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Abstract
We present a thread-modular proof method for complexity and resource bound analysis of
concurrent, shared-memory programs. To this end, we lift Jones’ rely-guarantee reason-
ing to assumptions and commitments capable of expressing bounds. The compositionality
(thread-modularity) of this framework allows us to reason about parameterized programs,
i.e., programs that execute arbitrarily many concurrent threads. We automate reasoning in
our logic by reducing bound analysis of concurrent programs to the sequential case. As an
application, we automatically infer time complexity for a family of fine-grained concurrent
algorithms, lock-free data structures, to our knowledge for the first time.

Keywords Complexity and resource bound analysis · Rely-guarantee reasoning · Lock-free
data structures

1 Introduction

1.1 Program complexity and resource bound analysis

Program complexity and resource bounds analysis (bound analysis) aims to statically deter-
mine upper bounds on the resource usage of a program as expressions over its inputs.
Despite the recent discovery of powerful bound analysis methods for sequential impera-
tive programs (e.g., [4,6,9,12,20,23,36]), little work exists on bound analysis for concurrent,
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shared-memory imperative programs (cf. Sect. 6). In addition, it is often necessary to reason
about parameterized programs that execute an arbitrary number of concurrent threads.

However, from a practical point of view, bound analysis is an important step towards
proving functional correctness criteria of programs in resource-constrained environments:
For example, in real-time systems intermediary results must be available within certain time
bounds, or in embedded systems applications must not exceed hard constraints on CPU time,
memory consumption, or network bandwidth.

1.2 Non-blocking data structures

We illustrate the necessity of extending bound analysis to concurrent, shared-memory pro-
grams on the example of non-blocking data structures: Devised to circumvent shortcomings
of lock-based concurrency (like deadlocks or priority inversion), they have been adopted
widely in engineering practice [25]. For example, the Michael-Scott non-blocking queue
[31] is implemented in the Java standard library’s ConcurrentLinkedQueue class.

Automated techniques have been introduced for proving both correctness (e.g., [2,8,13,
40]) and progress (e.g., [22,27]) properties of non-blocking data structures. In this work, we
focus on the progress property of lock-freedom, a liveness property that ensures absence of
livelocks: Despite interleaved execution of multiple threads altering the data structure, some
thread is guaranteed to complete its operation eventually.

From a practical, engineering point of view it is not enough to prove that a data structure
operation completes eventually. Rather, it needs to make progress using a bounded, measur-
able amount of resources: Petrank et al. [34] formalize and study bounded lock-free progress
as bounded lock-freedom, and discuss its relevance for practical applications. They describe
its verification for a fixed number of threads and a given progress bound using model check-
ing, but leave finding the bound to the user. Existing approaches for automatically proving
progress properties like the ones presented in [22,27] are limited to eventual (unbounded)
progress. To our knowledge, bounded progress guarantees have not been inferred automati-
cally before.

1.3 Overview

Reasoning about the resource consumption of non-blocking algorithms is an intricate problem
and tedious to perform manually. To illustrate this point, consider the following common
design pattern for lock-free data structures: A thread aiming to manipulate the data structure
starts by taking as many steps as possible without synchronization, preparing its intended
update. Then, it attempts to alter the globally visible state by synchronizing on a single word
in memory at a time. Interference from other threads may cause this synchronization to fail
and force the thread to retry from the beginning. From the viewpoint of a single thread that
accesses the data structure:

1. The amount of interference by other threads directly affects its resource consumption. In
general, this means reasoning about an unbounded number of concurrent threads, even
to infer resource bounds on a single thread.

2. The point of interference may occur at any point in the execution, due to the fine granu-
larity of concurrency.

In this paper, we present an automated bound analysis for concurrent, shared-memory
programs to remedy this situation: In particular, our method analyzes the parameterized
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Fig. 1 Jones’ rely/guarantee
proof rules for safety

system of N concurrent lock-free data structure client threads. To reason about this infinite
family of systems and its interactions, we leverage and extend rely-guarantee reasoning [28],
which we briefly introduce in the next section.

1.4 Introduction to rely-guarantee reasoning

Rely-guarantee (RG) reasoning [28,42] extendsHoare logic to concurrency: Itmakes interfer-
ence from other threads of execution explicit in the specifications. In particular, Hoare triples
{S}P {S′} are extended toRGquintuples R, G � {S}P {S′}, where the effect summaries R and
G capture interference: They are binary relations on program states that over-approximate
the state transitions of executions:

– rely R specifies other threads’ effects (thread P’s environment) that P can tolerate to
satisfy its precondition S and postcondition S′.

– guarantee G specifies the effect that P can inflict on its environment.

Furthermore, RG reasoning introduces compositional proof rules, for example for parallel
composition (J-Par in Fig. 1): The rely of each program must be compatible with both what
the other program guarantees and what their parallel composition relies on. Their parallel
composition’s guarantee in the consequent of the rule accommodates the effects of both
programs.

Intuitively, encoding a thread’s environment in rely and guarantee relations abstracts away
the order in which a thread performs its actions, which thread performs which action, and the
number of times each action is performed. For termination analysis, the last point is crucial: A
thread may not terminate under infinite interference, but may do so under finite interference.
For bound analysis, this may still be too coarse: To compute bounds on the thread, we may
need to bound the amount of interference from its environment.

Therefore, we extend RG reasoning to bound analysis by introducing bound information
into the relies and guarantees. We give new proof rules for such specifications that allow
to reason not just about safety, but also about bounds. Finally, the compositionality of our
proof rules allows us to reason even about an unbounded number of threads, i.e., about
parameterized systems.

In the following we outline the major contributions of this paper.

1.5 Contributions

1. We present the first extension of rely-guarantee specifications to bound analysis and
formulate proof rules to reason about these extended specifications (Sects. 3.1–3.4).
Apart from their specific use case in this work, we believe the proof rules are interesting
in their own right, for example in comparison to Jones’ original RG rules [28,42], or the
reasoning rules for liveness presented in [22] (cf. the discussion in Sect. 6).
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2. We instantiate our proof rules to derive a novel proof rule for parameterized systems. In
addition, we present an algorithm that automates reasoning about the unboundedly many
threads of parameterized systems (Sect. 3.5).

3. We reduce rely-guarantee bound analysis of concurrent pointer programs to bound analy-
sis of sequential integer programs, and obtain an algorithm for bound analysis of lock-free
algorithms (Sect. 4).

4. We implement our algorithm in the tool Coachman and apply it to lock-free algorithms
from the literature. To our knowledge, we are the first to automatically infer runtime
complexity for widely studied lock-free data structures such as Treiber’s stack [38] or
the Michael-Scott queue [31] (Sect. 5).

This is an extended version of the conference paper that appeared at FMCAD 2018 [33].
Besidesmaking thematerialmore accessible through additional explanations anddiscussions,
it adds the following contributions:

1. It contains full proofs of Theorems 1 and 2 that were omitted from the conference version.
2. We extend and improve the structure of Sect. 3 and 4 to first introduce a standalone rely-

guarantee framework for bound analysis (Sect. 3), and then instantiate it for the analysis
of lock-free data structures (Sect. 4).

3. We extend our experiments (Sect. 5) to include nine additional benchmark cases. In
addition to the conference version, we include further lock-free data structures, as well
as benchmark cases that are not lock-free or have non-linear complexity.

4. Some of these new results were made possible by major performance improvements to
our implementation Coachman. Its updated version is available online [14].

2 Motivating example

Westart bygiving an informal explanationof ourmethod andof the paper’smain contributions
on a running example.

2.1 Running example: Treiber’s Stack

Figure 2 shows the implementation of a lock-free concurrent stack known as Treiber’s stack
[38].Our input programsare represented as control-flowgraphswith edges labeledbyguarded
commands of the form g � c. We omit g if g = true. As a convention, we write global
variables shared among threads in uppercase (e.g., T) and local variables to be replicated in
each thread in lowercase (e.g., t). Further, we assume that edges in the control-flow graphs
are executed atomically, and that programs execute in presence of a garbage collector; the
latter prevents the so-called ABA problem and is a common assumption in the design of
lock-free algorithms [25].

Values stored on the stack do not influence the number of times its operations are executed,
thus we abstract them away for readability. The stack is represented by a null-terminated
singly-linked list, with the shared variable T pointing to the top element. The push and pop
methods may be called concurrently, with synchronization occurring at the guarded com-
mands originating in �3 for push and �13 for pop. These low-level atomic synchronization
commands are usually implemented in hardware, through instructions like compare-and-
swap (CAS) [25]. In Fig. 2, we highlight these synchronization points and edges in bold.

The stack operations are implemented as follows: Starting with an empty stack, T points
to NULL. The push operation (Fig. 2a)
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Fig. 2 Treiber’s lock-free stack [38]. Stack pointer T is the sole global variable. Synchronization points and
edges (corresponding to CAS instructions) are highlighted in bold

1. allocates a new list node n (�0 → �1)
2. reads the shared stack pointer T (�1 → �2)
3. updates the newly allocated node’s next field to the read value of T (�2 → �3)
4. atomically: compares the value read in (2) to the actual value of T; if equal, T is updated

to point to n, otherwise the operation restarts (�3 → �4 and �3 → �1 respectively).

The pop operation (Fig. 2b) proceeds similarly.

2.2 Problem statement

Consider a general data structure client P = op1() [] . . . [] opM(), where op1, . . . ,opM
are the data structure’s operations, and [] denotes non-deterministic choice. We compose N
concurrent client threads P1 to PN accessing the data structure:

‖N P
def= P

︸︷︷︸

P1

‖ · · · ‖ P
︸︷︷︸

PN

Our goal is to design a procedure that automatically infers upper-bounds for all system
sizes N on
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1. the thread-specific resource usage caused by a control-flow edge of a single thread P1

when executed concurrently with P2 ‖ · · · ‖ PN , and
2. the total resource usage caused by a control-flow edge in total over all threads P1 to PN .

Remark 1 (Costmodel) Tomeasure the amount of resource usage, bound analyses are usually
parameterized by a cost model that assigns each operation or instruction a cost amounting to
the resources consumed. In this paper, we adopt a uniform cost model that assigns a constant
cost to each control-flow edge. When we speak of the (time) complexity of a program, we
adopt a specific uniform cost model that assigns cost 1 to each control-flow back edge and
cost 0 to all other edges; this reflects the asymptotic time complexity of the program.

