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Abstract
The inference of program invariants over machine arithmetic, commonly called bit-vector
arithmetic, is an important problem in verification. Techniques that have been successful
for unbounded arithmetic, in particular Craig interpolation, have turned out to be difficult
to generalise to machine arithmetic: existing bit-vector interpolation approaches are based
either on eager translation from bit-vectors to unbounded arithmetic, resulting in complicated
constraints that are hard to solve and interpolate, or onbit-blasting to propositional logic, in the
process losing all arithmetic structure. We present a new approach to bit-vector interpolation,
as well as bit-vector quantifier elimination (QE), that works by lazy translation of bit-vector
constraints to unbounded arithmetic. Laziness enables us to fully utilise the information
available during proof search (implied by decisions and propagation) in the encoding, and
this way produce constraints that can be handled relatively easily by existing interpolation
and QE procedures for Presburger arithmetic. The lazy encoding is complemented with a set
of native proof rules for bit-vector equations and non-linear (polynomial) constraints, this
way minimising the number of cases a solver has to consider. We also incorporate a method
for handling concatenations and extractions of bit-vector efficiently.

Keywords Bit-vectors · Interpolation · Quantifier elimination · Presburger arithmetic

1 Introduction

Craig interpolation is a commonly used technique to infer invariants or contracts in verifica-
tion.Over the last 15years, efficient interpolation techniques havebeendeveloped for a variety
of logics and theories, including propositional logic [1,2], uninterpreted functions [1,3,4],
first-order logic [5–7], algebraic data-types [8,9], linear real arithmetic [1], non-linear real
arithmetic [10], Presburger arithmetic [4,11,12], and arrays [13–15].
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A theory that has turned out notoriously difficult to handle in Craig interpolation is
bounded machine arithmetic, commonly called bit-vector arithmetic. Decision procedures
for bit-vectors are predominantly based on bit-blasting, in combination with sophisticated
preprocessing and simplification methods, which implies that also extracted interpolants stay
on the level of propositional logic and are difficult to map back to compact high-level bit-
vector constraints. An alternative interpolation approach translates bit-vector constraints to
unbounded integer arithmetic formulas [16], but is limited to linear constraints and tends to
produce integer formulas that are hard to solve and interpolate, due to the necessary introduc-
tion of additional variables and large coefficients to model wrap-around semantics correctly.

In this article, we introduce a new Craig interpolation method for bit-vector arithmetic,
initially focusing on arithmetic bit-vector operations including addition, multiplication, and
division. Like [16], we compute interpolants by reducing bit-vectors to unbounded integers;
unlike in earlier approaches, we define a calculus that carries out this reduction lazily, and can
therefore dynamically choose between multiple possible encodings of the bit-vector opera-
tions. This is done by initially representing bit-vector operations as uninterpreted predicates,
which are expanded and replaced by Presburger arithmetic expressions on demand. The cal-
culus also includes native rules for non-linear constraints and bit-vector equations, so that
formulas can often be provenwithout having to resort to a full encoding as integer constraints.
Our approach gives rise to both Craig interpolation and quantifier elimination (QE) methods
for bit-vector constraints, with both procedures displaying competitive performance in our
experiments.

Reduction of bit-vectors to unbounded integers has the additional advantage that integer
and bit-vector formulas can be combined efficiently, including the use of conversion functions
between both theories, which are difficult to support using bit-blasting. This combination is
of practical importance in software verification, since programs and specifications often mix
machine arithmeticwith arbitrary-precision numbers; toolsmight alsowant to switch between
integer semantics (if it is known that no overflows can happen) and bit-vector semantics for
each individual program instruction.

This is an extended version of a paper presented at FMCAD 2018 [17]. Compared to the
conference version, this article considers an extended fragment of bit-vector logic, including
also concatenation and extraction operations on bit-vectors, as well as bit-wise operators like
bvor or bvnot. We show that the representation of concatenation and extraction using unin-
terpreted predicates is sufficient to obtain an interpolation procedure for the quantifier-free
structural fragment of bit-vector logic, i.e., bit-vector constraints with only concatenation,
extraction, and positive equations [18,19]. Bit-wise operations are handled via a direct trans-
lation to Presburger arithmetic akin to bit-blasting.

The contributions of the article are: a new calculus for non-linear integer arithmetic, which
can eliminate quantifiers (in certain cases) and extract Craig interpolants (Sect. 3); a corre-
sponding calculus for arithmetic bit-vector constraints (Sect. 4); the extension of the calculus
to handle concatenation, extraction, and bit-wise operations (Sect. 5); an experimental eval-
uation using SMT-LIB and model checking benchmarks (Sect. 6).

1.1 Example 1: Interpolating arithmetic bit-vector operations

We start by considering one of the examples from [16], the interpolation problem A ∧ B
defined by

A = ¬bvule8(bvadd8(y4, 1), y3) ∧ y2 = bvadd8(y4, 1)

B = bvule8(bvadd8(y2, 1), y3) ∧ y7 = 3 ∧ y7 = bvadd8(y2, 1)
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where all variables range over unsigned 8-bit bit-vectors. The function bvadd8 represents
addition of two bit-vectors, while the predicate bvule8 is the unsigned ≤ comparison. An
interpolant for A ∧ B is a formula I such that the implications A ⇒ I and B ⇒ ¬I hold,
and such that only variables common to A and B occur in I .

An eager encoding into Presburger arithmetic (linear integer arithmetic, LIA) would typ-
ically add variables to handle wrap-around semantics, e.g., mapping y′

4 = bvadd8(y4, 1) to
y′
4 = y4 + 1 − 28σ1 ∧ 0 ≤ y′

4 < 28 ∧ 0 ≤ σ1 ≤ 1. This yields a formula in Presburger
arithmetic that exactly models the bit-vector semantics, and can be solved and interpolated
using existing methods implemented in SMT solvers. Interpolants can be mapped back to a
pure bit-vector formula if needed. However, additional variables and large coefficients tend
to be hard both for solving and interpolation; the LIA interpolant presented in [16] for A∧ B
is the somewhat complicated formula ILIA = −255 ≤ y2 − y3 + 256�−1 y2

256�.
Our approach translates bit-vector formulas to our core language — an extension of

Presburger arithmetic with constructs to express bit-vector domains, wrap-around semantics
and operations that can be simplified in different ways, such as bvmul. For example, domain
predicate inw(x) expresses that variable x belongs to the value range of a bit-vector of width
w. Similarly, predicate ubmodw(x, y) expresses the unsignedwrap-around semantics without
explicitly encoding it. Translating A and B to the core language yields:

Acore = ψA ∧ ubmod8(y4 + 1, c1) ∧ c1 > y3 ∧ y2 = c1

Bcore = ψB ∧ ubmod8(y2 + 1, c2) ∧ c2 ≤ y3 ∧ y7 = 3 ∧ y7 = c2

where ψA = in8(y2) ∧ in8(y3) ∧ in8(y4) ∧ in8(c1) and ψB = in8(y2) ∧ in8(y3) ∧ in8(y7) ∧
in8(c2) capture the domain constraints.

The core language enables a layered calculus that encodes predicates on a case by case
basis, preferring simpler encodings whenever possible. In our example, rule bmod- split

splits the ubmod8(y2 + 1, c2) into the only two relevant cases based on the bounds of y2
implied by Acore, Bcore:

. . . , 0 ≤ c2 < 256, y2 + 1 = c2 �

. . . , 0 ≤ c2 < 256, y2 + 1 = c2 + 256 �
. . . , ubmod8(y2 + 1, c2) � bmod- split

Due to y7 = 3 ∧ y7 = c2, the cases reduce to y2 = 2 and y2 = 258, and immediately
contradict Acore, Bcore.

When variable bounds are tight enough and there are only a few cases, case splits are
more efficient than σ variables. However, that is not always the case and our calculus lazily
decides how to handle each occurrence. Simpler proofs also lead to simpler andmore compact
interpolants; using our lazy approach, the final interpolant in the example is ILAZY = y3 < y2,
which is simple and avoids the division operator in ILIA. We will revisit this example in
Sect. 4.4 and explain in greater detail how this interpolant is obtained.

