Formal Methods in System Design
https://doi.org/10.1007/510703-021-00369-1

®

Check for
updates

Certifying proofs for SAT-based model checking

Alberto Griggio'® - Marco Roveri(® - Stefano Tonetta'

Accepted: 19 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

In the context of formal verification, certifying proofs are evidences of the correctness of a
model in a deduction system produced automatically as outcome of the verification. They are
quite appealing for high-assurance systems because they can be verified independently by
proof checkers, which are usually simpler to certify than the proof-generating tools. Model
checking is one of the most prominent approaches to formal verification of temporal prop-
erties and is based on an algorithmic search of the system state space. Although modern
algorithms integrate deductive methods, the generation of proofs is typically restricted to
invariant properties only. Moreover, it assumes that the verification produces an inductive
invariant of the original system, while model checkers usually involve a variety of complex
pre-processing simplifications. In this paper we show how, exploiting the k-liveness algo-
rithm, to extend proof generation capabilities for invariant checking to cover full linear-time
temporal logic (LTL) properties, in a simple and efficient manner, with essentially no over-
head for the model checker. Besides the basic k-liveness algorithm, we integrate in the proof
generation a variety of widely used pre-processing techniques such as temporal decomposi-
tion, model simplification via computation of equivalences with ternary simulation, and the
use of stabilizing constraints. These techniques are essential in many cases to prove that a
property holds, both for invariant and for LTL model checking, and thus need to be considered
within the proof. We implemented the proof generation techniques on top of IC3 engines, and
show the feasibility of the approach on a variety of benchmarks taken from the literature and
from the Hardware Model Checking Competition. Our results confirm that proof generation
results in negligible overhead for the model checker.

Keywords Certifying model checking - Linear-time temporal logic - LTL - Invariant
checking - Liveness - Deductive proofs

B Alberto Griggio
griggio@fbk.eu

Marco Roveri
marco.roveri @unitn.it

Stefano Tonetta
tonettas @fbk.eu

Fondazione Bruno Kessler, Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento, Italy

University of Trento Via Sommarive 9, 38123 Povo, Trento, Italy

Published online: 24 June 2021 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-021-00369-1&domain=pdf
http://orcid.org/0000-0002-3311-0893
http://orcid.org/0000-0001-9483-3940
http://orcid.org/0000-0001-9091-7899

Formal Methods in System Design

1 Introduction

The application of formal methods in the certification of high-assurance systems demands the
qualification of the verification tools to ensure a sufficient level of confidence in their results
(see for example the DO-333 standard in the avionic domain [40]). However, verification
tools such as model checkers can be quite complex, can leverage on numerous heuristics
and combinations of techniques to be efficient (see also [44]). The idea of certifying model
checking [35] to generate deductive proofs as byproduct of the verification is therefore quite
appealing, because the proof can be verified by independent proof checkers, which are usually
simpler to certify than the proof-generating tools.

Most modern model checking techniques integrate search-based and deductive methods
such as induction. In particular, many current model checking algorithms are based on a
sequence of SAT queries to find inductive invariants incrementally (e.g., IC3 [11]). Never-
theless, most works on certifying model checkers go back a decade, are mainly theoretical and
based on p-calculus, while practical SAT-based approaches are currently limited to invariant
properties.

In the case of an invariant property ¢, the basic idea of certifying model checking is quite
intuitive. If you generate an inductive invariant v, the proof checker needs to prove that: (i)
Y is inductive; (ii) ¥ is satisfied in the initial states; (iii) ¥ entails the property ¢. These are
three validity problems that can be solved by a SAT solver. The idea naturally lifts also to
k-inductive invariants [33].

However, in order to be effective on real-world benchmarks, most model checkers imple-
ment a variety of pre-processing simplifications. The generated invariant is therefore inductive
relative to other invariants, for which we do not always have an inductive proof. This is the
case for example for techniques such as temporal decomposition [14] and model simplifica-
tion through computation of equivalences via ternary simulation [9,13].

If we consider liveness properties, the problem is even more complex because simplifi-
cations such stabilizing constraints [18] consider properties that are invariants eventually in
the future, after an unbounded number of transitions.

Finally, if the property is expressed in temporal logic such as Linear Temporal Logic
(LTL) [38], the proof generation needs to consider various transformations that are applied
to the problem: model checking is reduced by contradiction to finding a counterexample;
LTL formulae are encoded into symbolically-represented automata [19]; multiple fairness
conditions resulting from such encoding are reduced to one; liveness is reduced typically to
safety.

We propose a sound and complete approach that addresses the above issues. SAT-based
model checking is extended to generate a proof for both invariant and LTL properties. In the
second case, the proof is generated from the inductive invariant obtained with the k-liveness
algorithm [18] by combining standard resolution with inference rules specific for LTL, and
reasoning by contradiction: by assuming that initially the negation of the property holds,
we prove that a certain fairness condition can be visited at most k times, in contradiction
with the validity of the fairness condition itself. The proof is built from the original initial
and transition conditions of the system, thus reverting internal transformations including the
introduction of a counter for k-liveness, the monitoring variables for the degeneralization of
the multiple fairness conditions, the tableau variables for the LTL encoding. Finally, the proof
generation takes into account different pre-processing techniques such as temporal decom-
position, model simplification through computation of equivalences via ternary simulation,
and the use of stabilizing constraints.

@ Springer

Formal Methods in System Design

The resulting approach is simple and efficient, and it can be implemented on top of
any state-of-the-art SAT-based LTL and invariant model checker based on the combination
of engines capable of producing inductive invariants (e.g., IC3 [11]). The proposed proof
generation techniques result in essentially no overhead for the model checker. It can be
applied as is also for generating proofs of the validity of LTL formulae.

We have implemented the proof generation technique within the SIMPLIC3 backend [27]
of the NUXMV [15] model checker, and on top of IC31A [20], a simple and open-source
implementation of IC3 that uses the MATHSAT [16] SMT solver as backend. We carried out
a thorough experimental evaluation on the several benchmarks taken from the literature and
from the latest Hardware Model Checking Competition (HWMCC) [7]. The results show
the feasibility of the approach on the considered benchmarks, and confirm the small impact
of the proof construction on the overall verification process. Finally, we also implemented a
prototype proof-checker in Python, on top of the MATHSAT [16] SMT solver, to check the
correctness of the generated proofs, and we executed it on each of the generated proofs. The
results show that, for our prototype implementation, the cost of proof checking is comparable
with the cost of verification.

This paper is structured as follows. In Sect. 2 we analyze the related works. In Sect. 3
we provide the needed background. In Sect. 4 we discuss the proposed approach to compute
proofs for LTL model checking, and in Sect. 5 we show the results of our experimental
evaluation. Finally, in Sect. 6 we draw conclusions and outline future work.

2 Related work and contributions

This work extends the techniques first presented in [28], mainly by considering the pre-
processing techniques of temporal decomposition, model simplification via computation of
equivalences with ternary simulation, and the use of stabilizing constraints. Differently from
[28], this work also details the deduction proofs in terms of the rules defined in the standard
system for LTL first proposed by [26] (without introducing new rules). The presentation of
the material has also been improved, by providing a uniform treatment of proof generation
for both invariant and LTL properties. Finally, the experimental evaluation and the results
have been extended by considering also a new implementation of proof generation within the
SIMPLIC3 [27] backend of NUXMV [15], and by including in the evaluation the benchmarks
used in the latest edition of the Hardware Model Checking Competition (HWMCC) [7].

Among the most related works, [31] proposes to reduce liveness to safety (with a variant
of k-liveness) and to generate a proof for the resulting invariant property. However, the
translation is trusted and the proof does not target the original system but just the result of
the reduction. In contrast, our work produces a temporal proof for the original system, so
that only the proof checker must be trusted.

Another very relevant work is presented in [35], which describes a deductive proof system
for verifying properties expressed in the p-calculus, and shows how to generate a proof in
this system from a model checking run. The proposed approach is applicable both for explicit
state and symbolic search. The proof system and the proof generation process draw on results
which relate model checking for the p-calculus to winning parity games [23]. The system was
implemented (as a prototype) on top of a BDD-based engine (COSPAN [25]); it is however
unclear how to adapt it to modern SAT-based engines. Our approach instead implements proof
generation on top of SAT-based algorithms without any substantial overhead or modification
of the model checking engine. Moreover, although in terms of expressiveness LTL is more

@ Springer

Formal Methods in System Design

restricted than p-calculus, in [35], LTL is assumed to be encoded and it is not shown how to
convert the proof for the resulting p-calculus formula to a proof for LTL. Our work instead
produces a proof using inference rules for LTL, automatically reverting the internal automata
construction.

Other approaches targeting the generation of proof from model checking of LTL properties
include [21,32,36,37]. These works are however mostly theoretical, and to the best of our
knowledge, with no implementation available.

Related, but slightly-different, problems are addressed in [2,4,17]. The first work gives
a technique to incrementally build a (partial) deductive proof from the search performed
by a model checker for incomplete (partially specified) systems while proving a given LTL
property holds; the second focuses on runtime monitoring, proposing a local proof system
for LTL and showing how such a system can be used for the construction of online runtime
monitors; the third work instead discusses a proof system to provide evidence why a trace
violates an LTL specification, as opposed to certifying why the property holds on the system
under verification.

The work in [24] presents an LTL model checker whose code has been completely verified
using the Isabelle theorem prover. The proof consists of the formal verification of a few hun-
dred lines of “formalized pseudo-code”, and a verified refinement step in which mathematical
sets and other abstract structures are replaced by implementations of efficient structures. The
resulting checker is slower than unverified checkers, but it can be used as a trusted reference
implementation.

Finally, some theorem provers for LTL can produce proofs, such as TRP++ [29] and
TeMP [30]. Both systems are based on the temporal resolution calculus and can produce
fine-grained proofs, which can then be inspected and checked to certify the correctness.
However, no automatic proof checkers are available.

Overall, to the best of our knowledge, no previous work (apart from the preliminary results
of this work presented in [28]) provides the following original contributions:

— atechnique that generates temporal deductive proofs from SAT-based LTL model check-
ing;

— a proof-generation technique based on the symbolic encoding of LTL into fair transition
systems;

— a proof-generation technique for LTL validity based on model checking;

— a proof-generation technique for SAT-based (invariant or LTL) model checking that
considers widely used simplification techniques (temporal decomposition, model sim-
plification with equivalences computed with ternary simulation [9,13], and the use of
stabilizing constraints [18]);

— an available effective implementation of proof generation from Invariant and LTL model
checking.