Running example Consider N concurrent copies P1 ‖ · · · ‖ PN of the Treiber stack’s client
program push() [] pop(), and the push operation’s control-flow edge �1 → �2. A manual
analysis yields a thread-specific bound for P1 telling us that this edge is executed at most N
times by P1: Each time that another thread successfully modifies stack pointer T, P1’s copy
in t may become outdated, causing the test at �3 to fail (t �= T), and P1 to restart. After at
most N − 1 iterations, all other threads have finished their operations and returned, and P1

executes �1 → �2 → �3 → �4 without interference.
Similarly, a total bound for P1 ‖ · · · ‖ PN tells us that edge �1 → �2 is executed at

most N (N + 1)/2 times by all threads P1 to PN in total: The first thread to successfully
synchronize at �3 sees no interference and executes �1 → �2 once. The second thread may
need to restart once due to the first thread modifying T, and executes �1 → �2 at most twice,
etc. The last thread to synchronize has the worst-case bound we established as thread-specific
bound for P1: it executes �1 → �2 N times. We obtain N (N + 1)/2 as closed form for the
total bound. In the following, we illustrate how to formalize and automate this reasoning.

2.3 Environment abstraction

Client program ‖N P from above is parameterized in the number of concurrent
threads N . To reason about this infinite family of parallel client programs,webase our analysis
on Jones’ rely-guarantee reasoning [28]. For each thread, RG reasoning over-approximates
the following as sets of binary relations over program states (thread-modular [18] effect
summaries):

– the thread’s effect on the global state (its guarantee)
– the effect of all other threads (its rely) as the union of those threads’ guarantees.

The effect of all other threads (the thread’s environment) is thus effectively abstracted into
a single relation. Crucially, this also abstracts away how often each is executed by the envi-
ronment, rendering Jones’ RG reasoning unsuitable for concurrent bound analysis.

Running example (continued) The program in Fig. 2c with effect summaries A = {APush,

APop, A0,1
Id , . . . , A13,10

Id } summarizes the globally visible effect of P1’s environment P2 ‖
· · · ‖ PN for all N > 0. In particular, we obtain one effect summary for each control-flow
edge: APush summarizes the effect of an environment thread executing edge �3 → �4 from
the point of view1 of thread P1, APop that of �13 → �14, and Ai, j

Id that of all other edges
�i → � j . We discuss how to obtain A in Sect. 4.2.

As is, the effect summaries inAmay be executed infinitely often. Our informal derivation
of the bound in Sect. 2.2 however, had to determine how often other threads could interfere
with the reference thread P1 (altering pointer T) to bound its number of loop iterations.

1 Note that changes to local variables of P2, …, PN are not visible to P1.
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Hence,we lift Jones’RG reasoning to concurrent bound analysis by enrichingRG relations
with bounds. We emphasize our focus on progress properties in this work: Although our
framework extends Jones’ RG reasoning and can express safety properties, we only use it to
reason about bounds; tighter integration is left for future work.

2.4 Rely-guarantee reasoning for bound analysis

In particular, relies and guarantees in our setting are maps {A1 �→ b1, . . . } from effect
summaries Ai (which are binary relations over program states) to bound expressions bi .
Each relation describes an effect summary, and the bound expression describes how often
that summary may occur on a run of the program.

We present a program logic for thread-modular reasoning [18] about bounds: A judgement
in our logic takes the form

R,G � {S} P {S′}
where {S} P {S′} is a Hoare triple, and R,G are a rely and guarantee. Its informal meaning
is: For any execution of program P starting in a state from {S}, and environment interference
described by the relations in R and occurring at most the number of times given by the
respective bounds in R, P changes the shared state according to the relations in G and at
most the number of times described by the respective bounds in G. In addition, the execution
is safe (does not reach an error state) and if P terminates, its final state is in {S′}.
Running example For readability, we focus on the analysis of Treiber’s push method. The
steps for pop are similar. Our technique computes exactly one effect summary for each of
the method’s control-flow edges, in order to express one bound per edge (Fig. 2c). For a rely
or guarantee

{A0,1
Id �→ b1, A1,2

Id �→ b2, A2,3
Id �→ b3, A3,1

Id �→ b4, APush �→ b5},
we fix the order of effect summaries and write (b1, b2, b3, b4, b5) for short.

First, our method states the following RG quintuple:

R,G � {Inv} P1 {true}
where R = (∞,∞,∞,∞,∞), G = (1,∞,∞,∞, 1), and Inv is a data structure invariant
over shared variables in a suitable assertion language (e.g., separation logic [35]). We use
invariant Inv to ensure that the computed bounds are valid for all computations starting from
all legal stack configurations. Despite the unbounded environment R (which corresponds
to Fig. 2c), we can already bound two edges, �0 → �1 and �3 → �4 of P1, and thus the
corresponding effect summaries in G: These edges are not part of a loop and – despite any
interference from the environment – can be executed at most once.

We show how to automatically discharge (or rather, discover) such RG quintuples in
Sect. 4.3. Next, we use the bound information obtained in G to refine the environmentR until
a fixed point of the rely is reached. This refinement is formalized in Sect. 3.5 in Theorem 2.

Running example (continued) We already established that thread P1 can execute effect
summaries A0,1

Id and APush at most once. In our example, all threads are symmetric, thus each

of the N − 1 other threads can execute A0,1
Id and APush at most once as well. The abstract

environment representing these N −1 threads can thus execute each summary A0,1
Id and APush

at most N − 1 times. We obtain the refined rely R′ = (N − 1,∞,∞,∞, N − 1).
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As we have reasoned in Sect. 2.2, once the number of executions of the APush effect
summary is bounded, P1 loops only that number of times. We obtain the refined guarantee

G′ = (1, N , N , N − 1, 1).

By the same reasoning as above, we multiply G′ with (N − 1) (componentwise) and obtain
the refined rely

R′′ = (N − 1, N (N − 1), N (N − 1), (N − 1)2, N − 1).

From R′′, we cannot obtain any tighter bounds, i.e., G′′ = G′ is a fixed point, and we report
G′′ and G′′ + R′′ as the thread-specific and total bounds of P1 and P1 ‖ · · · ‖ PN :

Edge Thread-specific bound Total bound

�0 → �1 1 N
�1 → �2 N N2

�2 → �3 N N2

�3 → �1 N − 1 N (N − 1)
�3 → �4 1 N

We demonstrate in Sect. 5 that for more complex examples, more than two iterations of
the rely-refinement are necessary to bound all edges. We formalize our reasoning by giving
a compositional proof system in Sect. 3, instantiate it for pointer programs and the analysis
of lock-free algorithms in Sect. 4, and experimentally evaluate our technique in Sect. 5.

3 Rely-guarantee bound analysis

In this section, we formalize the technique illustrated informally above. We start by stating
our program model and formally define the kind of bounds we consider:

3.1 Programmodel

Definition 1 (Program) Let LVar and SVar be finite disjoint sets of typed local and shared
program variables, and let Var = LVar ∪ SVar. Let Val be a set of values. Program states
Σ : Var → Val over Var map variables to values. We write σ�Var′ where Var′ ⊆ Var for
the projection of a state σ ∈ Σ onto the variables in Var′. Let GC = Guards × Commands
denote the set of guarded commands over Var and their effect be defined by �·� : GC →
Σ → 2Σ ∪ {⊥} where ⊥ is a special error state. A program P over Var is a directed labeled
graph P = (L, T , �0), where L is a finite set of locations, �0 ∈ L is the initial location, and
T ⊆ L × GC × L is a finite set of transitions. Let S be a predicate over Var that is evaluated
over program states. We overload �·� and write �S� ⊆ Σ for the set of states satisfying S.

We represent executions of P as sequences of steps r ∈ Σ × T × Σ and write σ
t−→ σ ′ for

a step (σ, t, σ ′). A run of P from S is a sequence of steps ρ = σ0
�0,gc0,�1−−−−−→ σ1

�1,gc1,�2−−−−−→ . . .

such that σ0 ∈ �S� and for all i ≥ 0 we have σi+1 ∈ �gci �(σi ).

Definition 2 (Interleaving of programs)Let Pi = (Li , Ti , �0,i ) for i ∈ {1, 2}be twoprograms
over Vari = LVari ∪ SVar such that LVar1 ∩ LVar2 = ∅. Their interleaving P1 ‖ P2 over
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Var1 ∪ Var2 is defined as the program

P1 ‖ P2 = (L1 × L2, T , (�0,1, �0,2))

where T is given by ((�1, �2), gc, (�′
1, �

′
2)) ∈ T iff (�1, gc, �′

1) ∈ T1 and �2 = �′
2 or

(�2, gc, �′
2) ∈ T2 and �1 = �′

1.
Given a program P over local and shared variables Var = LVar ∪ SVar, we write

‖N P = P1 ‖ · · · ‖ PN where N ≥ 1 for the N -times interleaving of program P with
itself, where Pi over Vari is obtained from P by suitably renaming local variables such that
LVar1 ∩ · · · ∩ LVarN = ∅. Given a predicate S over Var, we write

∧

N S for the conjunction
S1 ∧ · · · ∧ SN where Si over Vari is obtained by the same renaming.

Definition 3 (Expression) Let Var be a set of integer program variables. We denote
by Expr(Var) the set of arithmetic expressions over Var ∪ Z ∪ {∞}. The semantics
function �·� : Expr(Var) → Σ → (Z ∪ {∞}) evaluates an expression in a given program
state. We assume the usual expression semantics; in addition, a ◦ ∞ = ∞ and a ≤ ∞ for
all a ∈ Z ∪ {∞} and ◦ ∈ {+,×}.
Definition 4 (Bound) Let P = (L, T , �0) be a program over variables Var, let t ∈ T be a

transition of P , and ρ = σ0
t1−→ σ1

t2−→ · · · be a run of P . We use #(t, ρ) ∈ N0 ∪ {∞} to
denote the number of times transition t appears on run ρ. An expression b ∈ Expr(VarZ)

over integer program variables VarZ ⊆ Var is a bound for t on ρ iff #(t, ρ) ≤ �b�(σ0), i.e.,
if t appears at most b times on ρ.