1.2 Example 2: Interpolating structural bit-vector operations

We continue with a (reduced) example taken from [19], a formula of equalities between
(slices of) bit-vectors of length 8:

x[5 : 0] = 22 ∧ y[7 : 2] = 6 ∧ x = y

where x[u : l] is the extraction of the slice of bits from uth down to lth (inclusive). In the
previous example the bit-vector formulawas translated to integer arithmetic, however this can
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sometimes be inefficient when dealing with structural bit-vector operations, e.g., extractions
and concatenations. A direct translation to integer arithmetic has a hard time to isolate the
conflict, since integer operations cannot capture extractions in a natural way. Instead, it is
possible to split the bit-vectors into segments

x[5:0] = 22 y[7:2] = 6 x = y

y[7:6] = 0 x[7:6] = y[7:6]
x[5:2] = 5 y[5:2] = 6 x[5:2] = y[5:2]
x[1:0] = 2 x[1:0] = y[1:0]

Given this decomposition of the bit-vectors, it is easy see the conflict x[5 : 2] = 5 	=
6 = y[5 : 2] without a translation to integers. Interpolants can in this setting be extracted by
referring to individual slices of bit-vectors, with the help of the extraction operator. In Sect. 5
we show how bit-vectors can be decomposed in this manner using an interpolating calculus.

1.3 Related work

Most SMT solvers handle bit-vectors using bit-blasting and SAT solving, and usually cannot
extract interpolants for bit-vector problems. The exception is MathSAT [20], which uses a
layered approach [16] to compute interpolants:MathSAT first tries to compute interpolants
by keeping bit-vector operations uninterpreted; then using a restricted form of quantifier
elimination; then by eager encoding into linear integer arithmetic (LIA); and finally through
bit-blasting. Our approach has some similarities to the LIA encoding, but can choose simpler
encodings thanks to laziness, and also covers non-linear arithmetic constraints.

A similarly layered approach, proposed in [21], can be used to compute function sum-
maries in boundedmodel checking.Whenboundedmodel checking is able to prove (bounded)
safety of a program, Craig interpolation can subsequently be used to extract function sum-
maries; such summaries can later be useful to speed up other verification tasks. To handle
bit-vector constraints in this context, [21] successively applies more and more precise over-
approximations of bit-vectors: using uninterpreted functions, linear real arithmetic, and
finally using precise bit-blasting. Interpolants are computed in the coarsest theory that was
able to prove safety of a verification task.

Other related work has focused on interpolation for fragments of bit-vector logic. In [22],
an algorithm is given for reconstructing bit-vector interpolants from bit-level interpolants,
however restricted to the case of bit-vector equalities. An interpolation procedure based on
a set of tailor-made (but incomplete) rewriting rules for bit-vectors is given in [23].

Looking more generally at model checking for finite-state systems formulated over the
theory of bit-vectors (often called word-level model checking), lazy approaches to han-
dle complex bit-vector operations have been proposed. In [24], an approximation method
for model checking RTL designs is defined that instantiates complex bit-vector operations
lazily. Initially, such operations are over-approximated by leaving the results unconstrained;
when spurious counterexamples occur, the approximation is refined by adding additional
constraints, or ultimately by precisely instantiating the operator. Such approaches are inde-
pendent of the underlying finite-state model checking algorithm, and do not necessarily
involve Craig interpolation, however.
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The core logic of bit-vectors (formulas with only concatenation, extraction, and positive
equations) was identified in [18] to be solvable in polynomial time.1 Our work is inspired
by the decomposition-based decision procedure for this fragment developed in [19], where
the authors present an algorithm together with a data-structure designed for solving formulas
over the core logic of bit-vectors efficiently. To the best of our knowledge, Craig interpolation
for the structural fragment has not been considered previously.

2 Preliminaries: the base logic

We formulate our approach on top of a simple logic of Presburger arithmetic constraints
combined with uninterpreted predicates, introduced in [25] and extended in [4,11] to support
Craig interpolation. Let x range over an infinite set X of variables, c over an infinite set C
of constants, p over a set P of predicate symbols with fixed arity, and α over the set Z of
integers. The syntax of terms and formulas is defined by the following grammar:

φ ::= t = 0 || t ≤ 0 || p(t, . . . , t) ||φ ∧ φ ||φ ∨ φ ||¬φ || ∀x .φ || ∃x .φ
t ::= α || c || x ||αt + · · · + αt

The symbol t denotes terms of linear arithmetic. Substitution of a term t for a variable x
in φ is denoted by [x/t]φ; we assume that variable capture is avoided by renaming bound
variables as necessary. For simplicity, we sometimes write s = t as a shorthand of s − t = 0,
inequalities s ≤ t and t ≥ s for s − t ≤ 0, and ∀c.φ as a shorthand of ∀x .[c/x]φ if c is a
constant. The abbreviation true (false) stands for equality 0 = 0 (1 = 0), and the formula
φ → ψ abbreviates ¬φ ∨ ψ . Semantic notions such as structures, models, satisfiability, and
validity are defined as is common (e.g., [26]), but we assume that evaluation always happens
over the universe Z of integers; bit-vectors will later be defined as a subset of the integers.

2.1 A sequent calculus for the base logic

For checking whether a formula in the base logic is satisfiable or valid, we work with the
calculus presented in [25], a part ofwhich is shown in Fig. 1. IfΓ ,Δ are finite sets of formulas,
thenΓ � Δ is a sequent. A sequent is valid if the formula

∧
Γ → ∨

Δ is valid. Positions in
Δ that are underneath an even/odd number of negations are called positive/negative; and vice
versa for Γ . Proofs are trees growing upward, in which each node is labeled with a sequent,
and each non-leaf node is related to the node(s) directly above it through an application of
a calculus rule. A proof is closed if it is finite and all leaves are justified by an instance of a
rule without premises. Soundness of the calculus implies that the root of a closed proof is a
valid sequent.

In addition to propositional and quantifier rules in Fig. 1, the calculus in [25] also includes
rules for equations and inequalities in Presburger arithmetic; the details of those rules are not
relevant for this paper. The calculus is complete for quantifier-free formulas in the base logic,
i.e., for every valid quantifier-free sequent a closed proof can be found. It is well-known that
the base logic including quantifiers does not admit complete calculi [27], but as discussed
in [25] the calculus can be made complete (by adding slightly more sophisticated quantifier

1 To avoid confusing with our own “core” fragment introduction in Sect. 4, we call the logic from [18] the
“structural fragment” in this article.
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Γ, φ � Δ Γ, ψ � Δ

Γ, φ ∨ ψ � Δ
∨-left

Γ, φ � Δ Γ, ψ � Δ

Γ � φ ∧ ψ, Δ
∧-right

Γ, φ, ψ � Δ

Γ, φ ∧ ψ � Δ
∧-left

Γ � φ, ψ, Δ

Γ � φ ∨ ψ, Δ
∨-right

Γ � φ, Δ

Γ, ¬ � Δ
¬-left

Γ, φ � Δ

Γ � ¬φ, Δ
¬-right

∗
Γ, φ � φ, Δ

close

Γ, [x/t]φ, ∀x.φ � Δ

Γ, ∀x.φ � Δ
∀-left

Γ, [x/c]φ � Δ

Γ, ∃x.φ � Δ
∃-left

Γ � [x/t]φ, ∃x.φ, Δ

Γ � ∃x.φ, Δ
∃-right

Γ � [x/c]φ, Δ

Γ � ∀x.φ, Δ
∀-right

Fig. 1 A selection of the basic calculus rules for propositional logic (upper box) and quantifier rules (lower
box). In the rules ∃- left and ∀- right, c is a constant that does not occur in the conclusion

handling) for interesting undecidable fragments, for instance for sequents � φ in which φ

contains ∃/∀ only under an even/odd number of negations.
For quantifier-free input formulas, proof search can be implemented in depth-first style

following the core concepts of DPLL(T) [28]: rules with multiple premises correspond to
decisions and explore the branches one by one; rules with a single premise represent propaga-
tion or rewriting; and logging of rule applications is used in order to implement conflict-driven
learning and proof extraction. For experiments, we use the implementation of the calculus in
Princess.2

2.2 Quantifier elimination in the base logic

The sequent calculus can eliminate quantifiers in Presburger arithmetic, i.e., in the base
logic without uninterpreted predicates, since the arithmetic calculus rules are designed to
systematically eliminate constants. To illustrate this use case, suppose φ is a formula without
uninterpreted predicates (P = ∅) andwithout constants c, but possibly containing variables x .
Formula φ furthermore only contains ∀/∃ under an even/odd number of negations, i.e., all
quantifiers are effectively universal. To compute a quantifier-free formulaψ that is equivalent
to φ, we can construct a proof with root sequent � φ, and keep applying rules until no
further applications are possible in any of the remaining open goals {Γi � Δi | i =
1, . . . , n}. In this process, rules ∃- left and ∀- right can introduce fresh constants, which
are subsequently isolated and eliminated by the arithmetic rules. To find ψ , it is essentially
enough to extract the constant-free formulas Γ v

i ⊆ Γi , Δv
i ⊆ Δi in the open goals, and

construct ψ = ∧n
i=1(

∧
Γ v
i → ∨

Δv
i ).

