next the system chooses, whether an oscillator fails to
broadcast its pulse or not. If we want to be able to define a probabilistic weak bisimulation
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relation, we need to represent the failures described by the transitions in the populationmodel.
To have an exact correspondence, we first collect all the concrete states where the counter
and all oscillators are at the start mode into a single set.

S ′
c = {s ∈ Sc | mode(s, env) = start ∧ ∀u : mode(s, u) = start}

The abstraction function h : S ′
c → Sp takes a concrete state s and counts the number of

oscillators sharing the same phase, mapping s = (env, osc) to the corresponding state of the
population model,

h(s) = 〈|{u | φ(s, u) = 1}|, . . . , |{u | φ(s, u) = T }|〉.
Now we can define the weak bisimulation relation between the models.

Definition 20 Let D = (S, i,P) be the combination of a concrete model and its population
model according to Definition 19. Then let R′ ⊆ S × S be defined by

1. (sI , σI ) ∈ R′ and
2. (s, σ ) ∈ R′ if, and only if, s ∈ S ′

c, σ ∈ Sp and h(s) = σ .

The weak bisimulation R ⊆ S × S is then the reflexive, symmetric and transitive closure of
R′.

The partition induced by the relation R has three types of equivalence classes:

1. the class Einit = {sI , σI } consisting of the initial states;
2. classes E = {σ } ∪ {s | s ∈ S ′

c ∧ h(s) = σ } that contain exactly one state σ from the
populationmodel and all states s of the concrete model, whose abstraction is σ andwhere
all components are in the mode start;

3. the class E∅ containing all states that are not in relation with other states. This class in
particular does not contain any state of the population model.

We now proceed to show that this relation indeed is a weak bisimulation on D, with a
minor caveat. Consider a state of the population model σ and a state of the concrete model s
in the same equivalence class. Then we have P(s, E∅) = 1, since every transistion starting in
s immediately leads into a state in E∅. However, we also have P(σ, E∅) = 0, since none of
the successors of σ is an element of E∅. We could remedy this discrepancy by introducing a
new state σ ′ for each state in the population model. Then all of these states would be in E∅,
and every σ of the original population model would have a unique successor in E∅. Since
this addition does not change the overall behaviour of the population model we chose instead
to ignore the transitions ending in E∅, and only consider the probabilities of paths into the
other equivalence classes.

Theorem 3 Let Dc = (Sc, sI ,Pc) and Dp = (Sp, σI ,Pp) be a concrete network of oscilla-
tors and its abstraction as a population model, respectively. Furthermore, let D = (S, i,P)

be the combination of both of these models from Definition 19 and R ⊆ S × S be the rela-
tion from Definition 20. Then R is a weak bisimulation relation, and sI and σI are weakly
bisimilar.

Proof From transition sequences in Dp to transition sequences in Dc. Let (s1, σ1) ∈ R,
where s1 ∈ Sc, σ1 ∈ Sp , and let E be an equivalence class such that P(σ1, E) > 0, i.e.,
for the single state σ2 ∈ E of the population model, we have P(σ1, σ2) > 0. Furthermore,
for s1, we have by the definition of R that mode(s1, env) = start, mode(s1, u) = start for
all 1 � u � N and h(s1) = 〈|{u | φ(s1, u) = 1}|, . . . , |{u | φ(s1, u) = T }|〉 = σ1. Note
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that there is only a single outgoing transition from s1 according to condition (2). That is, in
the successor state s of s1, we have count(s) = 0 and mode(s, env) = update, while the
oscillator states are not changed. To keep the notation tidy, we identify this successor state
with s1 in the following.

Now consider two cases. If |{u | φ(s1, u) = T }| = 0, then σ2 = 〈0, |{u | φ(s1, u) =
1}|, . . . , |{u | φ(s1, u) = T − 1}|〉, since no set of oscillators in σ1 is perturbed by a firing
oscillator. In particular, there is no u such thatφ(s1, u) = T . Hence, for all possible successors
s′ of s1, we have that only condition (3) is satisfied. Furthermore, this is the case until all
oscillators changed their mode to update. Let us call this state s′

1. Now, the environment was
not changed from s1 to s′

1, i.e., count(s1) = count(s′
1) = 0.

Hence, condition (9b) is satisfied for all oscillators. Since Δ(Φ, 0, ε) = 0 for all Φ, the
phase of each oscillator is increased by one. This implies that there is a single successor of
s′
1, which we call s2 and that for all u, φ(s2, u) = φ(s′

1, u) + 1. In particular, we have that
for all oscillators u, φ(s2, u) > 0, and {u | φ(s2, u) = Φ} = {u | φ(s′

1, u) = Φ − 1} for all
0 < Φ � T . Hence s2 ∈ E , and thus P(s1, E) > 0.

Now let |{u | φ(s1, u) = T }| > 0. Then, each transition in the population model is
induced by a failure vector F = 〈 f1, . . . , fT 〉. In particular, there is a maximal number k,
such that for all l < k, we have fl = �. That is, k denotes the lowest phase in which oscillators
possibly fire.

First, we introduce some notation, where Φ > R.

N F(s) = {u | φ(s, u) = T }
N PF

Φ (s) = {u | φ(s, u) = Φ ∧ Δ(φ(s, u), αφ(s,u)(σ1, F), ε) + 1 > T }
N P

Φ(s) = {u | φ(s, u) = Φ ∧ Δ(φ(s, u), αφ(s,u)(σ1, F), ε) + 1 � T }
That is,N F(s) denotes the set of oscillators possibly firing in s. The setsN P

Φ(s) andN PF
Φ (s)

denote the sets of oscillators being perturbed but not firing (since the perturbation is not
sufficient for the oscillators to reach the end of their cycle), and possibly firing, respectively.
We can only say that elements ofN F(s) andN PF

Φ (s) possibly fire, since they may be affected
by a broadcast failure.

We now have to construct a sequence of transitions, where we draw the firing oscillators
from the setsN F(s1) andN PF

Φ (s1), according to the broadcast failure vector F . Furthermore,
all elements of N F(s1) and the sets N PF

Φ (s1) have to take transitions such that their phase
value in the next iteration is 1.