Given a program P = (L, T , �0) and predicate S over local and shared variables Var =
LVar ∪ SVar, our goal is to compute a function Bound : T → Expr(SVarZ ∪ {N }), such that
for all transitions t ∈ T and all system sizes N ≥ 1, Bound(t) is a bound for t of P1 on
all runs of ‖N P = P1 ‖ · · · ‖ PN from

∧

N S = S1 ∧ · · · ∧ SN . That is, Bound gives us
the thread-specific bounds for transitions of P1. In Sect. 3.5, we explain how to obtain total
bounds on ‖N P from that.

3.2 Extending rely-guarantee reasoning for bound analysis

To analyze the infinite family of programs ‖N P = P1 ‖ · · · ‖ PN , we abstract P1’s environ-
ment P2 ‖ · · · ‖ PN : We define effect summaries which provide an abstract, thread-modular
view of transitions by abstracting away local variables and program locations.

Definition 5 (Effect summary) LetΣS be a set of program states over shared variables SVar.
An effect summary A ⊆ ΣS × ΣS over SVar is a binary relation over shared program states.
Where convenient, we treat an effect summary A as a guarded command whose effect �A� is
exactly A.

Sound effect summaries over-approximate the state transitions of the program they
abstract:

Definition 6 (Soundness of effect summaries) Let P = (L, T , �0) be a program over local
and shared variables Var = LVar ∪ SVar, and let S over Var be a predicate describing P’s
initial states. We denote by Effects(P, S) the state transitions reachable by P from program
location �0 and all initial states σ0 ∈ �S� when projected onto shared variables SVar.

Let A over SVar be a finite set of effect summaries, and let A∗ denote all sequentially
composed programs of effect summaries in A (its Kleene iteration). A is sound for P from
S if Effects(P ‖ A∗, S) ⊆ Effects(A∗, S).
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In Sect. 4.2 we show how to compute A in a preliminary analysis step such that it over-
approximates P (or P1 ‖ P2). We extend the above notion of soundness of effect summaries
to parallel composition and the parameterized case in Lemma 1 and Corollary 1 below.
Intuitively, if the effects of each individual program P1, P2, . . . interleaved with A∗ are
included in effects of A∗, then so are the effects of their parallel composition. It is thus
sufficient to check soundness for a finite number of programs and still obtain sound summaries
of parameterized systems.

Lemma 1 Let P be a program over local and shared variables Var = LVar ∪ SVar and
let S be a predicate over Var describing its initial states. Let P1, P2, . . . , PN be pro-
grams over variables Var1, Var2, . . . , VarN obtained by renaming local variables in P such
that P1, P2, . . . , PN do not share local variables, i.e.,

⋂

1≤i≤N LVari = ∅. Further, let
S1, S2, . . . , SN be predicates obtained from S using the same renaming. Let A be a sound
set of effect summaries for P from S.

If

Effects(P1 ‖ A∗, S1) ⊆ Effects(A∗, S) and

Effects(P2 ‖ A∗, S2) ⊆ Effects(A∗, S),

then

Effects
(

(P1 ‖ P2) ‖ A∗, S1 ∧ S2
) ⊆ Effects(A∗, S).

Corollary 1 In particular, if

Effects(P ‖ A∗, S) ⊆ Effects(A∗, S),

then

Effects
(

(‖N P) ‖ A∗) , S1 ∧ S2 ∧ · · · ∧ SN ) ⊆ Effects(A∗, S).

Effect summaries are capable of expressing relies and guarantees in Jones’ RG reasoning
(cf. Sect. 1.4). In the following, we extend this notion to bound analysis by equipping each
effect summary with a bound expression. We call these extended interference specifications
environment assertions:

Definition 7 (Environment assertion) Let A = {A1, . . . , An} be a finite set of effect sum-
maries over shared variables SVar. Let N be a symbolic parameter describing the number
of threads in the system. An environment assertion EA : A → Expr(SVar ∪ {N }) over A is
a function that maps effect summaries to bound expressions over SVar and N . We omit A
from EA wherever it is clear from the context.

We use sequences a of effect summaries to describe interference: Intuitively, the bound
EA(A) describes how often summary A ∈ A is permissible in such a sequence. Finally,
we define rely-guarantee quintuples over environment assertions as the specifications in our
compositional proofs:

Definition 8 (Rely-guarantee quintuple)We abstract environment threads of interleaved pro-
grams as rely-guarantee quintuples (RG quintuples) of either form

R,G � {S} P {S′} or R, (G1,G2) � {S} P1 ‖ P2 {S′}
where P and P1 ‖ P2 are programs, S and S′ are predicates such that �S� ⊆ Σ are initial
program states, and �S′� ⊆ Σ are final program states, and rely R and guarantees G and
G1,G2 are environment assertions over a finite set of effect summaries A.
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In particular, R abstracts P’s or P1 ‖ P2’s environment. The guarantees G and (G1,G2)
allow us to express both thread-specific and total bounds on interleaved programs: The
guarantee G of quintuple R,G � {S} P1 ‖ P2 {S′} contains total bounds for P1 ‖ P2, while
the guarantees G1,G2 ofR, (G1,G2) � {S} P1 ‖ P2 {S′} contain the respective thread-specific
bounds of threads P1 and P2.

Note that the relies and guarantees of a single RG quintuple are defined over the same
set of effect summaries A. This is not a limitation: in case we had different sets of effect
summariesA andA′, we can always use their unionA∪A′ and set the respective bounds to
zero.

Remark 2 (Notation of environment assertions) We choose to write relies and guarantees as
functions over A as it simplifies notation throughout the paper. The reader may prefer to
think of environment assertions {A1 �→ b1, . . . } as sets of pairs of an effect summary and a
bound {(A1, b1), . . . }, in contrast to just a set of effect summaries {A1, . . . } as in Jones’ RG
reasoning.

3.3 Trace semantics of rely-guarantee quintuples

We model executions of RG quintuples as traces, which abstract runs of the concrete sys-
tem. This allows us to over-approximate bounds by considering the traces induced by RG
quintuples.

Definition 9 (Trace) Let P = (L, T , �0) be a program of form P1 or P1 ‖ P2 where
Pi = (Li , Ti , �0,i ). Further, let S be a predicate over local and shared variables Var =
LVar ∪ SVar and let A be a finite sound set of effect summaries for P from S. We represent
executions of P interleaved with effect summaries in A as sequences of trace transitions
δ ∈ (L×Σ)×(L×Σ∪{⊥})×{1, 2, e}×A, where the first two components define the change
in program location and state, the third component defines whether the transition was taken
by program P1 (1), P2 (2), or the environment (e), and the last component defineswhich effect
summary encompasses the state change. For a trace transition δ = ((�, σ ), (�′, σ ′), α, A),

we write (�, σ )
α:A−−→ (�′, σ ′).

A trace τ = (�0, σ0)
α1:A1−−−→ (�1, σ1)

α2:A2−−−→ . . . of program P starts in a pair (�0, σ0) of
initial program location and state, and is a (possibly empty) sequence of trace transitions.
Let |τ | ∈ (N0 ∪ {∞}) denote the number of transitions of τ . We define the set of traces of
program P as the set traces(S, P) such that for all τ ∈ traces(S, P), we have σ0 ∈ �S� and
for trace τ ’s i th transition (0 < i ≤ |τ |) it holds that either
– αi = 1, (�i−1, gc, �i ) ∈ T1 for some gc, σi ∈ �gc�(σi−1), and (σi−1�SVar, σi�SVar) ∈ Ai ,

or
– αi = 2, (�i−1, gc, �i ) ∈ T2 for some gc, σi ∈ �gc�(σi−1), and (σi−1�SVar, σi�SVar) ∈ Ai ,

or
– αi = e, �i−1 = �i , (σi−1�SVar, σi�SVar) ∈ Ai , and σi−1�LVar = σi�LVar .

The projection τ�C of a trace τ ∈ traces(S, P) to components C ⊆ {1, 2, e} is the
sequence of effect summaries defined as image of τ under the homomorphism that maps
((�, σ ), (�′, σ ′), α, A) to A if α ∈ C , and otherwise to the empty word.

We now define the meaning of RG quintuples over traces. Given an environment assertion
EA over effect summariesA, interference by an action A ∈ A is described by EA(A), giving
an upper bound on how often A can interfere:
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Fig. 3 Rely/guarantee proof rules
for bound analysis. We write �G
for either G or (G1,G2). In the
latter case, ⊆ is applied
componentwise

Definition 10 (Validity) LetA be a finite set of effect summaries over shared variables SVar,
let A ∈ A be an effect summary, and let a be a finite or infinite word over effect summaries
A. Let EA be an environment assertion over A. Let σ ⊆ ΣS be a program state over SVar.
We overload #(A, a) ∈ N0 ∪ {∞} to denote the number of times A appears on a and define

a |�σ EA iff #(A, a) ≤ �EA(A)�(σ ) for all A ∈ A.

We define R,G |� {S} P {S′} iff for all traces τ ∈ traces(S, P) such that τ starts in state
σ0 ∈ �S� and τ�{e} |�σ0 R (τ ’s environment transitions satisfy the rely):

– if τ is finite and ends in (�′, σ ′) for some �′, then σ ′ �= ⊥ (the program is safe) and
σ ′ ∈ �S′� (the program is correct), and

– τ�{1} |�σ0 G (τ ’s P-transitions satisfy the guarantee G).
Similarly, R, (G1,G2) |� {S} P1 ‖ P2 {S′} iff for all τ ∈ traces(S, P1 ‖ P2) s.t. τ starts in
σ0 ∈ �S� and τ�{e} |�σ0 R:

– if τ is finite and ends in (�′, σ ′) for some �′, then σ ′ �= ⊥ and σ ′ ∈ �S′�, and
– τ�{1} |�σ0 G1 and τ�{2} |�σ0 G2.