The full calculus [25] is moreover able to eliminate arbitrarily nested quantifiers, and
can be used similarly to prove validity of sequents with quantifiers. A recent independent
evaluation [29] showed that the resulting proof procedure is competitive with state-of-the-art
SMT solvers and theorem provers on a wide range of quantified integer problems.

2 http://www.philipp.ruemmer.org/princess.shtml.
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Γ, �φ	L � Δ � I Γ, �ψ	L � Δ � J

Γ, �φ ∨ ψ	L � Δ � I ∨ J
∨-leftL

Γ, �φ	R � Δ � I Γ, �ψ	R � Δ � J

Γ, �φ ∨ ψ	R � Δ � I ∧ J
∨-leftR

Γ, �φ	D, �ψ	D � Δ � I

Γ, �φ ∧ ψ	D � Δ � I
∧-leftD

Γ � �φ	D, Δ � I

Γ, �¬φ	D � Δ � I
¬-leftD

∗
Γ, �φ	L � �φ	L, Δ � false

closeLL
∗

Γ, �φ	R � �φ	R, Δ � true
closeRR

∗
Γ, �φ	L � �φ	R, Δ � φ

closeLR
∗

Γ, �φ	R � �φ	L, Δ � ¬φ
closeRL

Γ, �[x/t]φ	L, �∀x.φ	L � Δ � I

Γ, �∀x.φ	L � Δ � ∀Rt I
∀-leftL

Γ, �[x/t]φ	R, �∀x.φ	R � Δ � I

Γ, �∀x.φ	R � Δ � ∃Lt I
∀-leftR

Γ, �[x/c]φ	D � Δ � I

Γ, �∃x.φ	D � Δ � I
∃-leftD

Γ � �[x/c]φ	D, Δ � I

Γ � �∀x.φ	D, Δ � I
∀-rightD

Fig. 2 The upper box presents a selection of interpolating rules for propositional logic, while the lower box
shows rules for quantifiers. Parameter D stands for either L or R. The quantifier ∀Rt denotes universal quan-
tification over all constants occurring in t but not in ΓL ∪ ΔL ; likewise, ∃Lt denotes existential quantification
over all constants occurring in t but not in ΓR ∪ ΔR . In ∃- leftD , c is a constant that does not occur in the
conclusion

2.3 Craig interpolation in the base logic

Given formulas A and B such that A ∧ B is unsatisfiable, Craig interpolation can determine
a formula I such that the implications A ⇒ I and B ⇒ ¬I hold, and non-logical symbols
in I occur in both A and B [30]. An interpolating version of our sequent calculus has been
presented in [4,11], and is summarised in Fig. 2. To keep track of the partitions A, B, the
calculus operates on labeled formulas �φ�L (with L for “left”) to indicate that φ is derived
from A, and similarly formulas �φ�R for φ derived from B. If Γ , Δ are finite sets of L/R-
labeled formulas, and I is an unlabeled formula, then Γ � Δ � I is an interpolating
sequent.

Semantics of interpolating sequents is defined using the following projections: ΓL =def

{φ | �φ�L ∈ Γ } and ΓR =def {φ | �φ�R ∈ Γ }, which extract the L/R-parts of a set Γ of
labeled formulas. A sequent Γ � Δ � I is valid if 1. the sequent ΓL � I ,ΔL is valid, 2.
the sequent ΓR, I � ΔR is valid, and 3. constants and predicates in I occur in both ΓL ∪ΔL

and ΓR ∪ ΔR . As a special case, note that the sequent �A�L , �B�R � ∅ � I is valid iff
I is an interpolant of A ∧ B. Soundness of the calculus guarantees that the root of a closed
interpolating proof is a valid interpolating sequent.

To solve an interpolation problem A ∧ B, a prover typically first constructs a proof of
A, B � ∅ using the ordinary calculus from Sect. 2.1. Once a closed proof has been found, it
can be lifted to an interpolating proof: this is done by replacing the root formulas A, B with
�A�L , �B�R , respectively, and recursively assigning labels to all other formulas as defined by
the rules from Fig. 2. Then, starting from the leaves, intermediate interpolants are computed
and propagated back to the root, leading to an interpolating sequent �A�L , �B�R � ∅ � I .
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3 Solving non-linear constraints

We extend the base logic in three steps: in this section, symbols and rules are added to
solve non-linear diophantine problems; a second extension is then done in Sect. 4 to handle
arithmetic bit-vector constraints; and, finally, additional symbols to express structural bit-
vector constraints are introduced in Sect. 5. All constructions preserve the ability of the
calculus to eliminate quantifiers (under certain assumptions) and derive Craig interpolants.

For non-linear constraints, we assume that the set P of predicates contains a distinguished
ternary predicate ×, with the intended semantics that the third argument represents the result
of multiplying the first two arguments, i.e., ×(s, t, r) ⇔ s · t = r . The predicate × is
clearly sufficient to express arbitrary polynomial constraints by introducing a ×-literal for
each product in a formula, at the cost of introducing a linear number of additional constants
or existentially quantified variables. We make the simplifying assumption that× only occurs
in negative positions; that means, top-level occurrences will be on the left-hand side of
sequents. Positive occurrences can be eliminated thanks to the equivalence ¬ × (s, t, r) ⇔
∃x .(×(s, t, x) ∧ x 	= r).

3.1 Calculus rules for non-linear constraints

We now introduce classes of calculus rules to reason about the ×-predicate. The rules are
necessarily incomplete for proving that a sequent is valid, but they are complete for finding
counterexamples: if φ is a satisfiable quantifier-free formula with × as the only predicate
symbol, then it is possible to construct a proof for φ � ∅ that has an open and unprovable
goal in pure Presburger arithmetic (by systematically splitting variable domains, Sect. 3.1.4).
The rule classes are:

– Deriving Implied Equalities with Gröbner Bases: if implied linear equalities can be found
using Buchberger’s algorithm these can be added to the proof goal.

– IntervalConstraint Propagation: if newbounds for constants can be derived fromexisting
bounds these can be added to the proof goal.

– Cross-Multiplication of Inequalities:, if two terms are known to be non-negative, then
the non-negativity of their product can be added to the proof goal.

– Interval Splitting: as a last resort, the proof branch can be split by dividing the possible
values for a constant or variable in half.

– ×-Elimination: if a occurrence of× is implied by other literals, it can be eliminated from
the proof goal.

3.1.1 Deriving implied equalities with Gröbner bases

The first rule applies standard algebra methods to infer new equalities from multiplication
literals. To avoid the computation of more andmore complex terms in this process, we restrict
the calculus to the inference of linear equations that can be derived through computation of
a Gröbner basis.3 Given a set {×(si , ti , ri )}ni=1 of ×-literals and a set {e j = 0}mj=1 of linear
equations, the generated ideal I = Ideal({si · ti − ri }ni=1 ∪ {e j }mj=1) over rational numbers
is the smallest set of rational polynomials that contains {si · ti − ri }ni=1 ∪ {e j }mj=1, is closed
under addition, and closed under multiplication with arbitrary rational polynomials [31]. Any

3 The set of all linear equations implied by a set of ×-literals over integers is clearly not computable, by
reduction of Hilbert’s 10th problem.
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f ∈ I corresponds to an equation f = 0 that logically follows from the literals, and can
therefore be added to a proof goal:

Γ , {×(si , ti , ri )}ni=1, {e j = 0}mj=1, f = 0 � Δ

Γ , {×(si , ti , ri )}ni=1, {e j = 0}mj=1 � Δ
×- eq

if f is linear, has integer coefficients, and f ∈ I

To see how this rule can be applied practically, note that the subset of linear polynomials
in I forms a rational vector space, and therefore has a finite basis. It is enough to apply×- eq

for terms f1, . . . , fk corresponding to any such basis, since linear arithmetic reasoning (in
the base logic) will then be able to derive all other linear polynomials in I . To compute a
basis f1, . . . , fk , we can transform {si · ti − ri }ni=1 ∪ {e j }mj=1 to a Gröbner basis using Buch-
berger’s algorithm [32], and then apply Gaussian elimination to find linear basis polynomials
(or directly by choosing a suitable monomial order).