Let σ1 = 〈k1, k2, . . . , kT 〉. Now consider an arbitrary sequence u1, . . . , ukT of all kT
elements from N F(s1). Additionally, let CT ⊆ N F(s1) be the set of oscillators in phase T
with a broadcast failure, i.e., |CT | = fT . Observe that φ(s1, u j ) = T for all 1 � j � kT .
Furthermore, let rT0 = s1. Then we define a sequence of successors of rT0 = (envT0 , oscT0 )

as follows, where 1 � j � kT . If ui /∈ CT , then

oscTj = oscTj−1 ⊕ [u j �→ (T , update)]
envTj = (count(rTj−1) + 1, update)

otherwise

oscTj = oscTj−1 ⊕ [u j �→ (T , update)]
envTj = (count(rTj−1), update)

Observe that these states define a sequence of transitions from rT0 to rTkT according to condi-
tions (7) and (8).
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Now, for each phase Φ, with k � Φ < T , we proceed similarly. That is, we first choose
a sequence uΦ

1 , . . . , uΦ
kΦ

of oscillators and a set CΦ ⊆ N PF
Φ (s1) with |CΦ | = fΦ .

Subsequently, we define each rΦ
j to be

oscΦ
j = osc j−1 ⊕ [uΦ

j �→ (Φ, update)]

envΦ
j =

{
(count(sΦ

j−1) + 1, update), if u j /∈ CΦ

(count(sΦ
j−1), update), otherwise

where rΦ
0 = rΦ+1

kΦ
. Observe again, that these sequences exhaust N PF

Φ (s1) for each phase Φ.
Furthermore, the number of firing oscillators that are not inhibited by a broadcast failure in
the concrete model coincides with the number of perceived firing oscillators in the population
model in this phase.

For each Φ with k � Φ � T , we have count(rΦ
0 ) = αΦ(σ1, F) . (23)

To prove this let us consider the different cases: for Φ = T , we have count(rT0 ) = 0 =
αT (σ1, F). Now let Φ < T and assume count(rΦ+1

0 ) = αΦ+1(σ1, F). By definition, we
have

αΦ(σ1, F) = αΦ+1(σ, F) + kΦ+1 − fΦ+1,

since Φ < T and fΦ+1 �= �.
Now, in the sequence rΦ+1

0 , . . . , rΦ+1
kΦ+1

, we increase count(rΦ+1
0 ) exactly kΦ+1 − fΦ+1

times, i.e,

count(rΦ
0 ) = count(rΦ+1

0 ) + kΦ+1 − fΦ+1.

By assumption, we then get

count(rΦ
0 ) = αΦ+1(σ1, F) + kΦ+1 − fΦ+1 = αΦ(σ1, F),

and property (23) holds.
This property in particular states that the perturbation within the population model and

the concrete model is the same.
Since Δ is a monotonically increasing function in α, every oscillator in N PF

Φ (s1) is still
perturbed to firing after other oscillators in the same phase fired. Hence, for each pair of states
uΦ
j−1 and u

Φ
j with 1 � j � kΦ − fΦ , a transition according to condition (6) is well-defined.

Similarly, for oscillators that should fire, but are affected by a broadcast failure, uΦ
j−1 and u

Φ
j

with kΦ − fΦ + 1 � j � kΦ , the transition is defined according to condition (5).
Now, for every Φ < k, we know that Φ + Δ(Φ, αΦ(σ1, F), ε) + 1 � T and

αΦ−1(σ1, F) = αΦ(σ1, F), according to equation (13). Hence, for every phase Φ < k,
we arbitrarily enumerate the oscillators of N P

Φ(s1) = {uΦ
1 , . . . , uΦ

kΦ
} and define the follow-

ing sequence of states rΦ
j , where r

Φ
0 = rΦ+1

kΦ+1
.

oscΦ
j = osc j−1 ⊕ [uΦ

j �→ (Φ, update)]
envΦ

j = (count(rΦ
j−1), update)

For each Φ and pair of states rΦ
j and rΦ

j+1, there is a transition according to condition (4).

So, all in all, we have a sequence of transitions from s1 to r0k0 .
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Now, in r0k0 , we have thatmode(r0k0 , env) = update and for all u,mode(r0k0 , u) = update.
Then let s2 be defined by the following formulas.

mode(s2, env) = start and count(s2) = count(r0k0) (24)

∀u : mode(s2, u) = start (25)

∀u : φ(r0k0 , u) = T → φ(s2, u) = 1 (26)

∀u : φ(r0k0 , u) < T ∧ φ(r0k0(u),�)R → φ(s2, u) = φ(r0k0 , u) + 1 (27)

∀u : φ(r0
0
, u) < T ∧ φ(r0k0 , u) > R ∧

φ(r0k0 , u) + Δ(φ(r0k0 , u), count(r0k0), ε) + 1 � T

→ φ(s2, u) = φ(r0k0 , u) + Δ(φ(r0k0 , u), count(r0k0), ε) + 1 (28)

∀u : φ(r0k0 , u) < T ∧ φ(r0k0 , u) > R ∧
φ(r0k0 , u) + Δ(φ(r0k0 , u), count(r0k0), ε) + 1 > T

→ φ(s2, u) = 1 (29)

Then r0k0 and s2 satisfy all parts of condition (9). Hence, we have a sequence of transitions
from s1 to s2, and s2 ∈ S ′

c. To prove h(s2) = σ2, we need to show that the number of
oscillators possessing a phase Φ in s2 matches the Φ-th entry of σ2 = 〈k′

1, . . . , k
′
T 〉. To that

end, recall that by Definition 10, each k′
Φ = ∑

Ψ ∈UΦ(σ,F) kΨ , where σ1 = 〈k1, . . . , kT 〉 and
UΦ(σ, F) = {Ψ | Ψ ∈ {1, . . . , T }∧τ(σ, Ψ , F) = Φ}. Observe that both the concrete model
and the population model use the same perturbation function Δ and that τ is defined in terms
of Δ. In particular, we have

τ(σ,Φ, F) =
{
1 if fireΦ(σ, F)

updateΦ(σ, F) otherwise.

Now let us distinguish three cases for Φ.

1. If Φ � R, then updateΦ(σ1, F) = Φ + 1, due to the definition of the refractory function
ref. Similarly, for all u such that φ(s1, u) = Φ, we get that φ(s2, u) = Φ + 1. Hence,
for all Φ � R, we have that |{u | φ(s2, u) = Φ + 1}| = |{u | φ(s1, u) = Φ}|.