3 Background

We work in the setting of Boolean (i.e. propositional) logic, with the standard notions of
satisfiability, validity, interpretations and models. We denote propositional variables with
v, x, y, and formulae with ¢, ¢, f,«, B, I, T, possibly with subscripts or primes (e.g vy,
x"). If V, V' are (disjoint) sets of variables, we write ¢ (V, V) to stress that all the variables
occurring in ¢ belong to V U V', We use ite(Pc, ¢r, Pe) as a shorthand for (¢, — ¢;) A
(—¢. — ¢.). Given a variable v, a formula ¢ and a formula i not containing v, we denote

@ Springer

Formal Methods in System Design

with ¢[v :=] the result of substituting v with ¢ everywhere in ¢. We extend this to sets
of variables in a pointwise manner. If V and V' are two disjoint sets of variables, we might
write @[V := V'] as ¢'. A counter is an integer-valued variable c¢ that occurs in two kinds of
predicates: comparisons with constants, such as ¢ = 0 or ¢ < 10; and conditional increments,
such as ite(f, ¢ = ¢+ 1, ¢’ = ¢). Abusing notation, and for the sake of readability, in the
following we sometimes use counters to denote their equivalent propositional encoding (this
can be done in a standard way, using e.g. a unary or a binary encoding for integer numbers
and the required comparison and increment operations).

3.1 Transition Systems

A transition system M is atuple M = (V, I, T) where V is a set of (propositional) state vari-
ables, I (V) is a formula representing the initial states, and T (V, V') is a formula representing
the transitions.

A state of M is an assignment to the variables V. We denote with Xy the set of states. We
say that a state s € Xy is a model for a propositional formula ¢ (V) (denoted s = ¢(V)) if
substituting in ¢ the values of the variables in s, the formula ¢ evaluates to T. A [finite] path
of M is an infinite sequence so, 1, ... [resp., finite sequence sg, s, .. ., S] of states such
that so = 7 and, for all i > O [resp., 0 < i < k], s, Sl{+1 = T. Given o := sg, 51, . . ., With
o[j] we denote the state s ;, and with o/ the paths;, sj41, Given two transitions systems
My = (V1, 11, Th) and My = (Va, I, T»), we denote with M| x M> the synchronous product
ViUVo, 1 A, T1 A T7).

3.2 Invariant Properties

Given a propositional formula ¢, the invariant model checking problem, denoted with
M = yin ¢, is the problem to check if, for all finite paths sg, s1, ..., sy of M, s; = ¢.

Most model checkers prove an invariant property by generating a stronger invariant for-
mula v that is inductive, i.e. such that: (i) I — ; (ii) ¥ A T — ¥'; and (iii) ¥ — ¢.

33 LTL

Given a set of propositional variables V, LTL formulae are built using Boolean connectives
and the temporal operators X (“next”) and U (“until””). Formally,

— avariable v € V is an LTL formula and T is an LTL formula;
— if ¢1 and ¢, are LTL formulae, then —¢y, ¢1 A ¢z, X¢p1 and ¢p; U, are LTL formulae.

We use the standard abbreviations: ¢1 V ¢ 1= —(—=¢1 A =), ¢1 — ¢2 := —d1 V ¢,
¢ < ¢ = ($1 >) A2 — ¢1), L = pA—p, Fp = TUp, Gp := —F—¢,
X% := ¢, and X"t := XX"¢ foralln > 0.

Given an LTL formula ¢, a sequence o of assignments to V, and an index i, we define
0,1 = ¢, i.e., that o satisfies the formula ¢ in i, as follows:

-o,iE=T

—o,iE=viffoli] Ev
—o,iE¢pAYiffo,i E¢dando,i =Y
—o,i =E—¢iffo,i & ¢

-0, i =X¢iffo,i+1E¢

@ Springer

Formal Methods in System Design

- 0,i = ¢Uy iff forsome j > i,0,j =Y andforalli <k < j,o,k = ¢.

Finally, 0 = ¢ iff 0,0 = ¢.

Given an LTL formula ¢, the LTL model checking problem, denoted with M = ¢, is the
problem to check if, for all (infinite) paths o of M, o = ¢.

Given an LTL formula ¢, the LTL validity problem, denoted by = ¢, is the problem of
checking if o = ¢ for all (infinite) paths over Xy. The validity problem can be reduced to
the model checking problem by considering the universal model My = (V, T, T). Itis easy
to prove that = ¢ iff My = ¢.

3.4 Symbolic LTL Model Checking

The automata-based approach [43] to LTL model checking consists of building a transition
system M-, with a set of fairness conditions F—y such that M |= ¢ iff M x M-y =
=A feFoy GF f. This reduces to finding a counterexample as a fair path, i.e., a path of the
system that visits each fairness condition in F- infinitely many times.

Following [19], the encoding of an LTL formula ¢ over variables V into a transition system
M-y = (V-¢p, I-y, T-y) with fairness conditions F_ is defined as follows:

— Vop =V U {uxg | XB € Sub(¢)} U {vx(pup, | B1UB2 € Sub(¢)}
— Iy = Enc(—¢)

- Ty = /\Ux,geVﬁ(ﬁ UxXg <> Enc(B)

- Foyp = {Enc(1iUB2 — B2) | B1UB2 € Sub(¢)}

where Sub is a function that maps a formula ¢ to the set of its subformulae, and Enc is
defined recursively as:

—Enc(M =T

— Enc(v) =v

— Enc(¢1 A ¢n) = Enc(é1) A Enc(¢z)

— Enc(=¢1) = —Enc(¢1)

Enc(X¢1) = vxg,

Enc(¢1U¢n) = Enc(¢n) Vv (Enc(dr) A vX(Ug))

3.5 Degeneralization

In explicit-state model checking, the standard way to encode a Generalized Biichi Automaton
with n fairness conditions into an equivalent “degeneralized” one (i.e., with one fairness), is
to fix an order on the fairness conditions, replicate the automaton n times, and move from
the i-th copy to the next one as soon as the i-th fairness condition is visited. Symbolically,
this can be achieved as follows.

Given a transition system M = (V, I, T') with fairness conditions F = {f, ..., f,}, we
build an equivalent system with a single fairness condition f by considering M X Mg,
where Myee = (Vieg, Ldeg, Taeg) 1s defined as follows:

~ Vieg =V U {s}

= lgeg = 5=0

= Taeg = No<icno18=1i = ite(fit1,s'=s+ 1L’ =sHA (s=n—1 — ite(fn,s' =
0,s'=s))

and f =s=0A f1.

@ Springer

Formal Methods in System Design

Most standard symbolic model checkers use a different encoding, which does not fix an
ordering on the fairness conditions: one propositional variable per fairness condition is set
to true whenever the fairness condition is visited, and when all the variables are true they
are reset to false. The proof generation described in the next section is based on the above
encoding with fixed ordering (see Sect. 4.5 for details on the reason). We analyze the impact
of this choice experimentally in Sect. 5.

3.6 K-Liveness and SAT-based Symbolic Model Checking

SAT-based algorithms take as input a propositional transition system and a property, and
try to solve the verification problem with a series of satisfiability queries. IC3 [11] is a
symbolic model checking algorithm for the verification of invariant properties. It builds an
over-approximation of the reachable state space, using clauses obtained by generalization
while disproving candidate counterexamples. In the case of finite-state systems, the algorithm
is implemented on top of Boolean SAT solvers, fully leveraging their features. IC3 has
demonstrated to be extremely effective, and it is a fundamental core in all the engines in
hardware verification.

K-liveness [18] is an algorithm recently proposed to reduce liveness checking (and so also
LTL verification) to a sequence of invariant checking problems. K-liveness uses the standard
approach, outlined above, to reduce the LTL verification problem M = ¢ to M x M-, x
Mgeq = —GF f.In[18],itis proved that, for finite-state systems, M |= —GF f iff there exists
k such that f canbe visited at most k times along a path of M. The last check can be reduced to
an invariant checking problem of the form M x M. =y, (¢ < k), where M. := (V,, I, T¢.)
is defined as follows: V. := {c}, I, ;== ¢ =0, T, :=ite(f,c = ¢+ 1, ¢ = ¢). K-liveness
is therefore a simple loop that increases k at every iteration and calls a subroutine SAFE to
check the invariant (¢ < k) on M x M,. In particular, the implementation in [18] uses IC3
as SAFE and exploits the incrementality of IC3 to solve the sequence of invariant problems
in an efficient way.

3.7 Simplifications Used in SAT-Based Model Checkers

State-of-the-art symbolic model checkers apply several pre-processing techniques, aimed at
simplifying the input model before starting the actual property verification task. In this work,
we consider some of the most popular techniques applied in SAT-based tools, namely temporal
decomposition [14], extraction of stabilizing constraints [18], and equivalence detection via
ternary simulation [9,13].

3.7.1 Temporal Decomposition

Temporal decomposition [14] is a technique that aims at simplifying the input system by
detecting and removing logic that corresponds to initialization/reset sequences of the circuit
(i.e. operations performed only in the first few steps of the system executions). Its basic idea
is to compute (or guess) the length k of the reset sequence, and then replace the initial states
of the system M := (V, I, T) with the set of states reachable in up to k steps, to obtain a
new system M k.= (V, Reach*(I), T), where Reach* (I) denotes the states reachable after
k transition steps, defined inductively as follows:

@ Springer

Formal Methods in System Design

ifk=0

Reachk(go) =)
Reach*=1(@V.o AT(V, V)[V' := V]) otherwise.

ey

M¥ can then be further simplified using other techniques (e.g. via equivalence detection
— see Sect. 3.7.3). If the property P under verification is an invariant, the application of
temporal decomposition also requires to check that for P no violation is found in the first k
steps.

In SAT-based algorithms, the computation of Reach* is typically not performed explicitly,
and instead it is replaced by a k-step unrolling of the system, in the style of bounded model
checking [6]:

BMC(MY* == IV A\ IT(V. V)

0<i<k

where |||’ replaces each variable v € V in « with a corresponding fresh variable v' and
each v’ with a corresponding fresh variable v/ *!. The search of the classical model checking
is then performed using as transition relation ||7(V, V/)||* and as initial states BM C (M),
where all the variables v’ withO < i < k are considered as inputs, and implicitly existentially
quantified.