Example 1 Consider the formula for the square of a sum: (x + y)2 = x2 + 2xy + y2. We
can show its validity by rewriting it to normal form and constructing a proof. Let Π =
{×(x, x, c1),×(x, y, c2),×(y, y, c3),×(x + y, x + y, c4)}:

∗....
Π, c1 + 2c2 + c3 − c4 = 0 � c4 = c1 + 2c2 + c3

Π � c4 = c1 + 2c2 + c3
×- eq

Here, the ×- eq-step is motivated by the fact that the Gröbner basis derived from Π

contains the linear polynomial c1 + 2c2 + c3 − c4, from which the desired equation can be
derived using linear reasoning (using calculus rules not presented in this paper, see Sect. 2.1).

3.1.2 Interval constraint propagation (ICP)

Our main technique for inequality reasoning in the presence of ×-predicates is interval
constraint propagation (ICP) [33]. ICP is a fixed-point computation on the lattice I

S of
functions mapping constants and variables S = C ∪ X to intervals I, and can efficiently
approximate the value ranges of symbols. We define the lattice I of intervals and the lattice IS

of interval assignments as follows; S → I represents the set of (total) functions from S =
C ∪ X to I, and ⊥ is the distinguished bottom element of IS :

I = {[x, y] | x, y ∈ Z, x ≤ y} ∪ {(−∞,∞)} ∪
{(−∞, y) | y ∈ Z} ∪ {(x,∞) | x ∈ Z}

I
S = (S → I) ∪ {⊥}

We denote the (point-wise) join and meet on IS with �,�, respectively.
To define the fixed-point computation, we then introduce abstraction and concretisation

functions that connect the lattice IS with the powerset latticeP(S → Z) of value assignments.
The abstraction of a set V ∈ P(S → Z) of value assignments is the least element α(V ) of
I
S such that the interval α(V )(c) assigned to a symbol c ∈ S contains all values of c in V (or

α(V ) = ⊥ if V is empty). The abstraction function α : P(S → Z) → I
S is formally defined

as follows:

α(V ) =
⊔

β∈V
{c �→ [β(c), β(c)] | c ∈ S} for V ∈ P(S → Z).
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The concretisation γ (I ) of some interval assignment I ∈ I
S is the set V of all value assign-

ments that stay within the intervals specified by I . More formally, γ : IS → P(S → Z) is
defined by:

γ (I ) =
{

∅ if I = ⊥
{β : S → Z | β(c) ∈ I (c) for all c ∈ S} otherwise

for I ∈ I
S .

The result of ICP can then be defined as the greatest fixed-point of a monotonic prop-
agation function Prop : IS → I

S on the lattice I
S . Propagation can be defined separately

for each formula occurring in a sequent; in particular, propagation Propφ : IS → I
S for a

multiplication literal φ = ×(s, t, r) is defined as:

Prop×(s,t,r)(I ) = α({β ∈ γ (I ) | β |� s · t = r})
This means, propagation eliminates values from the intervals that are inconsistent with
×(s, t, r). Propagation for equalities t = 0 and inequalities t ≤ 0 is defined similarly;
in practice, also any monotonic over-approximation of Propφ can be used instead of Propφ ,
at the cost of more over-approximate results in the end.

Given a set {φ1, . . . , φn} of formulas, the overall propagation function Prop =
Prop{φ1,...,φn} is the meet of the individual propagators:

Prop{φ1,...,φn}(I ) =
n�

i=1

Propφi
(I )

The ICP rule assumes that a greatest fixed-point gfpProp{φ1,...,φn} for equality, inequality,
and multiplication literals φ1, . . . , φn in a sequent has been computed, and adds resulting
bounds for a constant c:

Γ , φ1, . . . , φn, l ≤ c, c ≤ u � Δ

Γ , φ1, . . . , φn � Δ
×- icp

if (gfpProp{φ1,...,φn})(c) = [l, u]

Example 2 From two inequalities x ≥ 5 and y ≥ 5, the rule×- icp can derive (x+y)2 ≥ 100:

×(x + y, x + y, c4), x ≥ 5, y ≥ 5, c4 ≥ 100 �
×(x + y, x + y, c4), x ≥ 5, y ≥ 5 � ×- eq

The slightly different problem x + y ≥ 10 → (x + y)2 ≥ 100 cannot be proven in the same
way, since ICP will not be able to deduce bounds for x or y from x + y ≥ 10.

3.1.3 Cross-multiplication of inequalities

While ICP is highly effective for approximating the range of constants, and quickly detecting
inconsistencies, it is less useful for inferring relationships between multiple constants that
follow from multiplication literals. We cover such inferences using a cross-multiplication
rule that resembles procedures used in ACL2 [34]. The rule captures the fact that if s, t are
both non-negative, then also the product s · t is non-negative.

Like in Sect. 3.1.1, we prefer to avoid the introduction of newmultiplication literals during
proof search. By disallowing non-linear terms, we avoid the introduction of more and more
complex terms and thus only add s · t ≥ 0 if the term s · t can be expressed linearly. For this,

123



Formal Methods in System Design (2021) 57:121–156 131

we again write I = Ideal({si · ti − ri }ni=1 ∪ {e j }mj=1) for the ideal induced by equations and×-literals:

Γ , s ≤ 0, t ≤ 0, − f ≤ 0 � Δ

Γ , s ≤ 0, t ≤ 0 � Δ
×- cross

if f is linear, has integer coefficients, and s · t − f ∈ I

The term f can practically be found by computing a Gröbner basis of I , and reducing the
product s · t to check whether an equivalent linear term exists.

3.1.4 Interval splitting

If everything else fails, as last resort it can become necessary to systematically split over the
possible values of a variable or constant c ∈ C ∪ X :

Γ , c ≤ α − 1 � Δ Γ , c ≥ α � Δ

Γ � Δ
×- split

The α ∈ Z can in principle be chosen arbitrarily in the rule, but in practice a useful strategy
is to make use of the range information derived for ×- icp: when no ranges can be tightened
any further using ×- icp, instead ×- split can be applied to split one of the intervals in half.

3.1.5 ×-Elimination

Finally, occurrences of× can be eliminated whenever a formula is subsumed by other literals
in a goal, again writing I = Ideal({si · ti − ri }ni=1 ∪ {e j }mj=1):

Γ � Δ

Γ ,×(s, t, r) � Δ
×- elim

if s · t − r ∈ I

Note that×- elim only eliminates non-linear×-literals, whereas×- eq only introduces linear
equations, so that the application of the two rules cannot induce cycles.

3.2 Quantifier elimination for non-linear constraints

Due to necessary incompleteness of calculi for Peano arithmetic, quantifiers can in general
not be eliminated in the presence of the × predicate, even when considering formulas that
do not contain uninterpreted predicates. By combining the QE approach in Sect. 2.2 with
the rules for × that we have introduced, it is nevertheless possible to reason about quantified
non-linear constraints in many practical cases, and sometimes even get rid of quantifiers.
This is possible because the rules in Sect. 3.1 are not only sound, but even equivalence
transformations: in any application of the rules, the conjunction of the premises is equivalent
to the conclusion.

Similarly as in [35], QE is always possible if sufficiently many constants or variables in a
formula φ range over bounded domains: if there is a set B ⊆ C∪X of symbols with bounded
domain such that in each literal ×(s, t, r) either s or t contain only symbols from B. In this
case, proof construction will terminate when applying the rule ×- split only to variables or
constants with bounded domain. This guarantees that eventually every literal ×(s, t, r) can
be turned into a linear equation using ×- eq, and then be eliminated using ×- elim, only

123



132 Formal Methods in System Design (2021) 57:121–156

leaving proof goals with pure Presburger arithmetic constraints. The boundedness condition
is naturally satisfied for bit-vector formulas.

3.3 Craig interpolation for non-linear constraints

To carry over the Craig interpolation approach from Sect. 2.3 to non-linear formulas, inter-
polating versions of the calculus rules for the ×-predicate are needed. For this, we follow the
approach used in [4] (which in turn resembles the use of theory lemmas in SMT in general):
when translating a proof to an interpolating proof, we replace applications of the×-rules with
instantiation of an equivalent theory axiomQAx. Suppose a non-interpolating proof contains
a rule application

....
Γ , Γ ′, Γ1 � Δ1,Δ

′,Δ · · ·
....

Γ , Γ ′, Γn � Δn,Δ
′,Δ

Γ , Γ ′ � Δ′,Δ R
.... (1)

in which Γ ′,Δ′ are the formulas assumed by the rule application, Γ ,Δ are side formulas
not required or affected by the application, and Γ1,Δ1, …, Γn,Δn are newly introduced
formulas in the individual branches.