2. If Φ > R and updateΦ(σ1, F) = Ψ , with Ψ � T . Then φ(s2, u) = Ψ , by for-
mula (28). Observe that the number of oscillators in s1 with a phase of Φ is kΦ . So, the
number of oscillators that get perturbed to be in Ψ is the union of the oscillators u in
phases Φ, where Δ(Φ, count(s2), ε) + 1 = Ψ . That is, {u | φ(s2, u) = Ψ } = {u |
Δ(φ(s1, u), count(s2), ε) + 1 = Ψ }. By the definition of τ and property (23), we get
that τ(σ1, Φ, F) = Ψ . That is, for a specific Ψ , we have that the phases Φ of oscillators
perturbed to Ψ are in UΨ (σ1, F). Hence, since the sets of oscillators in each phase are
disjoint, |{u | φ(s2, u) = Ψ }| = ∑

Φ∈UΨ (σ1,F) kΦ .

3. Finally, let updateΦ(σ1, F) = Ψ and Ψ > T . Then τ(σ1, Φ, F) = 1. Furthermore,
by formulas (26) and (29), we have φ(s2, u) = 1 for all u with phase Φ. With similar
reasoning as above, we get that |{u | φ(s2, u) = 1}| = ∑

Φ∈U1(σ1,F) kΦ .

Hence, we get h(s2) = σ2, that is s2 ∈ E . Together with the existence of the transition
sequence from s1 to s2 we get P(s1, E) > 0.

From transition sequences in Dc to transition sequences in Dp . Now we turn our
attention to the other direction. That is, if we have a sequence of transitions in the con-
crete model, we can find a corresponding transition sequence in the population model. Let
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(s1, σ1) ∈ R, and let E be an equivalence class such that P(s1, E) > 0. If s1 ∈ E , then the
theorem holds, since σ1 ∈ E by definition of R. Otherwise, let ω = s1 . . . s2 be an execution
sequence from s1 to s2 and assume that for all s′ on ω different from s1 and s2, we have
mode(s′, env) = update. Recall that there is a unique σ2 ∈ E . By definition of R, we have

σ1 = 〈|{u | φ(s1, u) = 1}|, . . . , |{u | φ(s1, u) = T }|〉
σ2 = 〈|{u | φ(s2, u) = 1}|, . . . , |{u | φ(s2, u) = T }|〉

We now distinguish two cases. First, assume that {u | φ(s1, u) = T } = ∅, and let s be a
state on ω such thatmode(s, u) = update for all u. Then there is exactly one transition from
s to s2, which is defined according to Eq. (9). Furthermore, due to the assumption that no
oscillator fires, we have count(s) = 0, which implies Δ(Φ, count(s), ε) = 0 for all Φ by
Definition 5. Hence, for all u, we have φ(s2, u) = φ(s, u) + 1 = φ(s1, u) + 1. That is,

σ2 = 〈0, |{u | φ(s1, u) + 1 = 2}|, . . . , |{u | φ(s1, u) + 1 = T }|〉
= 〈0, |{u | φ(s1, u) = 1}|, . . . , |{u | φ(s1, u) = T − 1}|〉 .

That is, we have P(σ1, σ2) > 0 due to a deterministic transition, which, in particular, implies
P(σ1, E) > 0.

The second case is more involved. Let us assume {u | φ(s1, u) = T } �= ∅, that is, at
least one oscillator fires. Hence, due to the preconditions of the transitions, we can divide the
transition sequence from s1 to s2 as follows:

ω = s1, . . . , rT , . . . , rT−1, . . . , r1, . . . , s2 ,

where rΦ denotes the state where all oscillators with phase Φ changed their mode to update.
Our goal now is to find a broadcast failure vector F , such that

→
succ(σ1, F) = σ2. To that end,

let

fΦ = |{u | φ(s1, u) � Φ}| −
(

count(rΦ) +
T∑

Ψ =Φ+1

fΨ

)

for all Φ where Φ + Δ(Φ, count(rΦ), ε) + 1 > T . For the remaining Φ, set fΦ = �. Then
F = 〈 f1, . . . , fT 〉. With this broadcast failure vector at hand, we now have to show that

∑

Ψ ∈UΦ(σ1,F)

|{u | φ(s1, u) = Ψ }| = |{u | φ(s2, u) = Φ}| .

Recall that UΦ(σ1, F) = {Ψ | τ(σ1, Ψ , F) = Φ}. Hence, we need to show φ(s2, u) =
τ(σ1, φ(s1, u), F) for all oscillators u. To this end, we now need to distinguish several cases,
according to the different cases of the transition defined by condition (9).

First, let u be such that φ(s1, u) � R, i.e., oscillator u is within its refractory period. If
φ(s1, u) = T , then we have

φ(s2, u) = 1 {Cond. (9a)}
= τ(σ1, φ(s1, u), F) {Definition 9}

Otherwise, if φ(s1, u) < T , we have

φ(s2, u) = φ(s1, u) + 1 {Cond. (9b)}
= τ(σ1, φ(s1, u), F) {Definition 9}

Nowassume thatφ(s1, u) � R, i.e., oscillator u is outside of its refractory period and thuswill
be perturbed by firing oscillators. If φ(s1, u) = T , then we proceed as in the previous case.
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So, let us assume φ(s1, u) < T . To show that the transition function of the population model
coincides with the result within the concrete model, we need to ensure that the perceived
firing oscillators are equal in both models for each oscillator.

Within each phase, the perceived oscillators in the population model coincide with the
oscillators that fired up to the next higher phase in the concrete model. Formally, for each
1 � Φ < T , we have

count(rΦ+1) = αΦ(σ1, F) . (30)

To show that this is true, let σ1 = 〈k1, . . . , kT 〉. Let fΦ �= �. Then for Φ = T − 1, we
have

count(rT ) = |{u | φ(s1, u) = T }| − fT {Definition of fΦ}
= 0 + kT − fT {Definition of σ1}
= αT (σ1, F) + kT − fT {Definition of αΦ , Eq. (13)}
= αT−1(σ1, F)

Now assume that count(rΦ+1) = αΦ(σ1, F) for some 1 < Φ < T with fΦ �= �. Then

count(rΦ) = |{u | φ(s1, u) � Φ}| −
(

T∑

Ψ =Φ

fΨ

)

{Definition of fΦ}

=
(

T∑

Ψ =Φ

kΨ

)

−
(

T∑

Ψ =Φ

fΨ

)

{Definition of σ1}

=
(

T∑

Ψ =Φ+1

kΨ

)

−
(

T∑

Ψ =Φ+1

fΨ

)

+ kΦ − fΦ

= count(rΦ+1) + kΦ − fΦ {Definition of fΦ}
= αΦ(σ1, F) + kΦ − fΦ {Ass.}
= αΦ−1(σ1, F) {Definition of αΦ,Eq. (13)}

If fΦ = �, then the equality immediately holds.
Furthermore, observe that for all Φ, if fΦ = �, then we have count(rΦ+1) = count(r1).