3.7.2 Stabilizing Constraints

A formula v is a stabilizing constraint [18] for M and ¢ iff M |= ¢ is equivalent to
M = FGY) — ¢.

As shown in [18], if we are able to prove that FG (v — v’) fora variable v € V, then we can
use (v = v’) as stabilizing constraint. This can be strengthened further as follows. Assume
we are solving M = \/; FG— f; for a a set of fairness conditions f;, and that we have found
a stabilizing constraint (x = x’) for a variable x € V. If we find that FG(x — —f;) for some
fi» then it is safe to add —ux as stabilizing constraint and check M = FG—x — \/, FG—f;.
Dually, if we find that FG(—x — —f;) for some f;, then we can add x as stabilizing constraint
and check M =FGx — \/; FG—f;.

As shown in [18], stabilizing constraints may also be used to find other stabilizing con-
straints. If we have found the stabilizing constraint (x = x’) by showing M = FGx — x’
then we may use it when considering another candidate y € V as follows: M = (FGx =
x)y = (FGy — y').

The naive use of stabilizing constraints requires the use of a liveness checker to answer
queries like M = FGoa — FGb, where « is the conjunction of the stabilizing constraints
already found, and b is a proof obligation that may give rise to a new stabilizing constraint.
As proposed in [18], the check can be approximated with a SAT check that only talks about
two consecutive states of M: for example, instead of checking if FG(v — v’), we check
if (@ AT) - (v — V'), where T is the transition condition and « is the conjunction of
previously found stabilizing constraints.

@ Springer

Formal Methods in System Design

Finally, if « is the conjunction of all the found stabilizing constraints, instead of checking
M =FGa — \/; FG— f;, [18] proposes to check the stronger condition M = \/; FG(a —

—~fi).

3.7.3 Equivalence and constant propagation

Several common pre-processing techniques are based on the simplification of formulae
through the identification of equivalence classes of variables. These approaches are such
that I A GT |= GT, where T is obtained by performing equivalence and constant propaga-
tions wrt. the equivalence classes identified. They are based on the following justification: if
VEx=0¢theny = ¢ < ¢[x :=9].

A simple and effective method for discovering equivalences is to use ternary simulation
[42]. Given the input system M := (V, I, T), the method first partitions the variables V into
state variables X and input variables Y,suchthat V. = X UY, X NY =@, and I and T can
be expressed as follows:!

1(X) = /\ Xi A /\ X ()

xieX+tcx xjEX~C(X\XH)
T(XUY, X):= N x/ o fiX, V). 3)
xieX

Ternary simulation performs a symbolic simulation of the circuit using three-valued logic,
in which a variable can assume also the value X (for “unknown”). The simulation starts
from the state assigning to T all the variables in X, to L all those in X~ (see (2)), and all
the others to X. Successor states are computed by applying (3) to the current state, until a
fixpoint is reached (i.e. either an already-seen state is found, or a state with all variables set
to X is reached). This amounts to computing an overapproximation of the reachable states of
the circuit, that in turn is an invariant for the circuit itself. The accumulated set of states is
analyzed to extract constant and equivalent variables as follows. A variable is constant if it is
always assigned the same concrete value (i.e. either T or L) in all the states explored during
the simulation. Two variables x; and x; are equivalent if they are never assigned an unknown
value, and they always have the same value in each state. 2 This information is then used to
simplify the transition relation.

3.8 Deduction Systems

A deduction system consists of a set of axiom schemes and inference rules. We use natural
deduction [39] notation to represent proofs. A proof is a tree of formulae where leaves are
axioms or hypothesis, and any other formula is obtained by the application of an inference
rule. Proofs for propositional formulae can be built using the following inference rules:

l'n general, in a hardware verification context, the input system is already in this functional form. Moreover,
the technique can be extended to work also in the presence of further relational constraints on both X and Y,
but this is omitted here for simplicity.

2 This can be easily generalised to discover also XORs, i.e. cases in which x; is equivalent to —x ;.

@ Springer

Formal Methods in System Design

o]

oa—f B
T IMP- E (modus ponens) «— B IMP- 1
anp aAB a f
o AND- EL T AND- ER anp AND- 1
[a]
i

T RAA (reductio ad absurdum)

Resolution proofs obtained by SAT solvers (see e.g. [34]) can be converted to use the
above rules. In order to use resolution proofs inside other proofs, we use the reductio ad
absurdum rule. If a proof of L can be derived using —« as hypothesis, we can extend it to a
proof of &, removing « from the hypothesis.

A complete deductive system for LTL was first presented in [26]. Converting its axioms
in natural deduction rules we get the following inference rules: 3

o G (generalization) M IND (inducti
Ga g Z Ga (induction)
Ga < (a A XGa) G EXP @UB) < (BV (a A X(aUB)))) U EXF
a
Xa < =X—a N Fg ©
G(a — p) X(a = B)
m G- IMP- DIS m X- IMP- DIS

o PROP for any propositional tautology o

Note that, in the generalization inference rule, a proof of Go can be derived from « only
when the proof of @ does not have any hypothesis. From this, we can derive a similar rule to
introduce X:

o
< X
Xa

The derivation of the following rules can be found also in [3]:

G(@ A B) < (Ga A Gp) G AND-DIS
X(@ A B) < (Xa AXp) X AND-DIS
GGa = Ga T TRANS
XGa < GXa X G- COM

FGa
GFa F- G- COM

The following expansion rule is derived from multiple application of U- EXP:

——— EXP
o < Exp(a)

3 Note that here Fo and Go are just abbreviations for TU« and —(TU—«) respectively, as introduced in

Sect. 3.3. In principle, we could have used a system with simpler rules defined for the primitive operators. We
preferred to keep the rules defined in [26].

@ Springer

Formal Methods in System Design

where Exp is defined recursively as:

- Exp(v) =v

— Exp(é1 A ¢2) = Exp(¢1) N Exp(é)

- Exp(=¢1) = —~Exp(é1)

- Exp(X¢1) = X¢

— Exp(¢1U¢2) = Exp(¢2) vV (Exp(¢1) A X($1U¢2))

X distribution is obtained by multiple application of X- NOT- DIS, X- AND- DIS:

Xo
Next(a) NEXT

where Next is defined recursively as:

Next(v) = Xv

Next(p1 A ¢2) = Next(p1) A Next(¢2)

Next(—¢1) = ~Next(¢1)

Next(X¢1) = XX¢y

Next(¢p1U¢a) = Next(¢2) vV (Next(¢1) A XX (¢p1U¢2))

3.9 Certifying Model Checking for Invariants

In case of an invariant property ¢, an inductive invariant ¢ can be used to generate a proof
of ¢. In fact, since the formulae I — ¥, v AT — ¥', ¥ — ¢ are valid, we can obtain
a resolution proof for each of them. Using an inductive inference rule, we can then deduce
that ¢ holds in all reachable states.

Remark 1 Note that, there are two levels of proof generation and proof checking. In the first
level, we can generate a set of proof obligations (which would in this case coincide with
the three valid formulae built with the inductive invariant) and the proof checker has the
task of discharging them by proving they are valid. In the second level, the proof generation
can further generate a resolution proof for each proof obligation and in this case the proof
checker has only the task of checking the single inference rules in the proof. In the first case,
we need to trust the SAT solver proving the formulae valid (the input problem is simpler than
the original model checking one, but the solver may be still very complex to be efficient).
In the second case, we need to trust only a proof checker, which is usually much simpler.
However, the generation of compact resolution proofs from SAT is a challenge on its own,
and typically certifying model checkers are limited to the first level.

4 Certifying proofs for SAT-based LTL and invariant model checking
4.1 LTL Model Checking and LTL Validity

Consider the LTL model checking problem M = ¢, where M = (V, I, T'). With abuse of
notation, we consider T also as an LTL formula, identifying v" with Xv for every variable
v € V. In order to prove that M = ¢, we provide a proof of (I A GT) — ¢.

Note that, in case the original problem is the validity of an LTL formula ¢, we reduce it
to the model checking problem My = ¢ (as explained in Sect. 3.4) generating a proof of ¢
since the initial and transition conditions of My are T.

@ Springer

Formal Methods in System Design

POs for
PO o himess Cneness
ls)izspf?ffe d frl;?lzﬁﬁ)es conditions p; (L AG(T)) = Vi<i<n FG(—p;)
initial condition 7 (AG(T) > Vici<n FGf;
condition ¢ (AG(T AT-¢)) = Vi<i<n FGf; Lemmas for
(INg AG(T AT-¢)) = Vici<n FGfi LTL encoding

(INGT)— ¢

Fig. 1 Overall proof structure for M = ¢

4.2 Overview of the deduction proof

As described in Sect. 3, the standard symbolic LTL model checking approach proceeds
through a sequence of transformations. Thus, from the original problem M = ¢, we arrive
at the problem M’ x M-y X Mgeq X M. Eyin ¢ < k, where M’ is a simplification of the
original M. In order to generate the proof for the original problem, we conceptually reverse
this sequence showing how to generate a proof for each step. The overall proof structure is
shown in Fig. 1.

All steps use the inference rules described in Sect. 3.8. Each step but last one is based on a
set of proof obligations that are generated from the model checking algorithm. The last step
is based only on valid formulas that show the correctness of the LTL encoding.

In the following we detail the proof obligations and how they are generated from the
invariants extracted with the model checker. In Sect. 4.3, we define the inference rule and
the respective proof obligations for the k-liveness reduction. In Sect. 4.4, we show how to
generate them from an inductive invariant i obtained from k-liveness applied to one fairness;
in Sect. 4.5, we generalize the approach to consider k-liveness with multiple fairness; in
Sect. 4.7, we show how to generate the proof taking into account the simplifications of
fairness, initial, and transition conditions; finally, in Sect. 4.6, we show how to generate the
proof for the LTL property.

4.3 Inference Rule for K-Liveness

In the proofs generated from model checking with k-liveness, we use the following derived
rule, denoted with KL[k] (see Section A.2 for the deduction details):

(Pi) (Pn1) (pp1) ... (pnx) (ppr)

KL[k
(LAGT)—)\/jEJFG—'pj (k]
where the 2k + 1 premises are:
t — Fog (Pi)
G((a1 AT A=pj) — Xay) (Pny)
G((a1 AT Apj) = Xao) (pp1)

@ Springer

Formal Methods in System Design

G((ax AT A=pj) — Xay) (png)
Gk AT Apj) —> L) (ppi)
Intuitively, this means that if there exist k conditions &1, . . ., ox41 such that ¢y is implied

by ¢ and for each «; there exists a corresponding p;; (can be even the same for all i) such that
«; is inductive relative to —p;, for 1 <i < k, ;1 is implied by «; A pj; after a transition
for 1 <i <k, and ax+1 = L, then any path starting from ¢ is such that there exists a j; such
that the condition pj; is visited finitely many times only.