The (unquantified) theory axiom Ax corresponding to the rule application expresses
that the conjunction of the premises has to imply the conclusion; the quantified theory
axiom QAx =def ∀S.Ax in addition contains universal quantifiers for all constants S ⊆ C
occurring in Ax.

Ax =def

n∧

i=1

( ∧
Γi →

∨
Δi

) → ( ∧
Γ ′ →

∨
Δ′)

Ax and QAx are specific to the application of R: the axioms for two distinct applications
of R will in general be different formulas. QAx is defined in such a way that it can simulate
the effect of R (as in (1)). This is done by introducing QAx in the antecedent of a sequent,
applying the rule ∀- left to instantiate the axiom with the constants S and obtain Ax, and
then applying propositional rules. The propositional rules ∨- left and ¬- left are used to
eliminate implications→ (which are short-hand for¬,∨), and the rule∧- right to eliminate
the conjunction

∧n
i=1:

∗....
Γ , Γ ′,

∧
Γ ′ → ∨

Δ′ � Δ′,Δ

Γ , Γ ′, Γ1 � Δ1,Δ
′,Δ · · · Γ , Γ ′, Γn � Δn,Δ

′,Δ
...

Γ , Γ ′,Ax � Δ′,Δ ∨- left,¬- left,∧- right∗
Γ , Γ ′,∀S.Ax � Δ′,Δ ∀- left∗

This construction leads to a proof using only the standard rules from Sect. 2.1, which
can be interpolated as discussed earlier. Since QAx is a valid formula not containing any
constants, it can be introduced in a proof at any point, and labelled �QAx�L or �QAx�R on
demand.

The obvious downside of this approach is the possibility of quantifiers occurring in inter-
polants. The interpolating rules ∀- leftL/R (Fig. 2) have to introduce quantifiers ∀Rt /∃Lt for
local symbols occurring in the substituted term t ; whether such quantifiers actually occur in
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the final interpolant depends on the applied ×-rules, and on the order of rule application. For
instance, with ×- split it is always possible to choose the label of QAx so that no quantifiers
are needed, whereas ×- eq might mix symbols from left and right partitions in such a way
that quantifiers become unavoidable. In our implementation we approach this issue pragmat-
ically. We leave proof search unrestricted, and might thus sometimes get proofs that do not
give rise to quantifier-free interpolants; when that happens, we afterwards apply QE to get
rid of the quantifiers. QE is always possible for bit-vector constraints, see Sect. 4.4.4

4 Solving bit-vector constraints

We now define the extension of the base logic to bit-vector constraints. The main idea of the
extension is to represent bit-vectors of widthw as integers in the interval {0, . . . , 2w −1}, and
to translate bit-vector operations to the corresponding operation in Presburger arithmetic (or
possible the×-predicate for non-linear formulas), followed by an integer remainder operation
to map the result back to the correct bit-vector domain. Since the remainder operation tends
to be a bottleneck for interpolation, we keep the operation symbolic and initially consider it
as an uninterpreted predicate bmodba . The predicate is only gradually reduced to Presburger
arithmetic by applying the calculus rules introduced later in this section.

Formally, we introduce binary predicates Pbv = {bmodba | a, b ∈ Z,

a < b}. The semantics of each predicate bmodba is to relate any whole number s ∈ Z to
its remainder modulo b − a in the interval {a, . . . , b − 1}:

bmodba(s, r) ⇔ a ≤ r < b ∧ ∃z. r = s + (b − a) · z
⇔ a ≤ r < b ∧ r ≡ s (mod b − a)

We also introduce short-hand notations for the casts to the unsigned and signed bit-vector
domains:

ubmodw =def bmod2
w

0 , sbmodw =def bmod2
w−1

−2w−1 .

4.1 Translating bit-vector constraints to the core language

For the rest of the section, we use the base logic augmented with × and bmodba -predicates
as the core language to which bit-vector constraints are translated. For presentation, the
translation focuses on a subset of the arithmetic bit-vector operations, BVOPa = {bvaddw,
bvmulw , bvudivw , bvnegw, zew+w′ , bvulew , bvslew}. An extension to bit-vector concatena-
tion, extraction, and bit-wise functions is presented in Sect. 5. All operations are sub-scripted
with the bit-width of the operands; the zero-extend function zew+w′ maps bit-vectors of
width w to width w + w′. Semantics follows the FixedSizeBitVectors5 theory of the SMT-
LIB [36]. Other arithmetic operations, for instance bvsdivw or bvsmodw, can be handled
in the same way as shown here, though sometimes the number of cases to be considered is
larger.

The translation from bit-vector constraints φ to core formulas φcore has two parts: first,
BVOPa occurrences in a formula φ have to be replaced with equivalent expressions in the

4 Non-linear integer arithmetic in general does not admit quantifier-free interpolants. For instance, (x >

1 ∧ x = y2) ∧ x = z2 + 1 is unsatisfiable, but no quantifier-free interpolants exist, regardless of whether
divisibility predicates α | t are allowed or not.
5 http://www.smtlib.org/theories-FixedSizeBitVectors.shtml.

123

http://www.smtlib.org/theories-FixedSizeBitVectors.shtml


134 Formal Methods in System Design (2021) 57:121–156

bvaddw(s, t) = r � ubmodw (s + t, r)

bvnegw(s) = r � ubmodw (−s, r)

bvmulw(s, t) = r � ∃x. ×(s, t, x) ∧ ubmodw (x, r)
)

zew+w′ (s) = r � s = r

bvslew(s, t) � ∃x, y. (sbmodw (s, x) ∧ sbmodw (t, y) ∧ x ≤ y)

¬bvslew(s, t) � ∃x, y. (sbmodw (s, x) ∧ sbmodw (t, y) ∧ x > y)

bvulew(s, t) � s ≤ t

¬bvulew(s, t) � s > t

bvudivw(s, t) = r �

t = 0 ∧ r = 2w − 1
) ∨

t ≥ 1 ∧ ∃x. (×(t, r, x) ∧ s − t < x ≤ s)
)

Fig. 3 Rules translating bit-vector operations into the core language. The rules only apply in negative positions

core language; second, since the core language only knows the sort of unbounded integers,
type information has to be made explicit by adding domain constraints.

BVOPa Elimination. Like in Sect. 3, we assume that the bit-vector formula φ has already
been brought into a flat form by introducing additional constants or quantified variables: the
operations in BVOPa must not occur nested, and functions only occur in equations of the
form f (s̄) = t in negative positions. The translation from φ to φ′ is then defined by the
rewriting rules in Fig. 3. Since the rules for the predicates bvslew and bvulew distinguish
between positive and negative occurrences, we assume that rules are only applied to formulas
in negation normal-form, and only in negative positions.

The rules for bvaddw , bvnegw , zew+w′ , and bvulew simply translate to the corresponding
Presburger term, if necessary followed by remainder ubmodw. Multiplication bvmulw is
mapped similarly to the×-predicate defined in Sect. 3, adding an existential quantifier to store
the intermediate product. Since rules are only applied in negative positions, the quantified
variable can later be replaced with a Skolem constant. An optimised rule could be defined for
the case that one of the factors is constant, avoiding the use of the ×-predicate. Translation
of bvslew maps the operands to a signed bit-vector domain {−2w−1, . . . , 2w−1 − 1}, in
which then the arithmetic inequality predicates ≤,> can be used. The rule for unsigned
division bvudivw distinguishes the cases that the divisor t is zero or positive (as required by
SMT-LIB), and maps the latter case to standard integer division.

Domain constraints.Bit-vector variables/constants x ofwidthw occurring inφ are interpreted
as unbounded integer variables in φcore, which therefore has to contain explicit assumptions
about the ranges of bit-vector variables. We use the abbreviation inw(x) =def (0 ≤ x < 2w)

and define
φcore =

( ∧

x∈S
inwx (x)

)
→ φ′

where S ⊆ C ∪ X is the set of free variables and constants occurring in φ,wx is the bit-width
of x ∈ S, and φ′ is the result of applying rules from Fig. 3 to φ. Similar constraints are used
to express quantification over bit-vectors, for instance ∃x . (inw(x)∧ . . .) and ∀x . (inw(x) →
. . .).