We can now proceed to prove the final two cases.
First, let φ(s1, u) + Δ(φ(s1, u), count(r1), ε) + 1 � T . This implies fφ(s1,u) = �. Then,

by the observation and the claim above, we also get

τ(σ1, φ(s1, u), F)

= 1 + ref(φ(s1, u),Δ(φ(s1, u), αφ(s1,u)(σ1, F), ε)) {φ(s1, u) > R}
= 1 + φ(s1, u) + Δ(φ(s1, u), αφ(s1,u)(σ1, F), ε) {Eq. (30)}
= 1 + φ(s1, u) + Δ(φ(s1, u), count(rφ(s1,u)+1), ε) {Obs.}
= φ(s1, u) + Δ(φ(s1, u), count(r1), ε) + 1 {Eq. (9c)}
= φ(s2, u) .

Finally, letφ(s1, u)+Δ(φ(s1, u), count(r1), ε)+1 > T , i.e.φ(s2, u) = 1. Then it has also to
be the case thatφ(s1, u)+Δ(φ(s1, u), count(rφ(s1,u)+1), ε)+1 > T . By the claim above, this
means φ(s1, u) + Δ(φ(s1, u), αφ(s1,u)(σ1, F), ε) + 1 > T . Hence, τ(σ1, φ(s1, u), F) = 1
as well.
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Now recall that we assumed initially that for all intermediate states s of the transition
sequence, we have mode(s, env) = update. If this is not the case, we can partition the
sequence into distinct subsequences, where this assumption holds for each subsequence, and
apply the arguments above.

Comparing the probabilities of transition sequences. Let (s1, σ1) ∈ R and E be an
equivalence class with P(s1, E) > 0 and P(σ1, E) > 0. Furthermore, let σ2, s2 ∈ E be the
unique state of the population model in E and a state of the concrete model, respectively. Let
σ1 = 〈k1, . . . , kT 〉. Furthermore, let N = ∑T

i=1 ki . If no oscillator fires in σ1 this also the
case in s1. Then we have N ! possibilities to create an transition sequence starting in s1, each
of which has a probability of 1

N ! to happen. Hence, the probability that one of these transitions
happen is N ! · 1

N ! = 1, which coincides with the definition in the population model.
For the case that at least one oscillator fires and thus perturbs the other oscillators, we

consider the construction of a transition sequence from s1 with respect to a failure vector
F = 〈 f1, . . . , fT 〉 for σ1. During each phase Φ, we have to choose the particular order of
the kΦ oscillators to create a sequence from rΦ

0 to rΦ−1
0 and in addition, we have to choose

the set CΦ . That is, we have kΦ ! possible orders, and
(kΦ

fΦ

)
possibilities for the choice of

CΦ . Furthermore, the combined probability for the transitions of the oscillators that should
fire but are inhibited by a broadcast failure is

1

|initΦ(s1)|! · (1 − μ)kΦ− fΦ · μ fΦ .

Observe that at the start of the construction of each phase, |initΦ(s1)| = kΦ . Hence the
probability above simplifies to

1

kΦ ! · (1 − μ)kΦ− fΦ · μ fΦ .

Due to the possible choices during the construction of the transition sequence, we have that
the probability of one of these sequences to happen is

(kΦ

fΦ

)
· kΦ ! · 1

kΦ ! · (1 − μ)kΦ− fΦ · μ fΦ =
(kΦ

fΦ

)
· (1 − μ)kΦ− fΦ · μ fΦ ,

which is exactly the function PMF(kΦ, fΦ) as in the population model. Furthermore, with
similar reasoning as above, the transition probability for the sequences, where no oscillator
is perturbed anymore, is 1. Hence, P(s1, E) = P(σ1, E), and the sum of the probabilities of
the paths from s1 of a population model state σ1 to the elements of the equivalence class E
is equal to the probability of the the transition from σ1 to σ2.

Finally, consider the transitions from the initial states into the corresponding equiva-
lence classes. As stated in Sect. 5.4, Eq. (17), for each state of the population model
σ = 〈k1, . . . , kT 〉, we have

P(σI , σ ) = 1

T N

(
N

k1, . . . , kT

)

,

which by construction equals P(σI , E), where E is the equivalence class with σ ∈ E .
The multinomial coefficient gives the number of possible assignments of values ki to the
oscillators. This is exactly the number of states in the set S ′

c, where ki oscillators are in phase
i and the environment counter is set to 0. Since T N is the total number of such states, the
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probability of reaching the equivalence class E from sI is also

P(sI , E) = 1

T N

(
N

k1, . . . , kT

)

,

and R is a weak bisimulation. ��

By this theorem, we can use population models to analyse the global properties of a
network of pulse-coupled oscillators following the concrete model as defined in Sect. 4
without loss of precision. In particular, this allows us to increase the size of the network to
check such properties, while still giving us the opportunity to analyse the internal behaviour
of nodes, if we restrict the network size.

7 Empirical analysis

In this section we first compare the model checking times for an analysis of the concrete and
the populationmodel, followed by an analysis of the impact of the reduction of the population
model as defined in Sect. 5.5. Subsequently, we present the results of an empirical analysis of
the population model. This evaluation is based on previous work where parametric influence
[24] and power consumption [25]were investigated. For all analyses the perturbation function
we used is a discretisation of the Mirollo and Strogatz model of pulse-coupled oscillator
synchronisation [38]. In particular, we set the perturbation function to be Δ(Φ, α, ε) =
[Φ · α · ε], where [·] denotes rounding to the nearest integer; the perturbation induced by the
firing of another oscillator increases linearly with the phase of the perturbed oscillator. We
use the probabilistic model checker PRISM [34] to formally verify properties of our models.