3.4 Proof rules for rely-guarantee bound analysis

Inspired by Jones’ proof rules for safety [28,42] (cf. Fig. 1) and the rely-guarantee rules
for liveness and termination in [15], we propose inference rules to facilitate reasoning about
our bounded RG quintuples. First, we define the addition and multiplication environment
assertions, as well as the subset relation over them:

Definition 11 (Operations and relations on environment assertions) Let A be a finite set of
effect summaries over shared variables SVar, let A ∈ A be an effect summary, and let EA
and E′

A be environment assertions over A. Let σ ⊆ ΣS be a program state over SVar. Let
e ∈ Expr(SVar) be an expression over SVar. For all effect summaries A ∈ A we define

(e × EA)(A) = e × EA(A), and

(EA + E′
A)(A) = EA(A) + E′

A(A).

Further, let S be a predicate over SVar. We define

EA ⊆S E′
A iff �EA(A)�(σ ) ≤ �E′

A(A)�(σ )

for all A ∈ A and all σ ∈ �S�.

Proof rules. The proof rules for our extended RG quintuples, using environment assumptions
to specify interference, are shown in Fig. 3:
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– Par interleaves two threads P1 and P2 and expresses their thread-specific guarantees in
(G1,G2).

– Par-Merge combines thread-specific guarantees (G1,G2) into a total guarantee G1+G2.
– Conseq is similar to the consequence rule of Hoare logic or RG reasoning: it allows to

strengthen precondition and rely, and to weaken postcondition and guarantee(s).

Keeping rules Par and Par-Merge separate is not only useful to express thread-specific
bounds, but sometimes necessary to carry out the proofs below.

Leaf rules of the proof system. Note that our proof system comes without leaf rules. We
offload the computation of correct guarantees G from a given program P , a precondition S,
and a rely R to a bound analyzer (cf. Sect. 4.3). From this, we can immediately state valid
RG quintuplesR,G |� {S} P {S′} for sequential programs and use the rules from Fig. 3 only
to infer guarantees on the parallel composition of programs.

Relation to Jones’ original RG rules. Note that our proof rules are a natural extension of
Jones’ original RG rules (Fig. 1): If we replace set union ∪ with addition of environment
assumptions+ (Definition 11) and the standard subset relation⊆with our overloaded one on
environment assumptions (Definition 11), Jones’ rule J-Par equals the composed application
of Par and Par-Merge, and Jones’ J-Conseq equals our Conseq rule.

Postconditions of RG quintuples. Although our proof rules allow to infer both bounds (in the
guarantees) and safety (through the postconditions), in this work we focus on the former. We
still write postconditions because our proof rules are sound even with them, and because this
notation is already familiar to many readers. As postconditions aren’t relevant for inferring
bounds in this work, they default to true in the examples below.

Theorem 1 (Soundness) The rules in Fig. 3 are sound.

Proof We give an intuition here and refer the reader to Appendix A for the full proof.
Proof sketch: We build on the trace semantics of Definition 9. For each rule Par, Par-

Merge, Conseqwe assume validity (Definition 10) of the rule’s premises. We then consider
a trace τ of the program in the conclusion, such that it satisfies the judgement’s precondition
and rely (i.e., the premises of validity), and show that the trace also satisfies the judgement’s
guarantee and postcondition.

– For rule Par, we prove satisfaction of the guarantee by induction on the length of a trace
τ ∈ traces(S1 ∧ S2, P1 ‖ P2) and by case-splitting on the labeling of the last transition.
Satisfaction of the postcondition follows from the individual threads’ satisfaction of their
respective postconditions.

– For rule Par-Merge, we relabel the transitions of τ to discern between transitions of
P1 and P2. Guarantee and postcondition then follow from the premises of the individual
threads’ traces.

– For rule Conseq, the properties are shown by following the chain of implications of
assertions and inclusions of environment assertions in the premise.

��
The proof rules in Fig. 3 together with procedure SynthG defined below allow us to

compute rely-guarantee bounds for the parallel composition of a fixed number of threads.

Definition 12 (Synthesis of guarantees) Let SynthG(S, P,R) be a procedure that takes
a predicate S, a non-interleaved program P , and a rely R and computes a guarantee G,
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such that R,G |� {S} P {true} holds. Further, let procedure SynthG be monotonically
decreasing, i.e., for all predicates S and programs P , ifR′ ⊆ R then SynthG(S, P,R′) ⊆
SynthG(S, P,R).

For now, we assume that SynthG exists. We give an implementation in Sect. 4.3.

Running example We show how to infer bounds for two threads P1 ‖ P2 concurrently
executing Treiber’s push method. Let 0 = (0, . . . , 0) denote the empty environment. Our
goal is to find valid premises for rule Par (Fig. 3) to conclude

0, (G1,G2) � {I nv} P1 ‖ P2 {true}, (1)

That is, in an otherwise empty environment (rely R = 0), when run as P1 ‖ P2, each
thread has the bounds given in G1 and G2. Recall from Sect. 2.4 that Inv is a data structure
invariant over shared variables.We assume its existence for now and describe its computation
in Sect. 4.1.

SinceR is empty, the premises of rule Par become

G2,G1 � {Inv} P1 {true} and
G1,G2 � {Inv} P2 {true}. (2)

Assuming a rely G2 that soundly over-approximates P2 in an environment of P1, we can
compute G1 as G1 = SynthG(Inv, P1,G2). As the argument above is circular, the only sound
assumption we can make at this point is to let G2 = (∞,∞,∞,∞,∞), i.e., assume that P2

interferes up to infinitely often on P1.
As we have argued in Sect. 2.4, this is enough to show G1 = SynthG(Inv, P1,G2) = (1,

∞,∞,∞, 1). From this, G2 = (1,∞,∞,∞, 1) follows by symmetry.
Note that we have obtained a refined guarantee (1,∞,∞,∞, 1) � (∞,∞,∞,∞,∞).

We repeat the argument from above, and obtain G1 = (1, 2, 2, 1, 1). Further repeating the
argument does not further refine the bounds. Thus, by symmetry we have

(1, 2, 2, 1, 1), (1, 2, 2, 1, 1) � {Inv} P1 {true} and
(1, 2, 2, 1, 1), (1, 2, 2, 1, 1) � {Inv} P2 {true} (3)

and applying rule Par gives us thread-specific bounds for P1 and P2 in guarantees G1 and
G2:

0, ((1, 2, 2, 1, 1), (1, 2, 2, 1, 1)) � {Inv} P1 ‖ P2 {true}. (4)

3.5 Extension to parameterized systems and automation

The proof rules given in Sect. 3.4 allow us to infer bounds for systems composed of a fixed
number of threads. We now turn towards deriving bounds for parameterized systems, i.e.,
systems with a finite but unbounded number N of concurrent threads ‖N P = P1 ‖ · · · ‖ PN .

To this end, we use the proof rules from Sect. 3.4 to derive the symmetry argument stated
in Theorem 2 below: It allows us to switch the roles of reference thread and environment, i.e.,
to infer bounds on P2 ‖ · · · ‖ PN in an environment of P1 from already computed bounds
on P1 in an environment of P2 ‖ · · · ‖ PN .

Theorem 2 (Generalization of single-thread guarantees) Let P be a program over local
and shared variables Var = LVar ∪ SVar and let ‖N P = P1 ‖ · · · ‖ PN be its N-times
interleaving. Let S be a predicate over SVar. Let A over SVar be a sound set of effect
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Algorithm 1: Parameterized bound analysis
Input: A program P over effect summaries A, and an initial state S.
Output: Guarantees G1 and G2, such that (0, . . . , 0), (G1,G2) |� {S} P1 ‖ (P2 ‖ · · · ‖ PN ) {true}.

1 R := (∞, . . . , ∞)

2 G1 := SynthG(S, P,R)

3 G2 := (N − 1) × G1
4 if G2 � R then
5 R := G2
6 goto line 2

7 return (G1,G2)

summaries for P started from S, and let R and G be environment assertions over A. Let
0 = (0, . . . , 0) denote the empty environment.
If

(N − 1) × G ⊆S R and R,G |� {S} P1 {true}
then

0, (G, (N − 1) × G) |� {S} P1 ‖ (P2 ‖ · · · ‖ PN ) {true}.
I.e., if (N − 1) × G is smaller than R, and if R,G |� {S} P1 {true} holds, then in an empty
environment, P1’s environment P2 ‖ · · · ‖ PN executes effect summaries A no more than
(N − 1) × G times.

Proof We give an intuition here and refer the reader to Appendix B for the full proof.
Proof sketch: We prove the property by induction for k threads up to a total of N . The

main idea is to keep the effect of these k threads, k ×G, in the guarantee, and the effect of the
remaining N − k threads, (N − k) × G, in the rely. For the induction base (k = 2), we apply
rule Conseq to the premises of Theorem 2 and obtain the interleaved guarantees of the two
threads using rule Par. In the induction step, we add a (k + 1)th thread using rule Par and
merge the guarantees using Par-Merge. Finally, for k = N we get an empty environment 0
in the rely, and N × G in the guarantee. ��

Algorithm 1 shows our procedure for rely-guarantee bound computation of parameterized
systems. It uses Theorem 2 and procedure SynthG (Definition 12) to compute the bound
of a parameterized system P1 ‖ (P2 ‖ · · · ‖ PN ) as the greatest fixed point of environment
assertions ordered by ⊆. It alternates between

1. computing a guarantee G1 for P1 in R,G1 |� {S} P1 {true} (Line 2), and
2. inferring a guarantee G2 for P2 ‖ · · · ‖ PN in

(0, . . . , 0), (G1,G2) |� {S} P1 ‖ (P2 ‖ · · · ‖ PN ) {true}
(Line 3).

Intuitively, if R in step 1 overapproximates the effects of P2 ‖ · · · ‖ PN , then G1 is a
valid guarantee for P1 in an environment of P2 ‖ · · · ‖ PN . In step 2, our algorithm uses
Theorem 2 to generalize this guarantee G1 on P1 in an environment of P2 ‖ · · · ‖ PN to a
guarantee G2 on P2 ‖ · · · ‖ PN in an environment of P1. Theorem 3 below formalizes this
argument.

Finally, if the algorithm reaches a fixed point, it returns the results of the analysis:
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1. Thread-specific bounds of P1 are directly returned as G1.
2. For total bounds of P1 ‖ · · · ‖ PN , apply rule Par-Merge to G1 and G2 to sum up the

guarantees of P1 and P2 ‖ · · · ‖ PN .

Theorem 3 (Correctness and termination) Algorithm 1 is correct and terminates.