Example 3 Consider challenge/multiplyOverflow.smt2, a problem from SMT-
LIB QF_BV containing a bit-vector formula that is known to be hard for most SMT solvers
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Fig. 4 Simplification rules for bit-vector formulas. In ◦- rw, φ and ψ are not literals, and ◦ ∈ {∧,∨}. In
lit- ∧- rw and lit- ∨- rw, the formula Lit is a literal. In Q- rw, x must not occur in Π , and Q ∈ {∀, ∃}. In
coeff- rw, all constants or variables in t also occur in s

since it contains bothmultiplication and division. In experiments, neither Z3 nor CVC4 could
prove the formula within 10min. In our notation, the problem amounts to showing validity
of the following implication, with a, b ranging over bit-vectors of width 32:

bvule32(b,bvudiv32(232 − 1, a)) →
bvule64(bvmul64(ze32+32(a), ze32+32(b)), 2

32 − 1)

As a flat formula, with additional constants c1 of width 32 and c2, c3, c4 of width 64, the
implication takes the form:

(
bvudiv32(232 − 1, a) = c1 ∧ bvmul64(c3, c4) = c2 ∧
ze32+32(a) = c3 ∧ ze32+32(b) = c4 ∧ bvule32(b, c1)

)

→ bvule64(c2, 232 − 1)

The final formula φcore is obtained by application of the rules in Fig. 3, and adding domain
constraints:

⎛

⎜
⎜
⎝

in32(a) ∧ in32(b) ∧ in32(c1) ∧ in64(c2) ∧ in64(c3) ∧ in64(c4) ∧
((

a = 0 ∧ c1 = 232 − 1
) ∨(

a ≥ 1 ∧ ∃x .(×(a, c1, x) ∧ 232 − 1 − a < x ≤ 232 − 1)
)
)

∧
∃z. (×(c3, c4, z) ∧ ubmod64(z, c2)) ∧ a = c3 ∧ b = c4 ∧ b ≤ c1

⎞

⎟
⎟
⎠ → c2 ≤ 232 − 1

4.2 Preprocessing and simplification

An encoded formula φcore tends to contain a lot of redundancy, in particular nested or
unnecessary occurrences of thebmodba predicates.As an important component of our calculus,
and in line with the approach in other bit-vector solvers, we therefore apply simplification
rules both during preprocessing and during the solving phase (“inprocessing”). The most
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important simplification rules are shown in Fig. 4. Our implementation in addition applies
rules for Boolean and Presburger connectives, for instance to inline equations x = t or to
propagate inequalities, not shown here.

The notation Π : φ � φ′ expresses that formula φ can be rewritten to φ′, given the set Π
of formulas as context. The structural rules in the upper half of Fig. 4 define how formulas are
traversed, and how the context Π is extended to Π,Lit′ when encountering further literals.
We apply the structural rules modulo associativity and commutativity of ∧,∨, and prioritise
lit-∨-rw and lit-∧-rw over the other rules. Simplification is iterated until a fixed-point is
reached and no further rewriting is possible. The connection between rewriting rules and the
sequent calculus is established by the following rules:

Γ , φ′ � Δ

Γ , φ � Δ
rw- left

Γ � φ′,Δ
Γ � φ,Δ

rw- right

if Γ ∪ {¬ψ | ψ ∈ Δ} : φ � φ′

The lower half of Fig. 4 shows three of the bit-vector-specific rules. The bound- rw rule
defines elimination of bmodba -predicates that do not require any case splits; the definition
of the rule assumes functions lbound(Π, s) and ubound(Π, s) that derive lower and upper
bounds of a term s, respectively, given the current contextΠ . The two functions can be imple-
mented by collecting inequalities (and possibly type information available for predicates) in
Π to obtain an over-approximation of the range of s.

Rule coeff- rw reduces coefficients in bmodba(s, r) by adding a multiple of the modu-
lus b − a to s. The rule assumes a well-founded order ≺ on terms to prevent cycles during
simplification. One way to define such an order is to choose a total well-founded order ≺ on
the union C ∪ X of variables and constants, extend ≺ to expressions α · x by sorting coeffi-
cients as 0 ≺ 1 ≺ −1 ≺ 2 ≺ · · · , and finally extend ≺ to arbitrary terms α1t1 + · · · + αntn
as a multiset order [25].

The same order ≺ is used in bmod- rw, defining how bmodba(s, r) can be rewritten in
the context of a second literal bmodb

′
a′ (s′, r ′). The rule is useful to optimise the translation

of nested bit-vector operations. Assuming bmodb
′

a′ (s′, r ′), the value of s′ − r ′ is known to be
a multiple of b′ − a′, and therefore k · (s′ − r ′) is a multiple of b − a provided that b − a
divides k · (b′ −a′). This implies that the truth value of bmodba(s, r) is not affected by adding
k · (s′ − r ′) to s.

Our implementation uses various further simplification rules, for instance to eliminate ×
or bmodba whose result is never used; we skip those for lack of space.

Example 4 Consider bvadd32(bvadd32(a, b), c), which corresponds to the expression
ubmod32(a + b, r1) ∧ ubmod32(r1 + c, r2) in the core language. Using bmod- rw, the
formula can be rewritten to ubmod32(a + b, r1) ∧ ubmod32(a + b + c, r2), provided that
a + b + c ≺ r1 + c.

Example 5 We continue Example 3 and show that φcore is valid, focusing on the a ≥ 1
case of bvudiv32. The proof (Fig. 5) consists of three core steps: 1. using ×- icp, from the
constraints in32(a), in32(b), ×(a, b, d) the inequalities 0 ≤ d and d ≤ 264 − 233 + 1 can
be derived; 2. therefore, using rw- left and bound- rw, the literal ubmod64(d, c2) can
be rewritten to d = c2, capturing the fact that 64-bit multiplication cannot overflow for
unsigned 32-bit operands; 3. using ×- cross, from the inequalities a ≥ 1 and b ≤ c1 we
derive (a − 1)(c1 − b) = ac1 − ab − c1 + b ≥ 0. Using the products ×(a, b, d) and
×(a, c1, e), we can express it linearly as e − d − c1 + b ≥ 0. The proof branch can then be

123



Formal Methods in System Design (2021) 57:121–156 137

∗....
. . . , a ≥ 1, e < 232, b ≤ c1, d ≥ 232, e − d − c1 + b ≥ 0 �

. . . , ×(a, b, d), ×(a, c1, e), a ≥ 1, e < 232, b ≤ c1 , d ≥ 232 � ×-cross

. . . , 0 ≤ d, d ≤ 264 − 233 + 1, d = c2 � (b)

. . . , 0 ≤ d, d ≤ 264 − 233 + 1, ubmod64 (d, c2) � rw-left

. . . , in32(a), in32(b), ×(a, b, d), ubmod64 (d, c2) � ×-icp

� φcore
(a)

Fig. 5 Proof tree for Example 5, with the sequences (a), (b) of rule applications not shown in detail

closed using standard arithmetic reasoning. The implementation of our procedure can easily
find the outlined proof automatically.

4.3 Splitting rules for bmodba

In general, formulas will of course also contain occurrences of bmodba that cannot be elimi-
nated just by simplification.We introduce two calculus rules for reasoning about such general
literals bmodba(s, r). The first rule makes the assumption that lower and upper bounds of s
are available, and are reasonably tight, so that an explicit case analysis can be carried out;
the rule generalises bound- rw to the situation in which the factors l, u do not coincide:

{
Γ , a ≤ r < b, s = r + i · (b − a) � Δ

}u
i=l

Γ , bmodba(s, r) � Δ
bmod- split

assuming the bounds
⌊ lbound(Π,s)−a

b−a

⌋ = l and
⌊ ubound(Π,s)−a

b−a

⌋ = u with Π = Γ ∪ {¬ψ |
ψ ∈ Δ}.

If the bounds l, u are too far apart, the number of cases created by bmod- split would
become unmanageable, and it is better to choose a direct encoding of the remainder operation
in Presburger arithmetic:

Γ , a ≤ r < b, s = r + (b − a) · c � Δ

Γ , bmodba (s, r) � Δ
bmod- const

where c is assumed to be a fresh constant. Rule bmod- const corresponds to the encoding
chosen in [16].

In practice, it turns out to be advantageous to prioritise rule bmod- split over bmod-
const, as long as the number of cases does not become too big. This is because each of the
premises of bmod- split tends to be significantly simpler to solve (and interpolate) than the
conclusion; in addition, splitting one bmodba literal often allows subsequent simplifications
that eliminate other bmodba occurrences. We investigate experimentally in Sect. 6.1 how
many applications of the rules bmod- split and bmod- const are needed to prove formulas
satisfiable or unsatisfiable, and show that the numbers are surprisingly low, in particular in
the unsatisfiable case.

4.4 Quantifier elimination and Craig interpolation

Since the bit-vector rules in this section are all equivalence transformations,QE for bit-vectors
can be done exactly as described in Sect. 3.2. As the ranges of all symbols are now bounded,
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it is guaranteed that any formula will eventually be reduced to Presburger arithmetic, so that
we obtain complete QE for (arithmetic) bit-vector constraints.