7.1 Model specification

Both the concrete models and population models are encoded using the guarded command
language of PRISM, a state-based language, based on the Reactive Modules formalism of
Alur and Henzinger [4]. Each model consists of a set of modules, which in turn consist of a
set of local variables over finitely bound integers and Booleans and a set of commands that
define its behaviour. A command consists of a predicate over the set of local variables for all
modules and a set of possible transitions that will occur with some given probability should
the predicate hold. A transition is an assignment of values to each of the local variables of
the module. The local state space of a module is given by the set of all valuations for its local
variables, and the global space is the product of all local state spaces. For further details we
refer the reader to [40].
Concretemodel The specification of the concretemodel within PRISM is a straightforward
implementation. Each individual oscillator, aswell as the environment, is defined as amodule.
All of these modules only synchronise on a single message sync, to ensure that all oscillators
were considered to update their phases.

The module for oscillator i contains local variables modei and phasei for its mode and
phase. Each module specifies transitions for a single oscillator according to Sect. 4.2. All of
these transitions are similar in structure in eachmodule, and hencewe can employ the template
mechanism of PRISM. To that end, we define the behaviour of a single oscillator within the
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network, and can then replace the names of the local variables suitably.1 That is, while we
still need to explicitly define the dependencies between the oscillators, we do not need to
manually write all module specifications. With the exception of the number of oscillators,
the parameters of the network (the lengths of the oscillation cycle and the refractory period,
the coupling constant and the broadcast failure probability) are also parameters within the
input language of PRISM. That is, we can instantiate them and automatically run the model-
checking engine on sets of parameter combinations.

Populationmodel A single module is used to specify an instance of the population model.
The global state is encoded using T finitely bound integer variables ranging over N discrete
values, where each variable records the number of oscillators sharing some phase value in
1, . . . , T . In contrast to the specification of the concrete model, specifying an instance of the
population model is not straightforward. For the concrete model the length of the oscillation
cycle T could be easily specified as a parameter within the input language of PRISM, and
moving between two models with different values for T , but sharing the same value for all
other parameters, is as simple as changing the value of the parameter in the specification. For
the population model this was not possible, as T variables are needed to count the oscillators
with different phases, and hence changing T leads to a change in the number of variables.
The changes that arise from the introduction or removal of these new variables propagate
throughout the specification, which for large models may consist of many thousands of lines
of code. Further complications also arose when encoding the transitions from the initial
unconfigured state σI to every possible configured state for the oscillators, since a single
model may have many thousands of such transitions for larger values of N and T .

To facilitate the analysis of families of parameter-wise different oscillator population
models we developed a Python script2 that allows the user to define ranges for N , T , R,
ε and μ, for some fixed definitions for the perturbation function Δ. Then, given a list of
properties, for each combination of parameters the script generates a specification, checks
all the given properties against that specification using PRISM, and writes user specified
output (e.g. result, model checking time, etc.) to a file that can be used by statistical analysis
tools. The reduction introduced in Sect. 5.5 could not be implemented with the existing
high-level specification language of PRISM. It was only possible to specify the individual
rewards labelling some transitions, namely those from the initial unconfigured state to each
of its possible successors, by introducing additional variables to the model. Therefore, at the
time of writing, and to the best of our knowledge, it is not possible to implement a script
for the generation of PRISM code for all the reduced models. The results shown in Table 3
were obtained using a prototypical version of the model checker ePMC, formerly known as
IscasMC [27], which had been modified to accept a low level representation of a model as
input (as a set of states and transitions), where each transition could be individually labelled
with a reward.

7.2 Comparison between concrete and population

In this section, we compare the differences between the concrete and population models.
We restrict our comparison to the analysis of the probability to achieve synchronisation,

1 The implementation can be found at https://github.com/PaulGainer/mc-bio-synch/tree/master/multi-scale-
verification/concrete.
2 The implementation can be found at https://github.com/PaulGainer/mc-bio-synch/tree/master/multi-scale-
verification/population.
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Table 2 Model construction and model checking times for the concrete and population model with T = 10,
μ = 0.2 and ε = 0.1 (in seconds)

R N = 4 N = 5

Concrete Model Population Model Concrete Model Population Model

Constr. Check Constr. Check Constr. Check. Constr. Check

0 0.069 0.941 0.385 0.017 0.181 4.163 1.436 0.028

1 0.061 0.882 0.388 0.017 0.221 3.888 1.71 0.027

2 0.055 0.89 0.544 0.027 0.159 3.746 1.486 0.028

3 0.072 0.838 0.442 0.025 0.15 3.789 1.471 0.034

4 0.047 0.96 0.436 0.024 0.208 4.1 1.604 0.042

5 0.057 10.111 0.42 0.047 0.174 289.73 1.401 0.113

6 0.059 5.134 0.38 0.045 0.279 153.75 1.343 0.107

7 0.053 3.218 0.413 0.048 0.148 72.525 1.337 0.107

8 0.056 1.417 0.356 0.013 0.055 25.188 1.194 0.019

9 0.048 0.02 0.347 0.006 0.15 0.074 1.163 0.007

10 0.013 0.005 0.35 0.007 0.042 0.037 1.158 0.008

excluding the necessary time or power to achieve this (cf. Sect. 7.4). Model checking this
property against both models yields identical results, as was expected in light of the results
of Sect. 6. However, as expected from the definition of the concrete model in Sect. 4, the
increase in the size of the model is much more pronounced for the concrete model. Hence,
the performance of the model checking procedure differs strongly between the models.

Table 2 shows the model construction and checking times for some exemplary parameter
combinations of themodels, as reported by PRISM.3 In the table, themodel construction time
denotes the time PRISM needs to construct a DTMC representation from the specification.
In the concrete model, the bulk of time is spent in the model checking phase, while the
construction is much faster. For the analysis of the population model, however, the situation
is reversed. The model construction phase is at least an order of magnitude longer than the
model checking phase. As expected, the model checker needs less time for the analysis of
the population model, even if the times needed for model construction and checking were
considered together. However, we can also see that while checking both the concrete and
population model, refractory periods around R = T

2 are harder for the model checker to
analyse. This is because for very low and very high refractory periods the synchronisation
probability is either 1 or 0, and such qualitative results are trivially, and efficiently obtained
in a precomputation step by the model checker.

For properties relating to global behaviour a population model is beneficial, However,
it requires all nodes to be behaviourally identical. While we defined our concrete model in
a similar fashion, we could in principle relax this restriction. That is, we could allow for
different perturbation functions for each node, or for partitions of nodes.