Proof Correctness. By Definition 12, Line 2 computes G1 such that

R,G1 |� {S} P1 {true}.
Assume that (N −1)×G1 ⊆ R. Then by Theorem 2, Line 3 computes G2 = (N −1)×G1

such that G2 bounds P2 ‖ · · · ‖ PN in an environment of P1, i.e.,

(0, . . . , 0), (G1,G2) |� {S} P1 ‖ (P2 ‖ · · · ‖ PN ) {true}.
It remains to show that (N − 1) × G1 ⊆ R holds at Line 3 of each iteration:

– Initially, R = (∞, . . . ,∞) and thus trivially (N − 1) × G1 ⊆ R.
– For each subsequent iteration, let G′

1,G′
2,R′ refer to the variables’ evaluation in the

previous iteration.We haveR = G′
2 = (N −1)×G′

1 � R′. Since by assumption SynthG
is monotonically decreasing, fromR � R′ we have G1 ⊆ G′

1 and thus (N −1)×G1 ⊆ R.

Termination. From the above, we have that the evaluations of G1 (and G2,R, respectively)
are strictly decreasing in each iteration. The lattice of environment assertions ordered by⊆ is
finite and bounded from below by the least element (0, . . . , 0). Thus no infinitely descending
chains of evaluations of G1 exist and Algorithm 1 terminates. ��

Running example Let us return to the task of computing bounds for N threads ‖N P = P1 ‖
· · · ‖ PN concurrently executing Treiber’s push method. Our method starts from the RG
quintuple with unknown guarantee “?”

R, ? � {Inv} P1 {true}. (5)

Recall from Sect. 2.4 that Inv is a data structure invariant over shared variables. We assume
its existence for now and describe its computation in Sect. 4.1.

Algorithm 1 starts by computing a correct-by-construction guarantee for the RG quintuple
in (5): It summarizes P1’s environment P2 ‖ · · · ‖ PN in the rely R. At this point, it cannot
safely assume any bounds on P2 ‖ · · · ‖ PN , and thus on R. Therefore, it lets R = (∞,

∞,∞,∞,∞) (Line 1 of Algorithm 1), which amounts to stating the query from (5) above
as

(∞,∞,∞,∞,∞), ? � {Inv} P1 {true}. (6)

Next, Line 2 of Algorithm 1 runs the RG bound analysis procedure SynthG. As we have
argued in Sect. 2.4, this yields SynthG(Inv, P1,R) = (1,∞,∞,∞, 1), i.e., we have

(∞,∞,∞,∞,∞), (1,∞,∞,∞, 1) |� {Inv} P1 {true}. (7)

At this point, our method cannot establish tighter bounds for P1 unless it obtains tighter
bounds for its environment P2 ‖ · · · ‖ PN and thusR. In Sect. 2.4, we informally argued that
if G = (1,∞,∞,∞, 1) is a guarantee for P1, then (N −1)×G = (N −1,∞,∞,∞, N −1)
must be a guarantee for the N − 1 threads in P1’s environment P2 ‖ · · · ‖ PN . Line 3 of
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Algorithm 1 applies Theorem 2 to (7) and obtains

R, (G1,G2) |� {Inv} P1 ‖ (P2 ‖ · · · ‖ PN ) {true} where
R = (0, 0, 0, 0, 0)

G1 = (1,∞,∞,∞, 1)

G2 = (N − 1,∞,∞,∞, N − 1)

(8)

From the above, we have that (N − 1,∞,∞,∞, N − 1) is a bound for P1’s environment
P2 ‖ · · · ‖ PN when run in parallelwith P1.Going back to theRGquintuple (5), our technique
refines the rely R, which models P2 ‖ · · · ‖ PN , by letting R = G2 = (N − 1,∞,∞,∞,

N −1) since this is a tighter bound than (∞,∞,∞,∞,∞), i.e. (N −1,∞,∞,∞, N −1) �

(∞,∞,∞,∞,∞) (Lines 4–6 of Algorithm 1).
This means that we can refine our query for a guarantee from above to

(N − 1,∞,∞,∞, N − 1), ? � {Inv} P1 {true}, (9)

iterating our fixed point search. This second iteration again runs SynthG, which returns
(1, N , N , N − 1, 1). Thus,

R,G |� {Inv} P1 {true} where
R = (N − 1,∞,∞,∞, N − 1)

G = (1, N , N , N − 1, 1)

(10)

and by Theorem 2 we have

R, (G1,G2) |� {Inv} P1 ‖ (P2 ‖ · · · ‖ PN ) {true} where
R = (0, 0, 0, 0, 0)

G1 = (1, N , N , N − 1, 1)

G2 = (N − 1, N (N − 1), N (N − 1), (N − 1)2, N − 1)

(11)

Another refinement ofR from G2 and another run of SynthG gives

R,G |� {Inv} P1 {true} where
R = (N − 1, N (N − 1), N (N − 1), (N − 1)2, N − 1)

G = (1, N , N , N − 1, 1)

(12)

This time, the guarantee has not improved any further over the one in (10), i.e., our method
has reached a fixed point and stops the iteration. Applying Theorem 2 gives

R, (G1,G2) |� {Inv} P1 ‖ (P2 ‖ · · · ‖ PN ) {true} where
R = (0, 0, 0, 0, 0)

G1 = (1, N , N , N − 1, 1)

G2 = (N − 1, N (N − 1), N (N − 1), (N − 1)2, N − 1)

(13)

of which (G1,G2) are returned as the algorithm’s result.
To compute thread-specific bounds for the transitions of P1, our method may stop here;

the bounds can be read off G1. For example, the fourth component of G1 indicates that back
edge �3 → �1 is executed at most N − 1 times. Note that according to Remark 1 this gives
an upper bound on the asymptotic time complexity of the corresponding loop.
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To compute total bounds for the transitions of thewhole interleaved system P1 ‖ · · · ‖ PN ,
our technique simply applies rule Par-Merge, which gives

R,G |� {Inv} P1 ‖ · · · ‖ PN {true} where
R = (0, 0, 0, 0, 0)

G = (N , N 2, N 2, (N − 1)N , N )

(14)

Again, bounds can be read off G, for example the second component indicates that transition
�1 → �2 is executed at most N 2 times by all N threads in total.

4 Application: proving that non-blocking algorithms have bounded
progress

In Sects. 1 and 2, we presented our motivation for computing bounds of non-blocking algo-
rithms and data structures in order to prove bounded lock-freedom.

Accordingly, we instantiate Algorithm 1’s inputs – precondition S, the set of effect sum-
maries A, and the black-box method SynthG. This leaves Algorithm 1 parameterized only
by program P , i.e., the non-blocking algorithm to analyze. In particular, we pass S, A, and
SynthG as:

1. A suitable data structure invariant Inv to use as a precondition inRGquintuplesRA,GA �
{Inv} P {true}.

2. Afinite set of effect summariesA as the domainof thread-modular environment assertions
RA and GA.

3. An implementation of the bound analyzer SynthG(Inv, P,RA).

Variants of the above have been discussed throughout the literature. In this section, we
show how we adapt and combine these techniques for our purpose.

4.1 Data structure invariants via shape analysis

Amethodmanipulating a data structuremay usually start executing in any legal configuration
of the data structure.

Running example For example, the push method of Treiber’s stack may be called on an
empty stack, or a stack containing some number of elements (Fig. 4).

Thus, our goal is to compute bounds that are valid for all computations starting from
all memory configurations the data structure may be in. Given a program P = (L, T , �0), a
thread-modular shape analysis (e.g., [10,11,21]) computes a symbolic data structure invariant
Inv that describes all possible memory configurations (when projected onto shared variables)
that the parameterized program ‖N P = P1 ‖ · · · ‖ PN may reach.

Fig. 4 Possible memory configurations for Treiber’s stack
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4.2 Effect summary generation

The second ingredient to computing progress bounds for non-blocking algorithms is the
generation of thread-modular effect summaries (Definition 5) that over-approximate the effect
of threads on the global state. Many methods for obtaining effect summaries have been
described in the literature. Using the nomenclature from [26], these can be grouped into
three different approaches:

– Themerge-and-project approach (e.g., [7,19,28,29]) first merges reachable, partial (from
the point of view of a specific thread) program states, lets one thread perform a sequential
step, and then projects the result onto what is seen by other threads.

– The learning approach (e.g. [32,41]) uses symbolic execution embedded in a fixed point
computation to infer symbolic update patterns on the shared program state.

– Finally, the effect summary approach [26] discovers a stateless summary program that
over-approximates the analyzed program’s effects on the shared program state.

We follow the effect summary approach. Holík et.al. [26] demonstrate how to compute
such effect summaries using a heuristic based on copy propagation and program slicing
followed by a simple soundness check. We obtainA = {A1, . . . , Am} as a stateless program
Stateless(A) of the form

while (true) do A1 [] . . . [] Am done.

In addition to A, this method outputs a function EffectOf : A → 2T that maps an effect
summary to the transitions it abstracts.

Running example For Treiber’s stack, Stateless(A) is shown in Fig. 2c. Since we are inter-
ested in computing bounds per transition, we compute one effect summary per transition of
the original program. In general, coarser effect summaries may be chosen.

4.3 Rely-guarantee bound analysis: procedure SYNTHG

Finally, we present our bound analysis procedure SynthG(S, P,R): Given a precondition
S, a program P and a relyR over effect summariesA, it computes bounds for the transitions
of P in an environment of R if started in a state in S. SynthG proceeds in the following
way:

1. It instruments the stateless effect summary programStateless(A)with additional counters
to allow only runs that obey the bounds given byR. Call the resulting program Instr(R)

and let the interleaved program I = P ‖ Instr(R) be the interleaving of the program P
to analyze and its environment R. Note that according to the product constructions of
Definition 2, I again is a (sequential) program.

2. Most sequential bound analyzers target integer programs. Thus, as an intermediate step,
our method translates program I = P ‖ Instr(R) into an equivalent (bisimilar) integer
program Î .

3. Finally, we use an off-the-shelf bound analyzer for sequential integer programs to obtain
bounds on Î . Note that bounds on transitions of Î that correspond to transitions of P are
bounds for P in an environment ofR.