Similarly, the interpolation approach from Sect. 3.3 carries over to bit-vectors, with theory
axioms being generated for each of the rules defined in this section. Since the translation of
bit-vector formulas to the core language happens upfront, also interpolants are guaranteed to
be in the core language, and can be mapped back to bit-vector formulas if necessary (e.g., as
in [16]). Interpolants might contain quantifiers, in which case QE can be applied (as described
in the first paragraph), so that we altogether obtain a complete procedure for quantifier-free
interpolation of arithmetic bit-vector formulas.

In our implementation, we restrict the use of the simplification rules rw- left and rw-

rightwhen computing proofs for the purpose of interpolation.Unrestricted use could quickly
mix up the vocabularies of the individual partitions in an interpolation problem A ∧ B,
and thus increase the likelihood of quantifiers in interpolants. Instead we simplify A, B
separately upfront using rules in Fig. 4, and apply rw- left, rw- right only when the
modified formula φ is a literal.

Example 6 We recall the example from Sect. 1.1, and show how our calculus finds the simpler
interpolant I ′

LIA = y3 < y2 for the interpolation problem A ∧ B. The core step is to turn the
application of bmod- split into an explicit axiom; after slight simplifications, this axiom is:

Ax =
(
ubmodw(y2 + 1, c2) ∧ 3 ≤ y2 < 256 ∧ in8(c2)

) →
(
y2 + 1 = c2 ∨ y2 + 1 = c2 + 256

)

The axiom mentions all assumptions made by the rule, including the bounds 3 ≤ y2 < 256
that determine the number of resulting cases (or, alternatively, the formulas c1 > y3, y2 =
c1, c2 ≤ y3, y7 = 3, y7 = c2 fromwhich the bounds derive). The axiom also includes domain
constraints like in8(c2) for occurring symbols, which later ensures that possible quantifiers
in interpolants range over bounded domains. The quantified axiom is QAx = ∀y2, c2.Ax,
and can be used to construct an interpolating proof:

· · ·

∗....
�c1 > y3�L , �y2 = c1�L , �c2 ≤ y3�R,

�y7 = 3�R, �y7 = c2�R, �y2 + 1 = c2�R � ∅ � y3 < y2 · · ·
�Acore�L , �Bcore�R, �Ax�R � ∅ � y3 < y2

∨- leftR
�Acore�L , �Bcore�R, �QAx�R � ∅ � y3 < y2

∀- leftR
We only show one of the cases, P , resulting from splitting the axiom �Ax�R using the rules
from Fig. 2. The final interpolant ILAZY = y3 < y2 records the information needed from
Acore to derive a contradiction in the presence of y2 + 1 = c2; the branch is closed using
standard arithmetic reasoning [11].

5 Interpolation in the presence of extract and concat

Two bit-vector operations which are more tricky to translate to integer arithmetic are the
extraction of bits from a larger bit-vector, and the concatenation of two bit-vectors. This is
formalised using the function bvextract[u,l], which cuts out a slice of u − l + 1 consecutive
bits, and the function bvconcatv+w forming a bit-vector of length v+w.We call the fragment
of bit-vector logic containing only these operations, and positive equalities, the structural
fragment of bit-vector theory.
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Fig. 6 Illustration of Example 8.
The conflict is due to the
contradicting assignments to
slices of x and y. The upper table
shows the situation with
bit-vectors of size 8, the lower
one with size 16

7 6 5 4 3 2 1 0
x[8] ∗ ∗ 1 0 1 1 ∗ ∗
y[8] 0 0 0 1 1 0 ∗ ∗

15 14 13 12 11 10 9 . . .
x[16] ∗ ∗ 1 0 1 1 ∗ . . .
y[16] 0 0 0 1 1 0 ∗ . . .

Example 7 Consider the following bit-vectors:

c1 = [0, 0] = 0 c2 = [1, 1] = 3 c3 = [0, 1] = 1

c4 = [0, 0, 1, 1] = 3 c5 = [1, 1, 0, 0] = 12

where a bit-sequence [bn, . . . b0] is represented by the number
∑n

i=0 bi2
i . The following

equations hold between those bit-vectors:

bvconcat2+2(c1, c2) = c4 bvconcat2+2(c2, c1) = c5

bvextract[3,2](c4) = c1 bvextract[1,0](c4) = c2

bvextract[2,1](c4) = c3 .

While it is possible to translate extractions and concatenations to integer arithmetic, it is
not always efficient. We show here that it can be more efficient to keep extractions abstract
and only convert at need. This approach can also help to compute simpler interpolants.

Example 8 We consider the example from [19], a formula over the structural fragment, which
we divide into two parts

A = (x[5 : 0] = z ∧ z[5 : 2] = 11)

B = (y[7 : 2] = 6 ∧ x = y)

where the bit-vectors x, y are of width 8, and z is of width 6. The unsatisfiability of A ∧ B
could be proved, as before, by translating the bit-vector constraints to our core language:

Acore = in8(x) ∧ in6(z) ∧ ubmod6(x, z) ∧ ∃c1. (in2(c1) ∧ z = 11 · 22 + c1)

Bcore = in8(x) ∧ in8(y) ∧ ∃c2. (in2(c2) ∧ y = 6 · 22 + c2) ∧ x = y

Using the interpolation procedure presented in Sect. 4, we can compute the following inter-
polant:

I = ∃c. (x = 44 + 64c ∨ x = 45 + 64c ∨ x = 46 + 64c ∨ x = 46 + 64c)

The conjunction is unsatisfiable due to the conflicting assignment of a small slice in x
and y, as illustrated in Fig. 6. However, when translating to integer arithmetic the overall
structure is lost, and the interpolant contains a lot of redundancy. The situation gets worse
with increasing bit-widths. Consider a formula where the width of x, y are doubled, while
the widths of the extractions are kept constant:

A′ = (x[13 : 8] = z ∧ z[5 : 2] = 11)

B ′ = (y[15 : 10] = 6 ∧ x = y)

The same procedure now yields an interpolant of exponentially greater size:

I ′ = ∃c. (x = 4097 + 8192c ∨ x = 4098 + 8192c ∨ · · · ∨ x = 5120 + 8192c)
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bvextract[u,l](s) = r � extrul (s, r)

bvconcatw+v(s, t) = r � inw+v(r) ∧ extrw+v−1
v (r, s) ∧ extrv−1

0 (r, t)

bvnotw(s) = r � inw(r) ∧
w−1∧
i=0

∃x. (extrii(s, x) ∧ extrii(r, 1 − x)

bvandw(s, t) = r � inw(r) ∧
w−1∧
i=0

∃sb, tb, rb.

(
extrii(s, sb) ∧ extrii(t, tb) ∧ extrii(r, rb)∧ rb ≤ sb ∧ rb ≤ tb ∧ rb ≥ sb + tb − 1

)

bvorw(s, t) = r � inw(r) ∧
w−1∧
i=0

∃sb, tb, rb.

(
extrii(s, sb) ∧ extrii(t, tb) ∧ extrii(r, rb)∧ rb ≥ sb ∧ rb ≥ tb ∧ rb ≤ sb + tb

)

bvxorw(s, t) = r � inw(r) ∧
w−1∧
i=0

∃sb, tb, rb.

(
extrii(s, sb) ∧ extrii(t, tb) ∧ extrii(r, rb)∧ ubmod1 (sb + tb, rb)

)

Fig. 7 Rules translating structural and bit-wise operations into the extended core language. As before, the
rules are only applied in negative positions. Note that u, l, v, w are integer constants

We will explain in the next sections how more succinct interpolants can be computed by
eliminating the extraction operation only lazily.

5.1 The structural fragment

In [19], a polynomial fragment of the bit-vector theory is identified, consisting of formulas
that only contain extractions, concatenations, and positive equalities. The satisfiability of
formulas in the structural fragment is decidable in polynomial time by a congruence closure
procedure over decomposed bit-vectors [18].

Definition 1 The structural fragment consists of bit-vector formulas of the form φ1 ∧ φ2 ∧
· · · ∧ φn where each φi is an equation constructed using bit-vector variables, concrete bit-
vectors, and the operators bvextract[u,l] and bvconcatv+w .