4.4 Proof Obligations for Single Fairness

We consider first the special case of proving M = —GF f, where f is a propositional formula
over V.

When M = —GF f has been model checked by proving that f cannot be visited more
than k + 1 times, we instantiate the rule KL[k] using: = I, t =T, p; = f for all i, and the
«; are obtained by the inductive invariant generated with k-liveness.

If ¢ is the counter introduced by k-liveness to count the occurrences of f and v is the
inductive invariant over V U {c} obtained to prove that ¢ < k, then we instantiate the rule
KL[k] using o; = Y[c:=1i — 1].

Since y is the inductive invariant obtained with k-liveness we know that the following
propositional formulae are valid:

INc=0—> 1Y
YAT Aite(f,d =c+ 1, =c) = ¢/
Y —=>c<k

Therefore, the following formulae are also valid:

I — ylc:=0] (pi)

Wle:=01AT A=f) > X[c:=0] (pp1)
Wle:=01AT A f) = Xy[c = 1] (pn1)
Wle:=k=1AT A=f) > X¢lc:=k—1] (ppi)
Wle=k—=1IATAf)—> 1 (pni)

Note that, the formulae «y, .. ., ax above are not required to be in any specific form. In

particular, when instantiating them with the inductive invariant ¢, we can apply standard

@ Springer

Formal Methods in System Design

equivalence-preserving simplifications (e.g. « A T = «) after the substitution of counter
values.

For each of the above valid formulae, we can obtain a propositional resolution proof,
which combined with the rule KL[k], yields a proof of (I A GT) — —GF f in the following
form:

— PROP JE— - -

pi . Pl PRCC;)P i PRGOP Pk PRGOP

G(pi) G(pp1) G(pny) ... G(pny) KL[K]
(I NGT) > —=GFf

4.5 Generalization to Multiple Fairness Conditions

We now consider the case M = —=(GF fi A... AGF f,), where f1, ..., f, are propositional
formulae over V. If we proved that (I A GT) — —(GF f1 A ... A GFf;) with k-liveness
by proving that there exists an f; can be visited at most k + 1 times, we can instantiate the
rule KL[k - n] using k - n premises, which, for simplicity, we index with two indices i and
j.wherel <i <kand1l < j < n. Againwe chooset = 1,7 =T, p;j = f; forall i,
and the «; are obtained by the inductive invariant generated with k-liveness (when using the
degeneralization described in Sect. 3.5).

More concretely, if ¢ is the counter used to count the occurrences of the fairness conditions,
s is the counter used to track if the i-th fairness has been visited, and ¢ is the inductive
invariant, we set &;; = Y[c := i — 1,5 := j — 1] and generate a resolution proof for
the following valid formulae (as in the previous case, we can simplify the formulae after
substituting counter values, before generating the proofs):

I — ylc:=0,s:=0] (pi)
forl<i<k 1<j<n
Wle=i—1Ls:=j—1UATA=fj) > X¢lc:=i—1,s:=j—1] (pnij)
forl<i<k 1<j<n
Wle=i—1Ls:=j—1UHATA[fj) > X¢lc:=i—-1,5:=]] (ppij)
forl <i <k
Wle=i—-1s:=n—1IATA f) > X¢[c:=1i,s:=0] (pin)
Wle:=k—1,s:=n—1]ATA fo) > L (Pkn)

Similarly to the previous case, we can transform the resolution proofs for these lemmas
in temporal proofs for the premises of the rule KL.

@ Springer

Formal Methods in System Design

4.6 Certifying Proofs for LTL

We consider here the general case of M |= ¢. The procedure described in Sect. 3.6 reduces
the problemto M x M-y = —=(GFfi A ... AGFf;), where M x M-y = (VU V_4, I A
I_4, T N T-y4). Applying the procedure described above, we obtain a temporal proof of
U NIy NG(T ANT=y)) - =(GFfi An... AGFf).

Every variable vxg € V-4 is associated with a temporal formula XB. We denote by
Enc~!() the formula obtained from « by substituting every vxs with XpB. By applying
this substitution in the mentioned proof, we obtain a proof of (I A Enc_l(Ld,) AG(T A
Enc™'(T-y))) — ~(GFEnc™'(fi) A ... AGFEnc™'(f,)).

From this, as detailed in Section A.6, we derive a proof of (I A GT) — ¢ with three
resolution steps, using GFEnc™! (f;), GEnc™'(T-y), and ~Enc~!(I-4) — ¢ as lemmas.

Finally, we derive a proof for each lemma (see again Section A.6 for the details). Note
that, given the specific construction of M—, E ne= I T-4) and GFE ne1(f;) are always valid
formulae. Moreover, note that Enc ™! (I-¢) = Exp(—¢) = =Exp(¢) and that Enc! (T-¢)
is in the form /\ﬁ XpB <> Next(Exp(B)).

The following are therefore proofs for the above lemmas:*

e B ExpB)
¢ < Exp(¢) X(B < Exp(B))
1 AND- EL NEXT
—Enc™ (I-¢) > ¢ XB < Next(Exp(B))

[G(B1UB2 A =f2)]

G(B1UBy) A G—py O AND-DPIS
TGpUp, M
(B1UB) AXG(B1UBY) O™ [G(BIUB A —B)]
,BlU,Bz AND- EL m G- AND- DIS
Fﬂz F W AND- ER

IMP- E
L

F(B1UB, — Bo)
GF(B1UBy — B2)

AA

Example 1 We work out a full example showing the different steps from model checking to
proof generation.
Le us consider the transition system M = (V, I, T') where:

Vi={x,v,z} I:=T T:=x—-yY)Al—72)

and let us consider the property ¢ = G(x — Fz). Expanding G, ¢ is equal to =F—(x — Fz)
and thus contains two U-formulae: F(—(x — Fz)), which we abbreviate by F;, and Fz.
The transition system for the negation —¢ is M-y = (V-¢, I-y, T-y) where:

- Vop = {x, z, vxF,, VXF;}

= I~ = Enc(—=¢) = (x A =(z V vxF;)) V UXF,

— T = (oxp, < (0 A=(E V V) V V) A (oxpz < @V V)
with fairness conditions Enc(f1) and Enc(f>) where:

fi=-Fiv-(x—>Fz) fo=-Fzvzg

4 Note that (¢ <> Exp(¢)) is an abbreviation for ((¢ — Exp(¢)) A (Exp(¢) <> ¢)) so that we can apply
the AND- EL.

@ Springer

Formal Methods in System Design

Mgeg and M, are defined as in Sects. 3.5 and 3.6.
Let us suppose that k-liveness produces the following inductive invariant:

Y =(Enc(—=¢) A (—=x VzVUxF;) As =0Ac=0)V
(YA—=zZA—UVXF, AS=1Ac=0)

After substituting and simplifying, we obtain: ag; = Enc(—¢) A (—x V 2 V UXF;) Qo2 =
YATZATUXF @] =app = L

Let us consider only a non-trivial case and produce a proof for TL := (—¢ A (—x V z V
XF2)AT AT-¢ A f1) — X(y A—zA—XF7z). From the SAT solver we can obtain the following
resolution proof for L = Enc(=¢)A(=xV Enc(F2))AT AT-y AEnc(fi)A(=y'V Enc(Fz)'):

L L
L I Enc(—¢) Enc(f)
Enc(—¢) Enc(fy) L~ XA7Enedz)
e R il L
x =y X —Enc(Fz)’ —y' v Enc(Fz)

Y -y

In order to obtain a proof of T L it is sufficient to substitute in the above proof the variables
vxr, and vxg; with respectively XF; and XFz and apply X- AND- DIS to obtain the X in the
right-hand side of the implication in T L.

Finally, to obtain a proof of (/ A GT) — ¢ we instantiate the lemmas to remove /-4,
T-4, and the fairness conditions.

For example, the proof for the lemma GF f] is obtained by substituting 8; with F and
B> with =(x — Fz) as follows:

[G—f1]
m G- AND- DIS
~ GF; AND-EL [G—f1]
F| ~AXGF, O FXP GF| A G(x — Fz) O AND-DIS
T AND- EL T GaoTF) AND- ER
T ™" IMP- E
F i G
GF f1

4.7 Handling Simplifications

In this section we detail the additional steps to extend the proof when the model checker
applies simplifications of the initial, transition or fairness conditions. These simplifications
are clearly optional and the general schema of Fig. 1 is valid even if some of them are not
applied. In that case, t = I A Iy, 7 =T A Ty, and/or p; = f; and the related extra proof
obligations are not present.

@ Springer

Formal Methods in System Design

4.7.1 Simplified initial condition with temporal decomposition

When using temporal decomposition (see Sect. 3.7.1), the initial condition is replaced by a
condition that overappoximates the reachable states after k transitions. Therefore, we extend
the proof using the following derived rule (see Section A.5 for the deduction details):

(@A No<ick X' () = XK G AG(B) — \/; Fyi)
(@ AGB) — V; Fy;
We instantiate the rule consideringa =1 A l-y, B=T ATy, y; = —fi,and t = ap =

o[c := 0], where « is the inductive invariant obtained with k-liveness. In fact, since « is
implied by the simplified initial condition then

AT A= 1 A N AT I A NT=61) = lleol®

0<i<k

TD

thus the following formulae are valid

I AIg A [\ XUT AT-p)) > Xag

0<i<k

(@0 A G(T AT-¢)) — \/ F=;

1

Since they are valid, we can apply rule G to the second one and obtain the premises of the
rule TD.

4.7.2 Simplified transition condition with additional invariants

When using the optimization described in Sect. 3.7.3, some invariant & (for example, equal-
ities between variables) is used to simplify the transition relation. Therefore, we extend the
proof using the following derived rule (see Section A.4 for the deduction details):

a—x G(XAB = x) Glx— & (@AGEABAE)) >y
@A G(B) > v ST

In this case, we simply instantiate the rule consideringo = ¢, 8 = T AT-4,y = \/; F- /i,
and yx is an inductive invariant that proves &.