Our main insight is that constructing the interleaved program P ‖ Instr(R) yields just
a sequential program that can be given to a sequential bound analyzer. Thus reducing RG
bound analysis to the sequential case, we describe each of the above steps in further detail:
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4.3.1 Instrumentation of bounds

Recall from Sect. 4.2 that we obtain the finite set of effect summaries A as a stateless
program Stateless(A). Our method instruments Stateless(A) with fresh counter variables
ξAi to enforce the bounds in R:

Let Instr(RA) = ({�}, T , �) be the program over additional variables ξA1 , . . . , ξAm and a
fresh location � with initial states �g0� where

T = {(�, A′, �) | A ∈ A} where

A′ =
{

ξA > 0 � {A; ¸A := ¸A − 1} ifRA(A) �= ∞
true � {A} otherwise

, and

g0 =
∧

A∈A

{

ξA = RA(A) if RA(A) �= ∞
true otherwise

Like Stateless(A), T contains one transition per effect summary. The definition of each
transition’s guarded command A′ and the initial state g0 depend on whether effect summary
A is bounded byR:

1. A is bounded byR (R(A) �= ∞): g0 initializes a counter ξA to enforce the corresponding
boundR(A). The new effect summary A′ checks if taking the action is still within bounds
(guard ξA > 0). If so, it atomically executes action A and decrements ξA by one.

2. A is not bounded byR (R(A) = ∞): The guarded command and initial conditions are
left uninstrumented; A may be executed an arbitrary number of times by Instr(R).

Proposition 1 Let P be a program and R be an environment assertion. There exists an
isomorphism between runs of P ‖ Instr(R) from Inv ∧ g0, and traces {τ ∈ traces(Inv, P) |
τ starts in σ and τ�{e} |�σ R}, such that isomorphic runs and traces have the same length
n, and for all positions 0 ≤ i ≤ n their location and state components are equal up to the
instrumentation location � and instrumentation variables ξA of Instr(R).

4.3.2 Translation to integer programs

Our goal is to analyze the sequential pointer program I = P ‖ Instr(R). To make use of
the wide range of existing sequential bound analyzers for integer programs (e.g., [4,6,9,12,
20,23,36]), our method translates the pointer program I into an equivalent integer program
Î : Using the technique of [8], our algorithm translates the interleaved program with pointers
I = P ‖ Instr(R) and predicate Inv ∧ g0 into a bisimilar integer program Î and predicate
̂Inv ∧ g0. Alternatively, one could directly compute bounds on the pointer program I using

techniques such as described in [3,17,37].

4.3.3 Off-the-shelf bound analysis

Note that Î is a sequential integer program that can be given to an off-the-shelf sequential
bound analyzer. We require the bound analyzer to be sound (i.e., it only reports transition
bounds that hold for all runs of the program), but not necessarily complete (i.e., it may fail to
bound a transition, even though the bound exists). The latter is expected due to the undecidable
nature of (even sequential) bound analysis, and causes our analysis to be incomplete as well.
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Fig. 5 Effect summaries and instrumented bounds for Treiber’s push method

Fig. 6 Linked list segments

Let T̂ denote the transitions of Î . Ourmethod runs the sequential bound analyzer on Î with
initial states ̂Inv ∧ g0, which computes a function SeqBound : T̂ → Expr(VarZ ∪ {N ,∞}),
such that for all t ∈ T̂ and all N ≥ 1, SeqBound(t) is a bound for t on all runs of Î from
̂Inv ∧ g0.
Then, our technique maps bounds obtained on transitions of Î back to the corresponding

transitions of P in I = P ‖ Instr(R), which allows it to compute the desired guarantee
for P: Letting

G(A) =
∑

t∈EffectOf(A)

SeqBound(t)

for all A ∈ A gives a guaranteeG forR, ? � {Inv}P{true}, i.e., we haveR,G |� {Inv}P{true}
as we required from procedure SynthG. Thus, we reduced RG bound analysis to sequential
bound analysis.

Remark 3 (Bounds over parameters) Note that the instrumentation step Instr(RA) can intro-
duce additional global variables (like N ) as initialization of the instrumentation counters ξAi .
This allows the sequential bound analyzer to find bounds over parameters that it otherwise
wouldn’t know about.

Running example Assume that we are in our second iteration of computing bounds for N
concurrent copies of Treiber’s P = push method, i.e., we are now looking to compute a
guarantee for

(N − 1,∞,∞,∞, N − 1), ? � {Inv} P1 {true}.
For space reasonswe restrict ourselves to the casewhere ‖N P is started from a non-empty

stack.

Instrumentation of bounds. Recall from Sect. 2 that the effect summary A for push is the
one shown in Fig. 5a. Our method starts by instrumenting the bounds fromR = (N − 1,∞,

∞,∞, N − 1) into effect summaryA. We obtain Instr(RA) as the stateless program shown
in Fig. 5b.
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Fig. 7 Integer program Î for I = push() ‖ Instr(RA) of Treiber’s pushmethod if started from a non-empty
stack. Solid lines correspond to push, dashed lines to the effect summary APush. For transitions of push,
we give the corresponding edge in Fig. 2a in parentheses
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Translation to integer programs.Next, using the technique of [8],we transform I = push() ‖
Instr(RA) into the bisimilar integer program Î shown in Fig. 7: Solid lines correspond to
push, dashed lines to the effect summary APush.We omit transitions corresponding to actions
Ai, j
Id : skip in Fig. 5b. Applying the technique of [8] also yields initial states

̂Inv ∧ g0 : ξPush = N − 1 ∧ x1 > 0.

Intuitively, each integer variablexi corresponds to the length of uninterrupted list segments
between two pointers: Consider Fig. 6. Applying the technique of [8] would abstract the
depicted program state into a state over two integer variables {x1 �→ 1, x2 �→ 4} where
the valuations of the variables correspond to the length of the list segment between n and
T (x1 = 1) and between T and ⊥ (x2 = 4). The mapping of pointers to integer variables
{n �→ x1,T �→ x2} and the next-list-segment relation n → T → ⊥ are encoded into the
control locations of the integer program by [8] and omitted from Fig. 7 for space reasons.

Off-the-shelf bound analysis. Note that Î in Fig. 7 contains a singleton loop (i.e., a strongly
connected component) formed by program locations �4–�12. Also note that each circle
through the loop contains an edge corresponding to APush, and that the guarded command on
each such edge tests that ξPush > 0 and decrements ξPush by one. Since ξPush is initialized to
N − 1 and ξPush is nowhere incremented, our bound analysis procedure concludes that paths
inside the loop execute at most N − 1 times. Edges outside the loop are taken at most once.
Finally, summing up the respective bounds into a guarantee gives G = (1, N , N , N − 1, 1).

5 Experimental evaluation

In this section, we report on our implementation of themethod of Sect. 4 and experiments that
we perform on well-known concurrent algorithms from the literature. For each benchmark
case, our tool constructs a general client program P = op1() [] . . . [] opM(), and analyzes
its parameterized N -times interleaving ‖N P = P1 ‖ · · · ‖ PN for thread-specific bounds of
a single thread Pi and total bounds of P1 ‖ · · · ‖ PN as described in Sect. 2.

5.1 Implementation

Our toolCoachman [14] implements the RG bound analyzer for pointer programs described
in Sect. 4. For invariant analysis and effect summary generation, we use invariants from [11]
and effect summaries from [26] where available2. In all other cases we manually describe the
initial memory layout, apply the summary computation algorithm from [26], and manually
convince ourselves of their soundness. For the sequential bound analyzer, we implement an
algorithm based on difference constraint abstraction [36].

5.2 Benchmarks

Table 1 summarizes the experimental results. We group our benchmarks into four sets:
The first set of benchmarks is taken from [21] and consists of non-blocking stack and

queue implementations. Treiber’s stack [38] (treiber) has been thoroughly discussed

2 Since [11] and [26] are based around different heap representations, and for [26] no implementation of the
summary computation algorithm is available, we decided to refrain from tighter tool integration.
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Table 1 Experimental results. The compl(exity) column lists the benchmark’s thread-specific complexity as
computed by Coachman, which is asymptotically tight for all benchmark cases. |V | and |E | indicate the size
of the generated integer program as transition system with |V | control locations and |E | edges, it(erations)
gives the number of iterations for Algorithm 1 to reach a fixed point, and runtime is our tool’s runtime
in hours:minutes:seconds. Column speedup lists the speedup compared to the tool version reported in the
conference proceedings [33]

Benchmark Compl. Tight? |V | |E | It. Runtime Speedup

treiber [38] O(N ) � 214 802 2 00:00:15 2x

dcas-stack [39] O(N ) � 216 822 2 00:00:15

hsy-elimination [24] O(N ) � 8,990 49,772 3 19:32:03

michael-scott [31] O(N ) � 897 5,243 3 00:07:30 12x

dglm [16] O(N ) � 873 8,119 3 00:07:25 6x

atomic-ref [25] O(N ) � 30 54 2 00:00:01

prio-queue [25] O(N ) � 840 4,860 2 00:02:43

quadratic O(N2) � 36 100 3 00:00:07

cubic O(N3) � 10,123 38,992 4 06:12:07

spinlock-tas [25] ∞ � 8 20 2 00:00:01

spinlock-ttas [25] ∞ � 10 25 2 00:00:01

treiber-partial [25] ∞ � 216 812 2 00:00:16

in our running example (Sect. 2). dcas-stack is a modified version of Treiber’s stack
using a double-compare-and-swap (DCAS) instruction that atomically compares two mem-
ory locations and conditionally updates the first [39]. The HSY elimination stack [24]
(hsy-elimination) allows a pair of concurrent push and pop operations to exchange
values without going through the bottleneck of the stack’s shared top pointer.

TheMichael-Scott lock-free queue [31] (michael-scott) has, e.g., been implemented
in the ConcurrentLinkedQueue class of the Java standard library. The DGLM queue
[16] is a more recent, optimized version of the Michael-Scott queue.

We omit the two remaining benchmarks from [21] that our implementation currently does
not handle: a list-based set and an n-ary CAS variant (due to their use of bit-vector arithmetic
on pointers and partitioned memory regions, respectively). This is solely a limitation of our
implementation (more precisely, the used integer abstraction from [8]) rather than a limitation
of the overall rely-guarantee approach to bound analysis presented in this work. We leave
refining the integer abstraction for these cases as future work.