3 The experiments were run on a computer equipped with an Intel Core i7-7700 CPU at 3.6 GHz and with
16GB of RAM. The version of PRISM used was 4.4 beta.
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Table 3 Reduction in state space and transitions where R = 1 and ε = 0.1 for different population sizes and
maximal phase values

N T D D′ Reduction (%)

States Transitions States Transitions States Transitions

3 6 113 188 22 52 80.5 72.3

5 6 505 1030 127 389 74.9 62.2

8 6 2575 7001 793 3154 69.2 54.9

3 8 241 410 37 97 84.6 76.3

5 8 1585 3250 331 1097 79.1 66.2

8 8 12871 34615 3433 14519 73.3 58.1

3 10 441 752 56 156 87.3 79.3

5 10 4005 8114 716 2484 82.1 69.4

8 10 48,621 128,6936 11,6441 50,6883 76.5 60.5

7.3 Reduction analysis

In this section we present the effect of the reduction of population models as defined in
Sect. 5.5. Table 3 shows the number of reachable states and transitions of the DTMC D, and
corresponding reduction D′, for different population sizes (N ) and oscillation cycle lengths
(T ), using the Mirollo and Strogatz model of synchronisation presented at the start of this
section. The number of reachable states is stable under changes to the parameters R, ε, and
μ, since every possible firing state is always reachable from the initial state. For the results
shown here the parameters were arbitrarily set to R = 1, ε = 0.1. The underlying graph of
the DTMC, and hence the number of transitions, is stable under changes to the parameter μ,
and is not of interest here. Larger values of N and T were not investigated, due to the large
model sizes when generating the unreduced model.

Table 4 shows the number of transitions of the DTMC, and corresponding reduction,
for various population model instances, and again uses the Mirollo and Strogatz model of
synchronisation. Increasing the length of the refractory period (R) results in an increase in
the reduction of transitions in the model. A longer refractory period leads to more firing
states where the firing of a group of oscillators is ignored. This results in successor states
having oscillators with lower values for phase, and hence a longer sequence of determinis-
tic transitions (later removed in the reduction) leading to the next firing state. Conversely,
increasing the strength of the coupling between oscillators (ε) results in a decrease in the
reduction of transitions in the model. For the Mirollo and Strogatz model of synchronisation
used here, increasing the coupling strength results in a linear increase in the pertubation to
phase induced by the firing of an oscillator. This results in successor states of firing states
having oscillators with higher values for phase, and hence a shorter sequence of deterministic
transitions leading to the next firing state.
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Table 4 Reduction in transitions
for N = 5 and T = 10 with
different values of R and ε

R ε Transitions Reduction (%)

D D′

1 0.1 8114 2484 69.4

3 0.1 7928 2391 69.8

5 0.1 7568 2211 70.8

7 0.1 6976 1915 72.5

9 0.1 6006 1430 76.2

1 0.01 6006 1430 76.2

1 0.05 6426 1640 74.5

1 0.1 8114 2484 69.4

1 0.25 8950 2902 67.6

1 0.5 9382 3118 66.7

7.4 Populationmodel evaluation

In this sectionwediscuss the influence of different parameters of the populationmodel defined
in Sect. 5 on both the likelihood that a network of oscillators will eventually synchronise,
and the requisite time and power consumption to achieve this. For a real deployment of
synchronising nodes, for example a Wireless Sensor Network (WSN), communication is
costly with respect to energy consumption. Therefore, minimising power consumption is a
critical consideration for their design [2,44]. Once deployed, a WSN is generally expected to
function independently for long periods of time. In particular, regular battery replacement can
be costly and impractical for remote sensing applications. Hence, it is important to reduce
the power consumption of the individual nodes by choosing low-power hardware and/or
energy efficient protocols. However, to make informed choices, it is also necessary to have
good estimations of the power consumption for individual nodes. While the general power
consumption of the hardware can be extracted from data sheets, estimating the overall power
consumption of different protocols is more demanding. Communication between nodes in
the network is either active when sending a message, i.e., when a node fires, or passive, when
receiving messages from other nodes. Hence, during periods where a sensor does neither, the
antenna can be shut down to save energy. In ourmodels, this interval of inactivity corresponds
to the refractory period. That is, the longer the refractory period is, the less energy will be
consumed.

First, we consider a binary metric where we are only interested in states where all oscil-
lators share precisely the same phase. Second, we derive a synchronisation metric from the
complex order parameter of Kuramoto [32], that captures the degree of synchrony of a fully
connected network of oscillators as a real value in the interval [0, 1].

Binary synchronisationmetric Herewe use the binary notion of synchronisation introduced
in Sect. 5.3, where a global state σ = 〈k1, . . . , kT 〉 is synchronised if, and only if, there is
some Φ ∈ {1, . . . , T } such that kΦ = N . We created concrete input models for PRISM
for different parameters of the model, for example the number of oscillators and different
coupling strengths. Each of these models was subsequently checked with respect to different
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Fig. 5 Synchronisation probabilities for different refractory periods (a), and synchronisation times for different
rates of broadcast failure (b)

properties. Other case studies could also be considered for alternative models of synchroni-
sation where the dynamics of oscillators, and their interactions, can be described by some
perturbation function.

We are interested in the probability of eventual synchronisation and in the expected time
needed to achieve synchronisation. The probability of eventual synchronisation is given by
the PCTL property

P=?

[

F
T∨

i=1

(ki = N )

]

.

we first define a reward structure that associates a value of 1
T with every unsynchronised state

in Γ \ {σI }, that records the number of cycles taken to achieve synchrony.
To determine the expected time taken for a populationmodel to synchronisewe accumulate

a reward along a path until some synchronised global state is reached, and define a reward
structure Rtime = (Rs, Rt ). We set Rs(σ ) = 1

T for every unsynchronised state in Γ \ {σI },
Rs(σ

′) = 0 for all other σ ′ ∈ Γ , and Rt (σ1, σ2) = 0 for all σ1, σ2 ∈ Γ . Intuitively, we expect
a reward of 1 along a path where synchronisation occurs after T transitions (one complete
oscillation cycle). This is achieved by assigning a reward of 1

T to each unsynchronised state,
since a transition of the model from one state to the next corresponds to a step of 1

T oscillation
cycles. In this way we obtain a measure of synchronisation time in oscillation cycles.

The expectation of time to achieve synchronisation is then given by the PCTL property

R=?

[

F
T∨

i=1

(ki = N )

]

,

with respect to the reward structure Rtime. We note here that a result of Infinity is obtained
for accumulating this reward along a path where the probability of reaching a synchronised
state is less than 1.