In particular, when using ternary simulation to discover equalities, we need to extract a
corresponding inductive invariant. Note that, ternary simulation computes at each step an
over-approximation of the states reachable with that step. Thus, after reaching fixpoint, the
computed abstract states are an over-approximation of the reachable states, which is inductive.
Therefore, in order to compute an inductive invariant that entails the discovered equalities,
we take the disjunction of the assignments to the variables having value different from X in
each state reached with ternary simulation until fixpoint.

4.7.3 Simplified fairness conditions with stabilizing constraints

When the model checker uses stabilizing constraints as described in Sect. 3.7.2, a condition y
is built iteratively with two rules: if the transition relation and the current y entail x — x’ for
some x, then y is strengthened with x = x’; if moreover —x entails — f for some fairness f,
then y is strengthened with x. The condition y is then used to weaken the fairness condition.

@ Springer

Formal Methods in System Design

Therefore, we extend the proof system with the following derived rules (the derivation details
are given in Section A.3):

Gt = (y = (x = x))Gt — (FGy VvV ¢)
Gt - FG(y Ax =x) V)
Gt — (y = (x > X)GT = (y —» (—x —> = /)Gt — (FGy VFG—f)
Gt - (FG(y A x) VFG—f)

TAB]

STAB»

These rules are applied iteratively following the sequence yy, 1, . . ., ¥ Of increasingly
stronger constraints found following the procedure described in Sect. 3.7.2. Thus, 7 instanti-
ated by T A T—y, yo = T and the right premise of STAB| and STAB; is valid. After applying
STAB] or STABy, y] is either x = x’ or x. After applying again STAB| or STABy, y; is either
yo Ay =y or yp Ay (for some y), and so on.

At the end, we obtain a proof of Gt — (FGyy, V' \/; FG— f;), from which in combination
with the proof of (t A GT) — (\/; FG(ym — —fi)), we derive (t A GT) — (\/; FG—f).

4.8 Extended Certifying Proofs for Invariants

We extend the traditional proof for invariant based on the generation of an inductive invariant
to take into account the simplification of the initial conditions with temporal decomposition
and the transition condition based on discovered equalities. For the latter, the extension is the
same applied to liveness properties in Sect. 4.7.2. As for temporal decomposition, we need
to add a proof obligation and use the following variant of the derived rule (also proved in
Section A.5):

@n N\ X)) = X0 @n A\ XB)— (/A Xy) (AGB — Gy

0<i<k 0<i<k 0<i<k

(@ nG(B) = Gy

TDI

Thus, the extended overall proof for invariant is as follows:

POs for
POs for simplified
simplified transion (=Y (Y AT > Y Yy > P
initial condition (x AG(1)) = GP
condition ¢ tAGT) — GP ST

(I~AGT) = GP oI

4.9 Correctness

Differently from the conference version of this paper, we used only inference rules belonging
to the deduction system of [26] (see Sect. 3.8), which is sound and complete. Thus, every
proof generated with the above method is correct. Moreover, since we are considering finite-
state models and the considered model checking algorithms are complete, the above method
can produce a proof for every valid formula.

@ Springer

Formal Methods in System Design

5 Experimental evaluation
5.1 Setup
5.1.1 Implementation

We have implemented our proof generation procedure on top of two model checking tools:
1C31A [20] and simMPLIC3 [27].

IC31A is a simple, open-source implementation of IC3 that uses the MATHSAT [16] SMT
solver as backend. The tool supports invariant and full LTL model checking of both finite and
infinite-state systems (using a combination of implicit abstraction and well-founded relations,
as described in [20]). Currently, proof generation is only available for finite-state systems.
Its support for LTL is based on an automata based approach [43] relying on the symbolic
encoding of [19]. Upon successful verification, it generates a deduction proof which can
be checked by a simple companion proof checker, using purely-syntactic operations. The
resolution proofs for the individual proof obligations are generated using the off-the-shelf
proof-production capabilities provided by MATHSAT.

SIMPLIC3 is the backend of the NUXMV model checker [15] that participated in the latest
Hardware Model Checking Competition (HWMCC) [7]. It accepts hardware model checking
problems in the Aiger [8] format used for the HWMCC [7]. It supports the model checking of
both invariants and LTL properties in the form — /\ ; (GF f;) for a set of propositional formulas
fi- Moreover, SIMPLIC3 supports all the simplification techniques described in Sect. 3.7, i.e.
temporal decomposition [14], the use of stabilizing constraints [18], and model simplification
via ternary simulation [9,13]. Upon successful verification, SIMPLIC3 generates a set of proof
obligations (as described in this paper) which can then be checked by any SAT solver. To this
extent, the generated proof obligations can be checked internally or dumped in the SMTLIB
[1] format to enable for the respective checks by any off-the-shelf SMT solver.

Thus, for SIMPLIC3, we limit the proof generation to the first level described in Remark 1,
relying on an existing SAT solver to discharge the proof obligations. For IC3IA, we instead
generate also the deduction steps and we developed a prototype proof-checker, built on top of
the MATHSAT [16] SMT solver leveraging its Python interface. This implementation reads
the deduction proofs generated by IC31A and check them using purely-syntactic operations.
The core of this prototype proof-checker consists of about 500 lines of Python code.

We remark that both IC31A and SIMPLIC3 can perform the degeneralization with a monitor
that can either check the fairness in any order, or check them according to a fixed order, as
described previously to enable the proof generation. Instead, the simplifications described in
Sect. 3.7 are implemented only in SIMPLIC3.

5.1.2 Benchmark sets

For our evaluation, we have collected a total of 1343 problem instances from different sources.

— 265 safe problem instances (both safety and liveness) from the 2017 edition of HWMCC
that were declared safe by at least one solver within the time and resource constraints
adopted at the competition.

This set is composed by 84 safe LTL problems (denoted HWMCC LTL) and by 181 safe
invariant problems (denoted HWMCC Inv).

Several of the instances are very challenging also for state-of-the-art tools; all the prop-
erties in the HWMCC LTL family are of the form — A;(GF f;);

@ Springer

Formal Methods in System Design

— 519 unsatisfiable LTL formulae from a benchmark set used in previous work on LTL sat-
isfiability checking [41] (denoted Schuppan in the following); this set contains instances
of varying difficulty, ranging from trivial to moderately-challenging; several instances
are randomly-generated.

— 568 LTL model checking problems resulting from the verification of contracts of a
component-based model of an aircraft wheel braking system [10] (denoted WBS in
the following); the instances are typically easy, and many are in fact trivial.?

5.1.3 Execution parameters

We carried out several analyses with the aim to demonstrate the feasibility of proof generation
in practice, and to show that the overhead for proof generation is in many cases negligible.
In all cases, we used a timeout of 1200 seconds and a memory limit of 7Gb; all experiments
were run on a cluster of Linux machines with 2.10GHz Intel Xeon E5-2620 CPUs and 128Gb
of RAM.

For sIMPLIC3 we considered the following configurations. A reference configuration
(named default) that participated to the HWMCC 2017 competition with all the relevant
pre-processing steps enabled, and with no ordering constraint imposed in the degeneraliza-
tion automaton used to reduce multiple fairness conditions to a single one. We denote with
proofgen the variant of default with proof generation enabled, which in turn activates also
the use of a fixed order of the fairness conditions in the degeneralization automaton. Finally,
we denote with the noproofgen the configuration obtained from proofgen by disabling proof
generation (thus differing from default only in the degeneralization automaton).

For IC31A, we refer with IC31A default to the original version of [20], which is used
as reference. We use IC3IA proofgen to denote the version extended with proof generation
and with the modified degeneralization. Finally, we denote with IC3IA noproofgen the
configuration with proof generation disabled.

We executed the two tools on two different sets of benchmarks, namely:

— For the HWMCC instances, we only ran SIMPLIC3, as it consistently outperforms IC31A
on these problems.

— For the Schuppan and WBS instances, we performed the analyses only with IC3IA, since
SIMPLIC3 does not have a direct native support for LTL properties (given that the Aiger
format supports for a very limited kind of LTL properties).

The source code of the extended version of SIMPLIC3, of IC3IA and of the proof checker
is available at https://es.fbk.eu/people/griggio/papers/fmsd2019-1tlproofs.tar.bz2, together
with all the benchmark instances used in our experimental evaluation, the log files of our
results and the scripts to reproduce them.

5.2 Results
5.2.1 Performance impact of modified monitor on LTL model-checking time
We first evaluate the performance impact of the modified monitor for handling multiple

fairness constraints with k-liveness, which is the only modification required at model checking
time for being able to produce proofs for the LTL case.

5 This is the case e.g. for some proof obligations generated for components with a trivial assumption.

@ Springer

https://es.fbk.eu/people/griggio/papers/fmsd2019-ltlproofs.tar.bz2

Formal Methods in System Design

1000 1000 F
100 100
=]
3 § .
o « @
BT 8 1w} o® ® ° ° 1
»§ F ® o=
2 £ 4)
° 1 o 1F 4
3 (8]
= g
2 °
0.1 0.1 1
C o
(]
o0
¢ °
0.01 L L L L 0.01@ L L L 1
0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000
Model Ghecking time: noproofgen Model Ghecking time: IC3ia noproofgen
(a) noproofgen vs default (b) 1C314 noproofgen vs IC31A default
HWMCC LTL WBS+Schuppan

Fig.2 Performance impact of the modified encoding for handling multiple fairness constraints

The scatter plots in Fig. 2a, reports the comparison of running SIMPLIC3 with the modified
monitor that records the fairness conditions in a fixed order (x-axis), i.e. the noproofgen
configuration, against the results when using the standard monitor that does not impose any
order for recording the fairness conditions (y-axis), i.e. default conﬁguration.6 Figure 2b,
reports the results of the same comparison but running IC3IA.

The plots show no clear trend for the vast majority of the considered instances, suggesting
that the two encodings are essentially equivalent in terms of performance on average.

We remark that the choice of which encoding to use for handling multiple fairness condi-
tions can have an impact on performance for two different, and at least partially conflicting,
reasons. On one hand, forcing to record fairness conditions in a fixed order and one at a time
has the effect of making model checker consider longer sequences of transitions before it
can converge to an inductive invariant (e.g. for IC3 this causes the exploration of a longer
sequence of relatively-inductive frames before reaching the fixpoint); on the other hand, how-
ever, using the modified monitor allows k-liveness to prove properties with smaller values
of k, which in turn might allow the model checker to converge faster. We illustrate both
situations with a simple example.