In addition to the benchmarks from [21], we include two additional standard non-blocking
data structures [25]: A simple atomic reference (atomic-ref) that can be atomically read
and updated, and a bounded priority queue whose two buckets are each backed by a lock-free
stack (prio-queue).

Designers of concurrent data structures usually aim for complexity to be linear in the
number of concurrent threads N . To confirm that our tool works for further complexity
classes, we designed benchmarks quadratic and cubic: They consist of 2 (resp. 3)
nested CAS calls and have complexity N 2 (resp. N 3).

Finally, we expose our tool to benchmarks that have unbounded complexity:spinlock-
tas and spinlock-ttas implement a busy-waiting (test-and-)test-and-set lock [25].
treiber-partial is a partial variant of Treiber’s stack [25], where the pop method
busy-waits for an element in case the stack is empty.
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5.3 Discussion of results

First of all, our tool computes and confirms asymptotically tight bounds for all benchmark
cases. In the following, we summarize its operation and results.

Example 1 (Treiber’s stack) For a single CAS-guared loop (e.g., in Treiber’s stack from
Fig. 2), our tool takes 2 iterations: Considering the product of a single thread and its abstracted
environment (given as – still unbounded – effect summaries), its first iteration establishes a
bound for the CAS-edge leaving the loop. It then applies Theorem 2 to obtain a bound on
the corresponding effect summaries. In the second iteration the bounded environment edges
induce a bound on the remaining loop edges. This also establishes a fixed point, as all effect
summaries have been bounded and no smaller bound has been established.

Example 2 (Michael-Scott queue) In contrast toTreiber’s stack, the transitions of theMichael-
Scott queue cannot be bounded with just a single refinement operation: It synchronizes via
two CAS operations, the first one breaking/looping as in Treiber’s stack, the second one
located on a back edge of the main loop. Thus our algorithm cannot immediately bound the
summary edge corresponding to the second CAS. Rather, it first bounds the first CAS’ effect
summary, then refines and bounds the second CAS’ summary, and after a final refinement
bounds all other edges.

Other data structure benchmarks. Complexity of the remaining data structure benchmarks
is established similarly.

Benchmarks with polynomial complexity. Nested loops each guarded with a CAS on pairwise
different words in memory increase the polynomial complexity by one degree for each nest-
ing level. This is showcased by benchmarks quadratic and cubic, for which our tool
correctly computes the quadratic / cubic bound.

Intuitively, the number of iterations until a fixed point is reached is determined by a
dependency relation between the CAS operations: Each CAS c that can only be bounded
after another CAS c′ �= c (usually guarding the loop containing c) is bounded, adds one
iteration.

Unbounded (non-terminating) benchmarks. Finally, we test our tool on benchmarks that do
not – in general – terminate, and thus have unbounded complexity. This is confirmed by
benchmarks spinlock-tas, spinlock-ttas, and treiber-partial, for which
Coachman correctly fails to find a ranking function and thus to establish bounds.

Bounds on control-flow edges. So far we have only considered the overall thread-specific
complexity of our benchmark cases. This corresponds to the complexity cost model described
in Remark 1 of Sect. 2.2. Adoption of other cost models is possible and useful: Our bound
analysis allows us to infer bounds on an individual control-flow edge e of the program
template. This corresponds to a uniform cost model that sets the cost of e to 1 and that of all
other edges to 0.

We demonstrate its usefulness on the TAS and TTAS spinlocks (Fig. 8): The TAS spin-
lock’s (Fig. 8a) busy-waiting loop (�0 → �0) corresponds to a failing CAS call, while the
TTAS spinlock (Fig. 8b) wraps this check in a simple if-then-else (�10 → �10) and performs
the CAS operation only at �12. Note that the TAS spinlock executes the expensive CAS oper-
ation unboundedly often, while the TTAS spinlock executes it at most N times. This fact is
well-known in the literature, and one of the main considerations for preferring TTAS over
TAS [25].
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Fig. 8 Test-and-set (TAS) and test-and-test-and-set (TTAS) spinlocks with computed bounds

Runtime. Performance results were obtained on a single core of a 2.3GHz Intel Core i5-
8259U processor3. The runtime of our implementation is negligible in most cases, however
larger benchmarks (integer programs with |V | > 1,000 control locations and |E | > 10,000
control-flow edges) can take significant time.

Since the translation to integer programs described in Sect. 4.3 is purely syntactic, the
resulting program contains paths that are unreachable from the initial state. We prune these
paths by computing invariants over the interval abstract domain. This pruning step is currently
implemented as a naïve worklist algorithm, which is the main bottleneck of our implemen-
tation and could be further optimized.

In comparison to the tool version reported in the conference proceedings [33], we have
made major performance improvements by solving graph isomorphism queries to reduce the
size of the generated integer programs (cf. Sect. 4.3). This enables us to prove bounds for
the additional data structures included in this extended version within reasonable time. In
fact, our improved tool achieves up to 12x speedup compared to the version presented in the
conference proceedings.

6 Related work

Albert et.al. [5] describe an RG bound analysis for actor-based concurrency. They use
heuristics to guess an unsound guarantee and justify it by proving that all state changes
by environment threads not captured by the guarantee occur only finitely often. We note that
the approach of [5] leaves state changes by the environment that are not captured by the guar-
antee completely unconstrained. I.e., they may change the program state arbitrarily, leading
to coarser than necessary bounds. In contrast, our approach includes all state changes by

3 Unfortunately the benchmarking platform used for performance measurement in the conference version
was decommissioned, thus runtime results are not directly comparable to [33]. For speedup, we reran the
conference version of the tool on the new platform.
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environment threads, recognizes that environment state changes occurring boundedly often
already carry ranking information for the corresponding effect summaries, and leaves their
handling to the sequential bound analyzer.

More closely related to our work, Gotsman et al. [22] present a general framework for
expressing liveness properties in RG specifications and apply it to prove termination, i.e.,
unbounded lock-freedom. They give rely and guarantee as words over effect summaries, and
instantiate it for properties stating that a set of summaries does not occur infinitely often.
They automatically discharge such properties in an iterative proof search over the powerset
of effect summaries. Our approach differs in various aspects: First, while our RG quintuples
may be formulated as words over effect summaries, the instantiation in [22] is suitable only
for termination, but too weak for bound analysis. Second, the focus on liveness properties
leads to more complicated proof rules in [22], which have to account for the fact that naive
circular reasoning about liveness properties is unsound [1,22,30]. In contrast, all sequences
of effect summaries expressible by our environment assertions are safety-closed, allowing us
to use the full power of RG-style circular arguments in the premises of rule Par. Finally, we
obtain bounds for all effect summaries at once in a refinement step by reduction to sequential
bound analysis, rather than iteratively querying a termination prover whether a particular
effect summary is executed only finitely often.

7 Conclusion

We have presented the first extension of rely-guarantee reasoning to bound analysis, and
automated bound analysis of concurrent programsby a reduction to sequential bound analysis.
Our implementation Coachman is freely available and for the first time automatically infers
bounds for widely-studied concurrent algorithms.

8 Future work

While our framework extends Jones’ RG reasoning, we have only given proof rules for
parallel composition and a consequence rule andhave left the concrete programming language
and corresponding rules abstract. Our only requirement regarding safety is that the effect
summaries obtained in Sect. 4.2 over-approximate any thread’s effect on the global state.
However, obviously the precision of effect summaries is an important trade-off between
scalability of the analysis and finding (tight) bounds. In our experiments (Sect. 5), effect
summaries strong enough to show correctness, a safety property, proved highly useful. Giving
a full set of rules and exploring a tighter integration between safety and (bounded) liveness
properties is left for future work.

Another interesting question is the completeness of our approach. Computing bounds, just
as termination, amounts to finding a ranking function, possibly into the ordinal numbers. A
possible construction would thus extend bounds from the integers to the ordinals. We leave
this investigation for future work.

While lock-freedom guarantees absence of live-locks, it does not guarantee starvation-
freedom: If a thread’s environment interferes infinitely often, the thread may loop forever.
Wait-freedom is a stronger progress property that guarantees that each individual threadmakes
progress (i.e, freedom of starvation). Its implementation exposes shared variables per thread;
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handling this is an interesting problem for the future. Other interesting application domains
for further investigation include distributed algorithms and protocol implementations.

In terms of practical improvements, our tool currently discovers constant bounds and
bounds that are expressions over the number of concurrent threads N . Other bounds, e.g.,
an expression over the list’s length, are possible and occur in practice. Finding ways to
symbolically express such bounds, as well as extending the sequential bound analysis to
synthesize appropriate ranking functions poses interesting challenges for the future. Another
practical improvement left for future work is the extension to memory shapes other than
singly linked lists.
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Appendix

A Proof of Theorem 1

We start with some auxiliary definitions:

Definition 13 (Properties of traces) Let τ = (�0, σ0)
α1:A1−−−→ (�1, σ1)

α2:A2−−−→ . . . be a trace.
We write St(τ, i) = σi for the i th state component of τ , Loc(τ, i) = �i for the i th location
component of τ , and Ag(τ, i) = αi for the i th agent component of τ .

Definition 14 (Conjoining traces) Let P1 = (L1, T1, �0,1) and P2 = (L2, T2, �0,2) be pro-
grams over variables Var1 and Var2, respectively, such that P = P1 ‖ P2 is defined. Let
S1, S2, S be predicates over Var1, Var2, Var1 ∪ Var2, respectively. Let τ1 ∈ traces(S1, P1),
τ2 ∈ traces(S2, P2), and τ ∈ traces(S, P1 ‖ P2). τ, τ1, τ2 conjoin, written τ ∝ τ1 ‖ τ2, iff

– |τ | = |τ1| = |τ2|
– St(τ, i)�Var1 = St(τ1, i) and St(τ, i)�Var2 = St(τ2, i) for 0 ≤ i ≤ |τ |
– Loc(τ, i) = (

Loc(τ1, i),Loc(τ2, i)
)

for 0 ≤ i ≤ |τ |
– for 1 ≤ i ≤ |τ |, one of the following hold:

– Ag(τ1, i) = 1, Ag(τ2, i) = e, and Ag(τ, i) = 1
– Ag(τ1, i) = e, Ag(τ2, i) = 1, and Ag(τ, i) = 2
– Ag(τ1, i) = e, Ag(τ2, i) = e, and Ag(τ, i) = e

Lemma 2 (Compositionality of trace semantics) Let P1, S1 and P2, S2 be programs and
predicates such that P1 ‖ P2 is defined. Then traces(S1∧S2, P1 ‖ P2) = {τ | there exist τ1 ∈
traces(S1, P1) and τ2 ∈ traces(S2, P2) such that τ ∝ τ1 ‖ τ2}.
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Proof From Definitions 2 and 14. ��

Lemma 3 (Soundness of Par) Rule Par in Fig. 3 is sound.