We generated models for different numbers of oscillators 3 � N � 8, cycle lengths
4 � T � 10, coupling constants ε ∈ {0, 0.1, . . . , 1.0}, refractory periods 0 � R � T , and
message loss probabilities μ ∈ {0, 0.1, . . . , 1.0}, and analysed the models with respect to
the two properties of interest.

Figure 5a plots the probability of synchronisation for different rates of broadcast failure
against the refractory period for N = 8, T = 10, and ε = 0.1. We can observe a trade-
off between a high refractory period and high synchronisation probability. As long as the
refractory period is less than half the oscillation cycle, synchronisation will be achieved in
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almost all cases. Higher values for R result in a rapid drop in synchronisation probability.
The exception is the edge case μ = 0, which may seem surprising. If μ = 0 a model is
deterministic. The results for μ = 1 are omitted here as, unsurprisingly, if all firings result in
broadcast failures the synchronisation probability is almost zero. In fact, the only runs that
synchronise in this case are runs where the first configured state is already synchronised.

Figure 5b shows us that a higher refractory period results in shorter synchronisation times
when the probability for broadcast failure is low. In general, a longer refractory period up to
half the cycle length improves the rate of convergence to synchrony, which is consistent with
the findings of [17]. Furthermore, for high values ofμ the differences in synchronisation times
for different refractory period lengths are negligible. Hence, a refractory period of slightly
less than half the cycle, with a low coupling constant ε, is optimal for this model of synchro-
nisation. As ε is increased the results remain similar, but with a decrease in synchronisation
times.

Order parameter synchronisation metric In the previous section a binary metric of syn-
chrony for a population model was employed, where a state was synchronised if, and only
if, all oscillators in that state shared the same phase. However, it is clear that some global
states appear to be closer to achieving a truly synchronised state than others. Consider the
global states σ1 = 〈0, 2, 0, 2, 0, 2〉 and σ2 = 〈0, 0, 0, 0, 1, 5〉 of some population model for
a network of N = 6 nodes with an oscillation cycle over T = 6 discrete values. Using the
binary notion of synchrony all that is known is that both states are not synchronised, yet it is
clear that for nearly all models of synchronisation, encoded as some perturbation function,
σ2 appears to be closer to converging to a state where all oscillators share the same phase.

The binary notion of synchrony can be extended by introducing a phase coherencemetric
for the level of synchrony of a global state. The metric is derived from the order parameter
introduced by Kuramoto [32] as a measure of synchrony for a population of coupled oscil-
lators. If the phases of the oscillators are considered as positions on the unit circle in the
complex plane, they can be represented as complex numbers with magnitude 1.

Definition 21 The function φC : [1 . . . T ] → C maps a phase value to its corresponding
position on the unit circle in the complex plane, and is defined as φC(Φ) = eiθΦ , where
θΦ = 2π

T (Φ − 1).

A measure of synchrony η ∈ [0, 1] can then be obtained by calculating the magnitude of
the complex number corresponding to the mean of the phase positions. A global state has
a maximal value of η = 1 when all oscillators are synchronised and share the same phase
Φ, mapped to the position defined by φC(Φ). It then follows that the mean position is also
φC(Φ) and |φC(Φ)| = 1. A global state has a minimal value of η = 0 when all of the
positions mapped to the phases of the oscillators are uniformly distributed around the unit
circle. This also occurs when their positions achieve mutual counterpoise, for example when
N
2 oscillators share some phase value Φ and the remaining N

2 oscillators have a phase value
whose position on the complex plane is the negation of φC(Φ).

Definition 22 The phase coherence function PCF : Γ → [0, 1] maps a global state to a real
value in the interval [0, 1], and is given by

PCF(〈k1, . . . , kT 〉) =
∣
∣
∣
∣
∣

1

N

T∑

Φ=1

kΦφC(Φ)

∣
∣
∣
∣
∣
,

where |·| denotes the complex modulus.
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Fig. 6 Argand diagram of the
phase positions for the global
state 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉
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φC(7) φC(10)
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Re

θ6
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θ10

1−1
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−
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Example 4 Figure 6 shows a plot on the complex plane of the positions of the phases for some
global state σ = 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉 of a population model where N = 8, T = 10.

The phase positions are given by φC(6) = eiπ for 2 oscillators with phase 6, φC(7) = e
6iπ
5

for 1 oscillator with phase 7, and φC(10) = e
9iπ
5 for 5 oscillators with phase 10. The phase

coherence can then be determined as

PCF(σ ) =
∣
∣
∣
∣
1

8

(
2eiπ + e

6iπ
5 + 5e

9iπ
5

)∣
∣
∣
∣ = 0.4671.

The mean phase position is indicated on the diagram by Φ.

The two new properties of interest are firstly, the time taken for the network to reach a
state where some desirable degree of synchronisation with respect to the newmetric has been
achieved, and secondly, the power consumed by the network to reach that state. In addition
to the expected time/power consumption we will also investigate the maximal time/power
consumption.4

We now define a reward structure Rpow = (Rs, Rt ) that annotates a model with rewards
corresponding to power consumption. Firstly, let Iid , Ir x , and Itx be the current draw in
amperes for the idle, receive, and transmit modes of a synchronising node in a network, V
be the voltage, C be the length of the oscillation cycle in seconds, and Mt be the time taken
to transmit a synchronisation message in seconds. We now define

Wid = IidVC

3600T
, Wrx = Ir x VC

3600T
, Wtx = Itx V Mt

3600
,

where Wid is the power consumption in Watt-hours of one node for one discrete step within
its refractory period (the oscillator is in the idle mode), Wrx is the power consumption in
Watt-hours of one node for one discrete step outside of its refractory period (in receive
mode), and Wtx is the power consumption in Watt-hours to transmit one synchronisation
message. The power consumption of the network consists of the power necessary to transmit

4 This can be achieved by using the filter construct of the model checker PRISM.
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Fig. 7 Power (a) and time (b) per node to achieve synchronisation

the synchronisation messages, and that of the oscillators in the idle and receive modes. For
synchronisationmessages, we consider each firing state σ , and assign a reward of Rt (σ, σ ′) =
k1Wtx to every transition from σ to a successor state σ ′ = 〈k1, . . . , kT 〉. This corresponds to
the total power consumption for the transmission of k1 synchronisation messages. For each
state σ = 〈k1, . . . , kT 〉 where the oscillators are configured, the total power consumption for
oscillators in the idle and receive modes is

ρS(σ ) =
R∑

Φ=1

kΦWid +
T∑

Φ=R+1

kΦWrx .