Example 2 Consider the following system M := (V, I, T):

Vi={c, fiv.oo fas1} ::c:O/\/\:-]';rll—'f,-
T = ite(c <n,c’:c+1,c’:c)/\/\;7:1(fi/<—> (c <n))
and suppose that n > 1. M clearly satisfies the property ¢ := —(/\l’-’il1 GF f;), since all
the f/ s will stabilize to false after n + 1 transition steps.
When using the monitor that doesn’t force an ordering for recording the fairness conditions,
the k value needed for a k-liveness proof is n, since all fairness conditions are true for the
first n steps. However, when using the modified monitor, M = ¢ can be proved with k = 1.

6 For this comparison we restrict to the HWMCC LTL benchmarks set where the use of pre-processing has
an impact.

@ Springer

Formal Methods in System Design

Consider instead the following variant of M, in which T is modified as follows:
T :=ite(c<1,d =c+ 1, =c)A /\?I1l(fi/ < (c<1)).

In this case, k = 1 is enough in both cases. However, the modified monitor will cause IC3 to
explore a much deeper sequence of frames before finding an inductive invariant.

5.2.2 Overhead of proof generation

In our second experiment, we evaluated the impact of proof generation on the total execution
time. We perform a comparison analyzing the HWMCC Inv, HWMCC LTL, WBS and
Schuppan separately reporting results for the two implemented tools.

Figure 3 shows plots comparing the total time taken by SIMPLIC3/IC31A with proof genera-
tion active (x-axis), i.e. configuration proofgen, against the time required to model-check the
instances without generating a proof certificate (y-axis), i.e. configuration default. For the
case of the HWMCC problem instances we plot only the results for SIMPLIC3 since it outper-
forms IC3IA and provides all the main simplifications widely adopted by the state-of-the-art
hardware model checkers.

(a) HWMCC Inv: proofgen vs default (b) HWMCC LTL: proofgen vs default

1000 1000

100 100

Model Checking time: default
Model Checking time: default

0.1

(]
0.01 000 L L - 0.01 L . . .
0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000
Model Checking time: proofgen Model Checking time: proofgen
(C) Schuppan: IC31A proofgen vs IC31A default (d) WBS: IC31A proofgen vs IC31A default
1000 " " T 1000 T T T
100 -
H 3
& &
3 3
s °® s
8 1 8 10
@ o= @
£ £
4 4
3 1 8 1k
2 2
9] S
g g
3 3
= =
Bl 0.1
0.01 0 000- 000 L L L - 0.01@ L L L L
0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000
Model Checking time: IC3ia proofgen Model Checking time: IC3ia proofgen

Fig.3 Performance impact of proof generation

@ Springer

Formal Methods in System Design

(a) HwMCC Inv (b) nwMmcc LTL

® 1000

1000

100 100

=)

Proof Obligation discharging time
Proof Obligation discharging time

1 1
0.01 0.1 1 10 100 1000 " 0.0t e 0.1 1 10 100 1000
Model Checking time Model Checking time

Fig.4 Performance of discharging proof obligations (y-axis) versus verification time by SIMPLIC3 (x-axis)

InFig. 3 we analyze the performance of all the considered configurations. Overall, enabling
proof generation results in losing 3 instances compared to the original encoding (default) for
what concerns the HWMCC Inv problem instances. For HWMCC LTL problem instances,
proofgen solves 5 less instances than noproofgen, which in turn solves 4 less instances than
default. Thus overall, proof generation results in solving 9 less instances than the default
configuration for SIMPLIC3. It should be noted, however, that in some cases proofgen is
faster than default. As discussed in the previous section, this is due to the use of a different
encoding of multiple fairness conditions, which can sometimes result in better performance
for the model checker.

Regarding IC3IA, Fig. 3 shows the results for the Schuppan (Fig. 3c) and WBS (Fig. 3d)
instances. Overall, for the Schuppan instances enabling proof generation results in only one
lost instance compared to model checking only when using the same encoding for handling
multiple fairness conditions; compared to the original encoding, 14 instances are lost. For
the WBS benchmarks instead, no instance is lost when enabling proof generation.

5.2.3 Cost of proof checking

We conclude the section presenting some data about the performance of the checks to dis-
charge the proof obligations and of the proof checker.

Figure 4 shows two scatter plots comparing, for each instance, verification by SIMPLIC3
(x-axis) and time for discharging with the MiniSat SAT solver [22] the generated proof
obligations (y-axis). From the plots, we can see that in the vast majority of cases, the time for
discharging the proof obligations is a small fraction of the model checking time. There are,
however, a number of outliers for which proof (obligation) checking is significantly more
expensive than model checking. A more in-depth analysis of the results revealed that those
cases involved instances which were heavily simplified by our pre-processing techniques
(most notably ternary simulation), resulting in problems which were trivial for the model
checker (but which were not solvable without pre-processing). It should not be very surprising
therefore that checking the proof obligations, which involve a sequence of SAT solver calls,
is more expensive than performing a few rounds of ternary simulation followed by variable
substitution.

@ Springer

Formal Methods in System Design

(@) Schuppan (b) wBs

1000 1000

100 100

3
Proof Checking time

Proof Checking time

0.01 A 4 . . 0.01 L L
0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000

Model Checking time Model Checking time

Fig.5 Performance of proof checking (y-axis) versus verification time by IC3IA (x-axis)

Figure 5 shows two scatter plots comparing, for each instance, verification (x-axis) by
IC31A and proof checking (y-axis) times of the proof generated by IC3IA, whereas Table 1
presents some statistics about the size of the generated proofs. We remark that here the proof
checking time is the time to perform the syntactic checks of the proof rules generated by
IC31A. Moreover, while IC3IA is written in C++, the current implementation of the proof
checker is a prototype written in Python. We expect that reimplementing the checker in C++
would lead to very significant performance improvements.

6 Conclusions and future work

In this paper, we have presented a sound and complete approach for generating proofs for
invariant and LTL model checking problems. The support for LTL leverages on the k-liveness
algorithm. Moreover, we also show how to extend the proof generation to consider also the
most important pre-processing techniques adopted in modern SAT-based model checkers.
The technique can be easily and efficiently implemented, and, as demonstrated by our exper-
imental evaluation, results in proofs/proof obligations that can be checked/discharged by
independent tools. Incidentally, we also observe that the same ideas can be applied also to
other, non-SAT-based, model checking algorithms, as long as they can generate inductive
invariants (e.g., using BDDs).

We see several directions for future work. First, we would like to extend the technique to be
applicable also to other SAT-based LTL model checking algorithms, such as the liveness-to-
safety transformation of [5] and the FAIR algorithm of [12]. We would also like to investigate
generalizations of the approach to infinite-state systems, using model checking algorithms
that combine liveness-to-safety, k-liveness and ranking function synthesis [20]. Finally, from
the practical perspective, we will enhance our implementation to cover the complete flow
and extend the proof generation from the SIMPLIC3 backend to the entire flow of NUXMV
[15].

@ Springer

Formal Methods in System Design

Table 1 Statistics on the size of generated LTL proofs produced by IC314, divided by benchmark family.

HWMCC Schuppan WBS All
Proof size
Median 31 151 11 31
9th percentile 64 363 31 307
Min 4 4 4 4
Max 78 723 51 723
Proof steps
Median 125, 858 9601 1215 1590
9th percentile 524,519 169, 854 17, 054 128,901
Min 46 5 5 5
Max 6,377,311 1,025,799 1,674,373 6,377,311
Temporal steps
Median 0 1031 9 17
9th percentile 0 15,073 1 8705
Min 0 0 111 0
Max 0 128,921 355 128,921
Fairness conditions
Median 4 37 2 5
9th percentile 8 90 7 76
Min 1 1 1 1
Max 10 180 12 180
Memory used (MB)
Median 56.2 19.7 15.5 16.1
9th percentile 1163.8 31.7 29.3 31.3
Min 13.7 12.7 12.8 12.7
Max 1620.0 191.1 793.1 1620.0

Proof size: number of resolution proofs (generated by the SMT solver) for proving I A I~y AG(T A T-gp) —

=(/\; GFf).

Proof steps: total number of inference rules applied.

Temporal steps: total number of inference rules involving temporal axioms (from M—).

A Derivation proofs

In this section we detail the derivation of the rules derived from the system defined in [26]
and used in the proof generated as described in the previous sections. Each derived rule
corresponds to a valid formula, which has been proved valid also with the NUXMV model
checker. However, to avoid circularity in the proof generation, we cannot exploit the model
checker result and we given an explicit version of the deduction proofs.

@ Springer

Formal Methods in System Design

A.1 Basiclemmas

(G A Go)]
7G(G¢ . _‘w) PROP
m G- IMP- DIS
W G- TRANS
¢ e wG—'lﬁ IMP- E F
T IMP- E
F(y AGg) ™M1 @)
FGa A FGB
[GF(=a Vv —B)] FGa AND- EL
F(GF(—a vV —B) A Ga))
F(GF(=a v —B) A GGa) O TRANS
FG((—a v =) A Ga) G- AND- DIS
FG((—a v —B) Aa) O EXP FGa A FGB
GF—-,B res W AND- ER
F(GF—8 A Gf) “)
F(GF—§ A GGB) G- TRANS
FGF—p A GB) G- AND- DIS
f IMP- E
FG A p))

[FG—a] GF(x A B)
F(G—a A GF(a A B))

“

[FG—B] GF(a A B)

F(G—p A GF(a A B))

“

F(GG—a A GF(A B)) T TRANS F(GG=B A GF(a A p)) O TRANS
FG(G—a AF(a A B)) Z’ AND-DIS "BG(G—B A F(a A B)) Zi— AND- DIS
G- EXP G- EXP
FGF(—a A (a A B)) PROP FGF(—-,BJ/_\ (@A B)) orop
Gra RAA GFp A4
GFua A GF,B RAA 6)
FG(x — B) [GF—8] @
MO = P A G G- AND- DIS

FG((a = B) A =B)

FG—o

FG(x A =) b

L

—~5 RAA

FGp
FGo — FGg

@ Springer

PROP

@)

Formal Methods in System Design

A.2 Proofs for k-liveness

The main step to prove the k-liveness derivation is the following deduction:

Gt GFp Fo; G((ai At A=) — Xay) G((ar At Ap)— Xay)
K

Fos LB
which is derived as follows:
[G(a; = —p)] Gt G((1 AT A—p) = Xap)
Gller = =) AT A (@1 AT A=p) > Xa)) o AP
G(o) — Xay) Fo @ [G(a; — —p)]
F(G(a; — Xap) Aay) FG(a; — —p) G;EXP
FGa, IND FGas - FG—p
FG—p IMP- E GFp
I IMP- E
—— RAA
F(a; A p)
Gt G((a] AT A p) = Xap)
G- AND- DIS

Flai Ap) G A AT Ap)— Xan)
FlaiAp At A((ar At Ap)— Xag))
FXO{Z
F—\X—\az
—\XG—'OQ
FO{2

“
PROP

LIN
X- G- COM
G- EXP

Combining the KLB in a chain, we obtain a full derivation of a proof for the KL[k] rule:

[/\j Gij]
———— PROP
Fa; G((a; At A=p1) = X)) G((ap AT App) = a2) GFpj, [Gt]
KLB
Fa,
. KLB [N, GFpj]
. ———— PROP
For G((ax AT A=pr) = Xag) G((ag AT App) —> L) GFpj, [Gt]
KLB
1
T e IMP-1
V; FG—p;

Gt — \/; FG—p;
A.3 Proofs for stabilizing constraints
The following derived rules are used in the proofs exploiting stabilizing constraints:

Gt — (y > (x> x")) Gt — FGy Vv)
Gt - FG(y Ax =x) V)

TAB|

G-y —->Gx—=x)) Gr—(y— (—x——-f) Gr—> FGy vFG—-f)
Gt - (FG(y A x) VFG—f)

STAB>

@ Springer

Formal Methods in System Design

These rules are derived as follows:

[GF(x’ A —x)] ©)

GFx’ A GF—x
T GF. | AND-EL
GXFx X 6-CoM
XGF; X~ G- COM
GFx AND-EL FG(x — x) @
F(GFx A G(x — x'))
F(Fx AG(x — x')) (G)' EXP
FF(x A G(x — x')) [GF(x’ A —x)]
IND o (0)
FFGx GFx' A GF—x
FGx O TRANS T GFox AND-ER
T IMP- E
——— RAA
FG(x' — x) FG(x — x')
FG(' >) A=) AND-1
FG(x = x') 8)
[GFx A GF—x]
FG(X — x/) GFx (4) AND- EL
F(G(x = x) A GFx)
F(GG(x = x') A GFx) (G‘;)TRANS
FG(G(x = x") AFx) @
FGF(G(x = x) A x)
FGFGx IND
GFFGx 6 COM
FFGx O EXP
TGy O TRANS [GFx A GF—x']
] IMP-E T GFox _ AND-ER
FG—x v FGx RAA ©)
[FGy] FGy — FGS
[FGy] FGJ IMP- E
FGy A FGB) AND-1
FG(y A B)
FGy — FG(y A) ™! (10)
Gt = (y = (x = x')))
G- AND- DIS

Gt — G(y — (x = x")))
Gt — FG(y — (x — x")))
Gt - (FGy — FG(x — x"))
Gt — (FGy — FGx = x') (8210)
Gt — (FGy — FG(y Ax =x')) Gt — (FGy v)
Gt —> FG(y Ax=x") V) F

G- EXP

(O]

ROP

@ Springer

Formal Methods in System Design

Gt — (y = (x —» x)))
Gt > G(y —» (x > x))) G- IMP-DIS
Gt > FG(y — (x>)y O FF

PROP

©) Gt = (y = (—x = —f))
Gt — (FGy — FG(x — x))) Gt =Gy = (—x = =) G- IMP- DIS
Gt — (FGy — (FG(x = x"))) Gt SFGO = (x = =) G- EXP
©) FG- IMP- DIS
Gt — (FGy — (FGx v FG—x)) Gt —» (FGy VFG—f) Gt — (FGy — FG(—x — —f))
Gt — (FGy AFGx) V (FG—x AFG(—x — —f)) VFG—f)

Gt = (FGO ~x) v FG(x A (ox > =) vEG=p) O
Gt — (FG(y Ax) vEG—/ VFG—/) FrROP
Gt - (FG(y Ax) v FG—1) FROP

A.4 Proof for simplified transition relation

The following derived rule is used to simplify 7 with some invariant &

a—x G(xAT)—x) Gx — &) (Ot/\G(E/\T/\%'))—>V
(@nG(T)) — vy
which is derived M@M giX: G&; G- IMP- DIS
GE IMP- E
m G- EXP
aAGEAT AE) IMP- E

(e AG(T))]

@AGEAT ANE)) -y
IMP- E

Y
@nG) -y ™!

A.5 Proof for temporal decomposition

The derived rule used with temporal decomposition for liveness properties is the following

@ A No<icio1 X (B) = X G(LAGB) — V; Fyi

TD
(@ nGB) — V; Fy
which is derived as follows.
@A Aogsia XF(B) = XF)
P
@ AG(B) > X a AG(B) o AG(B)
th G(ﬁ) AND- ER
AND- 1
XK A G(B)
— ;. G-EXP
X4 A XEG(B)) G((tAG(B) = vy)
Ai X- AND- DIS ,\7 G- EXP
Xk A G(B)) XK AGB) — y)
X X AND- I
XA GB) AXK(AGB)) > ¥))
X X- AND- DIS
XEQAGB) A (LA G(B)) — 7))
Xk (y)
@A Nosick X (B) > XK [AGA)] G(LAGB) > \/; Fyi o
X4\ Fyi)

\/i Fj/, G- EXP
@AG(E) — Vi Fy (1D
Similarly for invariant properties, we have the following derived rule
@A Mozt XFB) = XEW) (@A Apsi et X (B) = (No<ik X'¥) (1 AGB) — Gy
(@ AG(B) — Gy

TDI

@ Springer

Formal Methods in System Design

which is derived as follows.

(@ A Nozizko1 X' (B) = (Nosict X'7)
(@ A No<ick X' (B)) — X)) e AGB)] G((AGB) > Gy) (@ AG(B) = (No<i<k X'¥) e e AG(B)]
X (Gy) Nosi X'y
Gy
(@ AG(B) — Gy

IMP- E

G- EXP

IMP- T

(12)

A.6 Proofs for LTL encoding

Here we use the equivalence (¢ <> Exp(¢)) < ((¢ — Exp(p)) A (Exp(¢p) < ¢))
to match the structure of the AND- EL. Moreover, given the specific construction of M-,
Enc’l(Tﬁd,) and GFEnc™!(f;) are always valid formulae. Moreover, we leverage that
Enc™'(I.4) = Exp(—¢) = —Exp(¢), and the fact that Enc~!(T-y) is in the form
N\pXB < Next(Exp(B)).

$ < Exp(@)
— AND- EL
—Enc” (I-y) — ¢ (13)

B ExpB)
X(B < Exp(B))

XB < Next(Exp(B)) NEXT (14)
[G(B1UB2 A —=B2)] G AND- DIS
G(BIUB)AG—pr ~
ChHUE ANGD_E]?P
(B1UB2) AXG(B1UB) ™ [G(B1UB2 A —=p2)]
pUB M GBI A Gopy O PP
Fp, G—p5, B
B T 2 IMP- E
————— RAA
F(1UB, — B2) G
GF(B1UB2 — B2) (15)
— 5
(U AL AG(T AT-)) = Vici<y FG=fi Aj<icy GFER™' ()
— — RES (14)
(I AEnc™'(I-¢) AGT AGEnc™'(T-y)) — L GEnc™"(T-y) "
(I AGT) = =Enc="(I-y) K —Enc™' (I-p) — ¢ 13
IAGT) > ¢ RES
16)

@ Springer

Formal Methods in System Design

A.7 Overall proof for LTL

POs for
simplified
fairness POs for
conditions y — k-liveness KL
_ —fi CAG@) = Vi<, FG(y = —fi)
POs for — STABj OrSTAB» N
simplified transi- Gt = FGy vV ~fi) (AG@) > Vigicy Gy — FG—f)
POs for . - PROP
o tion condition 7 CAG(T) = Vi FGf;
simplified - ST
initial CAG(T AT-¢)) =V <i<, FGfi
G
condition ¢ G((t AG(T AT=y)) — \/IS,SH FG—f;) Lemmas for
(I NIy AG(T AT-4)) > \/ <j<, FG—f; R LTL encoding
— 16
(IAGT) — ¢ 16

A.8 Overall proof for invariant

POs for
POs for simplified
simplified transition L= (WA >y Yy —> P
initial condition T (@ AG(r)) > GP
condition ¢ tAGT)— GP ST

(IAGT) = GP DI

References

1. Barrett C, Fontaine P, Tinelli C (2017) The SMT-LIB standard: version 2.6. Tech. rep., Department of
Computer Science, The University of lowa. www . SMT-LIB.org
2. Basin D, Bhatt BN, Traytel D (2018) Optimal proofs for linear temporal logic on lasso words . https://
www21.in.tum.de/~traytel/papers/expl/expl.pdf
3. Ben-Ari M (1993) Mathematical logic for computer science. Prentice Hall International series in computer
science. Prentice Hall
4. Bernasconi A, Menghi C, Spoletini P, Zuck LD, Ghezzi C (2017) From model checking to a temporal
proof for partial models. In: SEFM, LNCS, vol. 10469, pp 54—69. Springer
5. Biere A, Artho C, Schuppan V (2002) Liveness checking as safety checking. Electr Notes Theor Comput
Sci 66(2):160-177. https://doi.org/10.1016/S1571-0661(04)80410-9
6. Biere A, Cimatti A, Clarke EM, Strichman O, Zhu Y (2003) Bounded model checking. Adv Comput
58:117-148. https://doi.org/10.1016/S0065-2458(03)58003-2(03)58003-2
7. Biere A, van Dijk T, Heljanko K (2017) Hardware model checking competition 2017. In: Proceedings
of the 17th conference on formal methods in computer-aided design, FMCAD ’17, pp 9. FMCAD Inc,
Austin, TX . http://dl.acm.org/citation.cfm?id=3168451.3168458
8. Biere A, Heljanko K, Wieringa S (2011) AIGER 1.9 and beyond. Tech. rep., FMV Reports Series, Institute
for Formal Models and Verification, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria
9. Bjesse P, Kukula JH (2005) Automatic generalized phase abstraction for formal verification. In: ICCAD,
pp 1076-1082. IEEE Computer Society
10. Bozzano M, Cimatti A, Pires AF, Jones D, Kimberly G, Petri T, Robinson R, Tonetta S (2015) Formal
design and safety analysis of AIR6110 wheel brake system. In: CAV (1), LNCS, vol 9206, pp 518-535.
Springer
11. Bradley A (2011) SAT-based model checking without unrolling. In: VMCAI, LNCS, vol 6538, pp 70-87.
Springer
12. Bradley AR, Somenzi F, Hassan Z, Zhang Y (2011) An incremental approach to model checking progress
properties. In: FMCAD, pp 144-153. FMCAD Inc

@ Springer

https://www21.in.tum.de/~traytel/papers/expl/expl.pdf
https://www21.in.tum.de/~traytel/papers/expl/expl.pdf
https://doi.org/10.1016/S1571-0661(04)80410-9
https://doi.org/10.1016/S0065-2458(03)58003-2(03)58003-2
http://dl.acm.org/citation.cfm?id=3168451.3168458

Formal Methods in System Design

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

37.
38.