Proof Let P1 and P2 be programs such that P1 ‖ P2 is defined. We assume

R + G2,G1 |� {S1} P1 {S′
1} (15)

R + G1,G2 |� {S2} P2 {S′
2} (16)

and show

R, (G1,G2) |� {S1 ∧ S2} P1 ‖ P2 {S′
1 ∧ S′

2}. (17)

Let τ ∈ traces(S1 ∧ S2, P1 ‖ P2) such that τ�{e} |�σ0 Rwhere σ0 ∈ �S1 ∧ S2� is the initial
state of τ . By Lemma 2 we have that there exist traces τ1 ∈ traces(S, P1), τ2 ∈ traces(S, P2)

such that τ ∝ τ1 ‖ τ2.
Wefirst show that P1 ‖ P2 satisfies the guarantee (G1,G2). Theproof proceeds by induction

on the length of τ .
Base case: τ is empty (|τ | = 0). Then by Definition 14 τ1 is empty and τ�{1} |�σ0 G1

trivially holds. G2 by symmetry.
Step case: Suppose τ is non-empty (|τ | > 0) and rule Par is sound for traces of length

|τ |−1. From S1 ∧ S2 ⇒ S1 we have σ0 ∈ �S1�. σ0 ∈ �S2� by symmetry. We case split on the
labeling of the last transition of τ1. Suppose it is e, then τ�{1} |�σ0 G1 follows immediately
from (15) and the induction hypothesis. Suppose it is 1. By Definition 14, τ2’s last transition
is labeled e, and τ2�{1} |�σ0 G2 follows from the induction hypothesis. By Definition 14, the
e-transitions of τ1 are either e-transitions of τ or 1-transitions of τ2. About these we have
τ�{e} |�σ0 R (from the initial assumption) and τ2�{1} |�σ0 G2 (above). Then τ1�{e} |�σ0 R+G2
and from (15) by Definition 10 τ1�{1} |�σ0 G1. Thus τ�{1} |�σ0 G1. G2 by symmetry.

It remains to show that P1 ‖ P2 satisfies the postcondition S′
1 ∧ S′

2. Assume τ is finite
and ends in ((�′

1, �
′
2), σ

′). We show that σ ′ �= ⊥ and σ ′ |� S′
1 ∧ S′

2: By Definition 14, τi is
finite and ends in (�′

i , σ
′�Vari ) for i ∈ {1, 2}. From (15) and (16) by Definition 10 we have

that σ ′�Vari �= ⊥ and σ ′�Vari ∈ �S′
i �. Thus σ ′ �= ⊥ and σ ′ ∈ �S′

1 ∧ S′
2�. ��

Lemma 4 (Soundness of Par-Merge) Rule Par-Merge in Fig. 3 is sound.

Proof We assume

R, (G1,G2) |� {S} P1 ‖ P2 {S′} (18)

and show

R,G1 + G2 |� {S} P1 ‖ P2 {S′}. (19)

Let τ ∈ traces(S, P1 ‖ P2) such that τ�{e} |�σ0 R where σ0 ∈ �S� is the initial state of τ .
Let τ ′ be τ where all 1-transitions corresponding to transitions of P2 are re-labeled with 2.
By construction, τ ′�{e} |�σ0 R. From this and (18) by Definition 10, we have τ ′�{1} |�σ0 G1
and τ ′�{2} |�σ0 G2, thus τ ′�{1,2} |�σ0 G1 + G2, and thus τ�{1} |�σ0 G1 + G2.

Suppose τ is finite. Then so is τ ′ and from (18) by Definition 10, we have that τ ′ ends in
(�′, σ ′) where σ ′ �= ⊥ and σ ′ ∈ �S′�. By construction, the same holds for τ . ��

Lemma 5 (Soundness of Conseq) Rule Conseq in Fig. 3 is sound.
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Proof Case 1 (total guarantee, i.e., �Gi = Gi ): We assume

R1,G1 |� {S1} P {S′
1} (20)

S2 ⇒ S1,R2 ⊆S2 R1,G1 ⊆S2 G2, and S′
1 ⇒ S′

2 (21)

and show

R2,G2 |� {S2} P {S′
2}. (22)

Let τ ∈ traces(S2, P) such that τ�{e} |�σ0 R2 where σ0 ∈ �S2� is the initial state of τ .
From assumption S2 ⇒ S1 we have that τ ∈ traces(S1, P) and σ0 ∈ �S1�. FromR2 ⊆S2 R1

it follows that τ�{e} |�σ0 R1. From this and (20) by Definition 10 we have τ�{1} |�σ0 G1;
together with assumption G1 ⊆S2 G2 it follows that τ�{1} |�σ0 G2. From (20) by Definition 10
we have that if τ is finite and ends in (�′, σ ′) for some �′, then σ ′ �= ⊥ and σ ′ ∈ �S′

1�. By
assumption S′

1 ⇒ S′
2, we have σ ′ ∈ �S′

2�.
Case 2 (thread-specific guarantee, i.e., �Gi = (Gi,1,Gi,2)): We assume

R1, (G1,1,G1,2) |� {S1} P1 ‖ P2 {S′
1} (23)

S2 ⇒ S1,R2 ⊆ R1, (24)

G1,1 ⊆S2 G2,1,G1,2 ⊆S2 G2,2, and S′
1 ⇒ S′

2 (25)

and show

R2, (G2,1,G2,2) |� {S2} P1 ‖ P2 {S′
2}. (26)

Let τ ∈ traces(S2, P1 ‖ P2) such that τ�{e} |�σ0 R2 σ0 ∈ �S2� is the initial state of τ . From
S2 ⇒ S1 we have that τ ∈ traces(S1, P1 ‖ P2) and σ0 ∈ �S1�. From assumptionR2 ⊆S2 R1

we have τ�{e} |�σ0 R1. From (23) by Definition 10 we have τ�{i} |�σ0 G1,i for i ∈ {1, 2}
and thus by assumption G1,i ⊆S2 G2,i we have τ�{i} |�σ0 G2,i . From (23) by Definition 10
we have that if τ is finite and ends in (�′, σ ′) for some �′, then σ ′ �= ⊥ and σ ′ ∈ �S′

1�. By
assumption S′

1 ⇒ S′
2, we have σ ′ ∈ �S′

2�. ��
Theorem 1 (Soundness) The rules in Fig. 3 are sound.

Proof From Lemmas 3, 4, 5. ��

B Proof of Theorem 2

Theorem 2 (Generalization of single-thread guarantees to N Threads) Let P be a program
over local and shared variables Var = LVar ∪ SVar and let ‖N P = P1 ‖ · · · ‖ PN be its
N-times interleaving. Let S be a predicate over SVar. Let A over SVar be a sound set of
effect summaries for P started from S, and let R and G be environment assertions over A.
Let 0 = (0, . . . , 0) denote the empty environment.
If

(N − 1) × G ⊆S R and R,G |� {S} P1 {true}
then

0, (G, (N − 1) × G) |� {S} P1 ‖ (P2 ‖ · · · ‖ PN ) {true}.
I.e., if (N − 1) × G is smaller than R, and if R,G |� {S} P1 {true} holds, then in an empty
environment, P1’s environment P2 ‖ · · · ‖ PN executes effect summaries A no more than
(N − 1) × G times.
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Proof Note that proving the conclusion above is (by symmetry of threads P1, . . . , PN ) equiv-
alent to moving the parentheses and proving

0, ((N − 1) × G,G) |� {S} (P1 ‖ · · · ‖ PN−1) ‖ PN {true}. (27)

We show the stronger property that for all k ≥ 2 and all N ≥ k

R, (G1,G2) |� {S} (P1 ‖ · · · ‖ Pk−1) ‖ Pk {true} where
R = (N − k) × G
G1 = (k − 1) × G
G2 = G

(28)

Then for k = N we prove our goal. The proof proceeds by induction on k:
Base case: k = 2. We assume the premises of Theorem 2

(N − 1) × G ⊆S R (29)

R,G |� {S} P1 {true} (30)

hold, and show

(N − 2) × G, (G,G) |� {S} P1 ‖ P2 {true}. (31)

By side condition (29) we apply rule Conseq to (30) to weaken the rely to (N − 1) × G,
yielding

(N − 1) × G,G � {S} P1 {true}. (32)

By symmetry, (32) also holds for P2:

(N − 1) × G,G � {S} P2 {true}. (33)

By Lemma 1, A still over-approximates the effects of P1 ‖ P2. We apply rule Par to (32)
and (33) and obtain the proof goal for the base case

(N − 2) × G, (G,G) � {S} P1 ‖ P2 {true}. (34)

Step case: If N = k, then we are done. Assume N > k. We start by applying Par-Merge
to the induction hypothesis

R, (G1,G2) |� {S} (P1 ‖ · · · ‖ Pk−1) ‖ Pk {true} where
R = (N − k) × G
G1 = (k − 1) × G
G2 = G

(35)

to obtain

(N − k) × G, k × G � {S} P1 ‖ · · · ‖ Pk {true}. (36)

By symmetry, (32) also holds for Pk+1:

(N − 1) × G,G � {S} Pk+1 {true}. (37)
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By Corollary 1, A still over-approximates P1 ‖ · · · ‖ Pk+1. We apply Par to (36) and (37)
and obtain the proof goal for the step case

R, (G1,G2) � {S} (P1 ‖ · · · ‖ Pk) ‖ Pk+1 {true} where
R = (N − k − 1) × G
G1 = k × G
G2 = G

(38)

��
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