For our experiments we set ε = 0.1 and μ = 0.2. We could have conducted analyses
for different values for these parameters. For a real system, the probability μ of broadcast
failure occurrence is highly dependent on the deployment environment. For deployments in
benign environments we would expect a relatively low rate of failure, for instance a WSN
within city limits under controlled conditions, whilst a comparably high rate of failure would
be expected in harsh environments such as a network of off-shore sensors below sea level.
The coupling constant ε is a parameter of the system itself. Our results suggest that higher
values for ε are always beneficial, however this is because we only model fully connected
networks. High values for ε may be detrimental when considering different topologies, since
firing nodes may perturb synchronised subcomponents of a network. However we defer such
an analysis to future work.

As an example we analyse the power consumption for values taken from the datasheet of
theMICAz mote [37]. For the transmit, receive and idling mode, we assume Itx = 17.4 mA,
Ir x = 19, 7 mA, and Iid = 20μA, respectively. Furthermore, we assume that the oscillators
use a voltage of 3.0 V . We define coherentλ to be a predicate that holds for any state σ in
Γ \ {σI } with PCF(σ ) � λ. The properties of interest are then given by the PCTL property

R=?[F coherentλ] (31)

Figure 7a, b show both the average and maximal power consumption per node (in mWh)
and time (in cycles) needed to synchronise, in relation to the phase coherence of the network
with respect to different lengths of the refractory period, where ε = 0.1 andμ = 0.2. That is,
they show how much power is consumed (time is needed, resp.) for a system in an arbitrary
state to reach a state where some degree of phase coherence has been achieved.

The average, and maximal values are obtained using the avg andmax filters of the PRISM
model checker. These filters give the average (maximum, resp.) expected reward across all
paths starting in states that satisfy some given predicate. The desired values are therefore
obtained by checking property (31) against all states of the model where oscillators are
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Fig. 8 Power consumption in
relation to broadcast failure
probability
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Fig. 9 Expected (a) and maximal (b) power consumption vs. time taken to achieve synchrony

configured i.e. all σ ∈ S \ {σI }. For both cases the total values obtained were divided by the
number of nodes in the network.

The much larger values obtained for R = 1 and phase coherence � 0.9 are not shown
here, to avoid distortion of the figures. The energy consumption for these values is roughly
2.4 mWh, while the time needed is around 19 cycles. Observe that we only show values for
the refractory period R with R < T

2 . For larger values of R not all runs synchronise [24],
resulting in an infinitely large reward being accumulated for both the maximal and average
cases.

As expected when starting from an arbitrary state, the time and power consumption
increases monotonically with the order of synchrony to be achieved. On average, networks
with longer refractory periods require less power for synchronisation, and take less time to
achieve it. The only exception is that the average time to achieve synchrony with a refractory
period of four is higher than for two and three. However, if lower phase coherence is sufficient
then this trend is stable. In contrast, the maximal power consumption of networks with R = 4
is consistently higher than of networks with R = 3. In addition, the maximal time needed
to achieve synchrony for networks with R = 4 is higher than for lower refractory periods,
except when the phase coherence is greater than or equal to 0.9. We find that networks with
a refractory period of three will need the smallest amount of time to synchronise, regard-
less of whether we consider the maximal or average values. Furthermore, the average power
consumption for full synchronisation (phase coherence one) differs only slightly between
R = 3 and R = 4 (less than 0.3 mWh). Hence, for the given example, R = 3 gives the
best results. These relationships are stable even for different broadcast failure probabilities
μ, while the concrete values increase only slightly, as illustrated in Fig. 8, which shows the
power consumption for different values of μ when ε = 0.1.

The general relationship between power consumption and time needed to synchronise is
shown in Fig. 9a, b. Within these figures, we do not distinguish between different coupling
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constants and broadcast failure probabilities. We omit the two values for R = 1, ε = 0.1 and
μ ∈ {0.1, 0.2} in Fig. 9b to avoid distortion of the graph, since the low coupling strength and
low probability of broadcast failure leads to longer synchronisation times and hence higher
power consumption. While this might seem surprising it has been shown that uncertainty in
discrete systems often aids convergence [22].

The relationship between power consumption and time to synchronise is linear, and the
slope of the relation decreases for higher refractory periods. While the linearity is almost
perfect for the average values, the maximal values have larger variation. The figures again
suggest that R = 3 is a sensible and reliable choice, since it provides the best stability of
power consumption and time to synchronise. In particular, if the broadcast failure probability
changes, the variations are less severe for R = 3 than for other refractory periods.

8 Conclusion

In this paper we have introduced a formal concrete model for a network of nodes synchronis-
ing their clocks over a set of discrete values. Furthermore, we developed a population model
that can alleviate state-space explosion when reasoning about significantly larger networks.
We encoded both models as discrete-time Markov chains, and evaluated them for several
parameter combinations. Furthermore, we formally connected the models by showing that a
concrete model of a network and a population model of same network are probabilistically
weakly bisimilar.

Formalising the individual nodes of a network allows for the analysis of their internal
properties. Even though we did not give explicit definitions, a concrete network could be
instantiated to incorporate different topologies by explicit encoding of possible perturbances
in the nodes’ transitions. However, the internal structure also complicates the verification of
global network properties. Modelling the whole network as the product of the models for the
individual nodes quickly, and unsurprisingly, results in a model that is too large to analyse
with existing tools and techniques. While the use of appropriate collective abstractions, such
as populationmodels, allow for the analysis of larger networks, they often impose restrictions
on the topologies of the network that can be considered. We could, of course, simply take
the product of individual population models to represent network structures more specialised
than the fully-connected graphs considered here, but again we face the consequences of this
approach when trying to analyse the resulting model, in particular the explosion of the state
space. Furthermore, this also means that every node of a population model may influence
all nodes of a connected population model. Finally, our abstract relation would need to take
the mapping of single nodes into different components into account. When using population
models we lose the possibility to distinguish between nodes having the same internal state.
However, this does not restrict our analysis when considering networks of homogeneous
nodes where the properties of interest relate to global behaviours of the network itself.

Our current definition of pulse-coupled oscillators only allows for non-negative results
of the phase response function. However, there are also oscillator definitions with phase
response functions with possibly negative values [48]. That is, instead of shifting the state
of an oscillator towards the end of the cycle, the perturbation may reduce the value of the
oscillator’s state. It would be interesting to study the impact of negative-valued phase response
functions in the setting of discrete clock values.
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