Case ML, Baumgartner J, Mony H, Kanzelman R (2011).Optimal redundancy removal without fixedpoint
computation. In: Bjesse P, Slobodovd A (eds) international conference on formal methods in computer-
aided design, FMCAD 11, Austin, TX, USA, October 30—November 02, 2011, pp 101-108. FMCAD
Inc. http://dl.acm.org/citation.cfm?id=2157672

Case ML, Mony H, Baumgartner J, Kanzelman R (2009) Enhanced verification by temporal decomposi-
tion. In: FMCAD. IEEE

Cavada R, Cimatti A, Dorigatti M, Griggio A, Mariotti A, Micheli A, Mover S, Roveri M, Tonetta S
(2014) The nuXmv symbolic model checker. In: CAV, LNCS, vol 8559, pp 334-342. Springer

Cimatti A, Griggio A, Schaafsma BJ, Sebastiani R (2013) The MathSATS SMT solver. In: TACAS, LNCS,
vol 7795. Springer

Cini C, Francalanza A (2015) An LTL proof system for runtime verification. In: TACAS, LNCS, vol
9035, pp 581-595. Springer

Claessen K, Sorensson N (2012) A liveness checking algorithm that counts. In: Cabodi G, Singh S (eds)
FMCAD, pp 52-59. IEEE

Clarke EM, Grumberg O, Hamaguchi K (1997) Another look at LTL model checking. Formal Methods
Syst Des 10(1):47-71

Daniel J, Cimatti A, Griggio A, Tonetta S, Mover S (2016) Infinite-state liveness-to-safety via implicit
abstraction and well-founded relations. In: CAV (1), LNCS, vol 9779. Springer

Dax C, Hofmann M, Lange M (2006) A proof system for the linear time ~-calculus. In: FSTTCS, LNCS,
vol 4337, pp 273-284. Springer

Eén N, Sorensson N (2003) An extensible sat-solver. In: Giunchiglia E, Tacchella A (eds) Theory and
applications of satisfiability testing, 6th international conference, SAT 2003. Santa Margherita Ligure,
Italy, May 5-8, 2003 Selected Revised Papers, Lecture Notes in Computer Science, vol 2919, pp 502-518.
Springer . https://doi.org/10.1007/978-3-540-24605-3_37

Emerson EA, Jutla CS, Sistla AP (2001) On model checking for the ~-calculus and its fragments. Theor
Comput Sci 258(1-2):491-522. https://doi.org/10.1016/S0304-3975(00)00034-7

Esparza J, Lammich P, Neumann R, Nipkow T, Schimpf A, Smaus J (2014) A fully verified executable
LTL model checker. Arch Formal Proofs 2014

Fisler K, Kurshan RP (1997) Verifying VHDL designs with COSPAN. In: FHV, LNCS, vol 1287, pp
206-247. Springer

Gabbay DM, Pnueli A, Shelah S, Stavi J (1980) On the temporal basis of fairness. In: Conference record
of the seventh annual ACM symposium on principles of programming languages, Las Vegas, Nevada,
USA, January 1980, pp 163-173 . https://doi.org/10.1145/567446.567462

Griggio A, Roveri M (2016) Comparing different variants of the ic3 algorithm for hardware model
checking. IEEE Trans CAD Integrated Circuits Syst 35(6), 1026—1039 . https://doi.org/10.1109/TCAD.
2015.2481869

Griggio A, Roveri M, Tonetta S (2018) Certifying proofs for LTL model checking. In: 2018 formal
methods in computer aided design, FMCAD 2018, Austin, TX, USA, October 30—November 2, 2018, pp
1-9. https://doi.org/10.23919/FMCAD.2018.8603022

Hustadt U, Konev B (2003) TRP++2.0: a temporal resolution prover. In: CADE-19, LNCS, vol 2741.
Springer

Hustadt U, Konev B, Riazanov A, Voronkov A (2004) Temp: a temporal monodic prover. In: IICAR,
LNCS, vol 3097. Springer

Kuismin T, Heljanko K (2013) Increasing confidence in liveness model checking results with proofs.
In: Bertacco V, Legay A (eds) Hardware and software: verification and testing - 9th international haifa
verification conference, HVC 2013, Haifa, Israel, November 5-7, 2013, Proceedings, Lecture Notes in
Computer Science, vol 8244, pp 32-43. Springer. https://doi.org/10.1007/978-3-319-03077-7_3
Kupferman O, Vardi MY (2005) From complementation to certification. Theor Comput Sci 345(1):83—
100. https://doi.org/10.1016/j.tcs.2005.07.021

Mebsout A, Tinelli C (2016) Proof certificates for SMT-based model checkers for infinite-state systems.
In: 2016 formal methods in computer-aided design, FMCAD 2016, Mountain View, CA, USA, October
3-6, 2016, pp 117-124 . https://doi.org/10.1109/FMCAD.2016.7886669

de Moura LM, Bjgrner N (2008) Proofs and refutations, and Z3. In: LPAR workshops, CEUR workshop
proceedings, vol 418. CEUR-WS.org

Namjoshi KS (2001) Certifying model checkers. In: CAV, LNCS, vol 2102. Springer

Peled DA, Pnueli A, Zuck LD (2001) From falsification to verification. In: Hariharan R, Mukund M,
Vinay V (eds.) FST TCS 2001, LNCS, vol 2245, pp 292-304. Springer

Peled DA, Zuck LD (2001) From model checking to a temporal proof. In: SPIN, LNCS, vol 2057. Springer
Pnueli A (1977) The temporal logic of programs. In: FOCS, pp 46-57. 10.1109/SFCS.1977.32

@ Springer

http://dl.acm.org/citation.cfm?id=2157672
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1145/567446.567462
https://doi.org/10.1109/TCAD.2015.2481869
https://doi.org/10.1109/TCAD.2015.2481869
https://doi.org/10.23919/FMCAD.2018.8603022
https://doi.org/10.1007/978-3-319-03077-7_3
https://doi.org/10.1016/j.tcs.2005.07.021
https://doi.org/10.1109/FMCAD.2016.7886669

Formal Methods in System Design

39.

40.
41.

42.

43.

44.

Prawitz D (2006) Natural deduction: a proof-theoretical study. Dover Books on Mathematics, Dover
Publications

RTCA DO-333: Formal Methods Supplement to DO-178C and DO-278A (2011)

Schuppan V, Darmawan L (2011) Evaluating LTL satisfiability solvers. In: ATVA, LNCS, vol 6996.
Springer

Seger CH, Bryant RE (1995) Formal verification by symbolic evaluation of partially-ordered trajectories.
Formal Methods Syst Des 6(2):147—189. https://doi.org/10.1007/BF01383966

Vardi MY (1995) An automata-theoretic approach to linear temporal logic. In: Banft Higher Order Work-
shop, LNCS, vol 1043, pp 238-266. Springer

Wagner LG, Mebsout A, Tinelli C, Cofer DD, Slind K (2017) qualification of a model checker for avionics
software verification. In: NASA formal methods - 9th international symposium, NFM 2017, Moffett Field,
CA, USA, May 16-18,2017, Proceedings, pp 404—419 . https://doi.org/10.1007/978-3-319-57288-8_29

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1007/BF01383966
https://doi.org/10.1007/978-3-319-57288-8_29

	Certifying proofs for SAT-based model checking
	Abstract
	1 Introduction
	2 Related work and contributions
	3 Background
	3.1 Transition Systems
	3.2 Invariant Properties
	3.3 LTL
	3.4 Symbolic LTL Model Checking
	3.5 Degeneralization
	3.6 K-Liveness and SAT-based Symbolic Model Checking
	3.7 Simplifications Used in SAT-Based Model Checkers
	3.7.1 Temporal Decomposition
	3.7.2 Stabilizing Constraints
	3.7.3 Equivalence and constant propagation

	3.8 Deduction Systems
	3.9 Certifying Model Checking for Invariants

	4 Certifying proofs for SAT-based LTL and invariant model checking
	4.1 LTL Model Checking and LTL Validity
	4.2 Overview of the deduction proof
	4.3 Inference Rule for K-Liveness
	4.4 Proof Obligations for Single Fairness
	4.5 Generalization to Multiple Fairness Conditions
	4.6 Certifying Proofs for LTL
	4.7 Handling Simplifications
	4.7.1 Simplified initial condition with temporal decomposition
	4.7.2 Simplified transition condition with additional invariants
	4.7.3 Simplified fairness conditions with stabilizing constraints

	4.8 Extended Certifying Proofs for Invariants
	4.9 Correctness

	5 Experimental evaluation
	5.1 Setup
	5.1.1 Implementation
	5.1.2 Benchmark sets
	5.1.3 Execution parameters

	5.2 Results
	5.2.1 Performance impact of modified monitor on LTL model-checking time
	5.2.2 Overhead of proof generation
	5.2.3 Cost of proof checking

	6 Conclusions and future work
	A Derivation proofs
	A.1 Basic lemmas
	A.2 Proofs for k-liveness
	A.3 Proofs for stabilizing constraints
	A.4 Proof for simplified transition relation
	A.5 Proof for temporal decomposition
	A.6 Proofs for LTL encoding
	A.7 Overall proof for LTL
	A.8 Overall proof for invariant

	References