Note that a formula containing bvconcatv+w can be translated into an equi-satisfiable
formula that only uses bvextract[u,l]. We illustrate the translation with an example, and
introduce the formal rule in Fig. 7. Consider the formula φ[bvconcatv+w(s, t)] containing
the concatenation of two bit-vectors. The concatenation can be eliminated by introducing an
existentially quantified variable to represent the result of the concatenation; the relationship
with the arguments is established using extraction terms:

∃x . (inv+w(x) ∧ bvextract[v+w−1,w](x) = s ∧ bvextract[w−1,0](x) = t ∧ φ[x])
To define a formal calculus for the structural fragment, we introduce an extended core

language by adding a further family Pex = {extrul | u, l ∈ N, u ≥ l} of predicates represent-
ing extraction from bit-vectors. Semantically, extrul (s, t) relates s and t if t is the result of
extracting the bits u through l from s. This is formally expressed as the existence of two
bit-vectors x, y such that t can be made equal to s by prepending x and appending y:

extrul (s, t) ⇔ inu−l+1(t) ∧ ∃x, y. (inl(y) ∧ s = x · 2u+1 + t · 2l + y)

Note that the argument s is not bounded, which implies that the definition contains a bound
for the lower slice y, but not for x .
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Fig. 8 Cut point propagation of
bit-vectors x , y and z. The top
table contains each bit-vector and
the corresponding cut points.
Since all bit-vectors are related
by some constraints, all cut
points (within the width of the
bit-vector) are propagated, e.g.,
the cut point for y between bit 2
and 1 is propagated to x

x : 7 6 5 4 3 2 1 0
y : 7 6 5 4 3 2 1 0
z : 5 4 3 2 1 0

↓
x : 7 6 5 4 3 2 1 0
y : 7 6 5 4 3 2 1 0
z : 5 4 3 2 1 0

The rewriting rules in Fig. 7 define how extraction and concatenation are translated to
the Pex predicates, following the same schema as in Sect. 4. As a side-effect of adding
bvextract[u,l] and bvconcatw+v , and moving beyond the structural fragment, the calculus
can also reason about the bit-wise operators BVOPbv = {bvnot,bvand,bvor, bvxor}, by
extracting the individual bits of the operands and encoding the Boolean semantics using
inequalities. The rewriting rules for such an encoding are given Fig. 7 as well, and are also
used in our implementation.

5.2 Bit-vector decomposition

As demonstrated in Sect. 1.2, unsatisfiability of formulas can sometimes be proven by just
focusing on the right slice of bit-vectors; the challenge lies in how to decompose the bit-
vectors to find the conflicts. Intuitively, there is no need to split apart bits which are never
constrained individually. We follow the procedure described in [19], and use the notion of
cut points for this reason. Cut points of a bit-vector variable determine the slices that need
to be considered, and the points at which the bit-vectors might have to be decomposed, and
are determine by the boundaries of extraction operations.

More formally, given a formula φ in the structural fragment over set S = C ∪ X of
constants and variables, a cut point configuration is a function C : S → P(N) satisfying the
following properties:

– for each extrul (s, t) literal, it is the case that:

– {l, u + 1} ⊆ C(s), and
– {i − l | i ∈ C(s) with l ≤ i ≤ u + 1} = {i ∈ C(t) | i ≤ u − l + 1}.

– for each equality s = t it is the case that C(s) = C(t).

The set of cut points for all bit-vectors can be obtained by a fix-point computation, which
begins with all cut points from extractions, and then propagates using the equalities until all
conditions hold.

Example 9 Translated to our extended core language, the constraints from Example 8 are:

A′
core = in8(x) ∧ in6(z) ∧ extr50 (x, z) ∧ extr52 (z, 11)

B ′
core = in8(x) ∧ in8(y) ∧ extr72 (y, 6) ∧ x = y

The extraction literals induce immediate cut points for x, y and z, respectively: {6, 0}, {8, 2},
and {6, 2}. Since x and z are related by the literal extr50 (x, z), the cut point 2 needs to be
added to the set for x as well; similarly, due to the equation x = y, also the cut points {6, 0}
have to be added for y, and 8 for x . The alignment of the bit-vectors is illustrated in Fig. 8,
and the complete sets of cut points after propagation are {8, 6, 2, 0}, {8, 6, 2, 0}, and {6, 2, 0}.
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Γ,
�∃x1. (extrui (s, x1) ∧ extru−l

i−l (r, x1) ∧ inu−i+1(x1))	D
�∃x2. (extri−1

l (s, x2) ∧ extri−1−l
0 (r, x2) ∧ ini−1−l(x2))	D

� Δ � I

Γ, �extrul (s, r)	D � Δ � I
extr-splitD

Γ, �∃x. (inl(x) ∧ ubmodu+1 (s, r2l + x))	D � Δ � I

Γ, �extrul (s, r)	D � Δ � I
extr-arithD

Γ � s1 = s2, Δ Γ, r1 = r2 � Δ

Γ, extrul (s1, r1), extrul (s2, r2) � Δ
extr-cc

Γ � �s1 = s2	L, Δ � I Γ, �r1 = r2	L � Δ � J

Γ, �extrul (s1, r1)	L, �extrul (s2, r2)	L � Δ � I ∨ J
extr-ccLL

Γ � �s1 = s2	R, Δ � I Γ, �r1 = r2	R � Δ � J

Γ, �extrul (s1, r1)	R, �extrul (s2, r2)	R � Δ � I ∧ J
extr-ccRR

Γ � �s1 = s2	R, Δ � I Γ, �r1 = r2	R � Δ � J

Γ, �extrul (s1, r1)	L, �extrul (s2, r2)	R � Δ � ∃Ls1r1 .(extrul (s1, r1) ∧ I ∧ J)
extr-ccLR

Γ � �s1 = s2	L, Δ � I Γ, �r1 = r2	L � Δ � J

Γ, �extrul (s1, r1)	R, �extrul (s2, r2)	L � Δ � ∀Rs1r1 .(¬extrul (s1, r1) ∨ I ∨ J)
extr-ccRL

Γ, �φ	L � Δ � I Γ � �φ	R, Δ � J

Γ � Δ � (I ∨ ¬φ) ∧ J
cutLR

Γ, �φ	R � Δ � I Γ � �φ	L, Δ � J

Γ � Δ � tI ∧ φ) ∨ J
cutRL

Fig. 9 Rules for handling extraction operations in bit-vector formulas. In extr- split and extr- arith,
D ∈ {L, R}. In extr- split, l < i ≤ u. In extr- ccLR , ∃Ls1r1 denotes existential quantification over all
constants occurring in s1 or t1 but not in ΓR ∪ ΔR ∪ {s2, r2}. In extr- ccRL , ∀Rs1r1 denotes universal
quantification over all constants occurring in s1 or t1 but not in ΓL ∪ ΔL ∪ {s2, r2}. The rules cutLR and
cutRL are only allowed for formulas φ in which all constants are common to both ΓL ∪ ΔL and ΓR ∪ ΔR

If the bit-vectors x, y, z are decomposed according to their cut points, then simple reasoning
reveals the inconsistency between extr52 (x, 5), extr52 (y, 6), and x = y.

5.3 An interpolating calculus for extractions

A decomposition according to the cut points yields a complete and polynomial procedure
for the structural fragment [19]. We formalise the splitting of bit-vector extractions with an
interpolating calculus rule extr- split in Fig. 9. Intuitively, we cut the bit-vector s at point i
and introduce two existential variables x1, x2 corresponding to the two slices. By constraining
the corresponding slices of r according to the decomposition, we ensure the original equality
between the extraction of s and r . The rule can be generalised to split into several slices at
once, allowing for shorter proofs.

After extracts have been split at the cut points, we rely on congruence closure to take
care of extrul literals, in a similar way as the procedure in [18]. Congruence closure is in our
setting expressed by an axiom schema for functional consistency of the extrul predicates:

∀s1, s2, r1, r2. (extrul (s1, r1) ∧ extrul (s2, r2) ∧ s1 = s2 → r1 = r2) (2)
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The axiomstates that two extr -literalswill yield the same result if thefirst arguments coincide,
and if the same bits are extracted. Similar axioms for predicate consistency and functional
consistency are used in [4]. To simplify presentation, we model the instantiation of (2) using
the calculus rule extr- cc in Fig. 9; the figure also gives four interpolating versions of the
rule, for the four possible combinations of L/R-labels. The LR/RL rules differ in the label
used in their premises. The rules can be derived by instantiating (2) using either ∀- leftL or
∀- leftR , in a similar way as in Sect. 3.3. In practice, and in our implementation, the calculus
rules are used as in classical SMT-style congruence closure: they are triggered when the first
arguments of a pair of extr -literals have become equal.

Extraction operations can also be translated to arithmetic, which is needed to evaluate
extraction from concrete numbers, and when constructing proofs for formulas that are not in
the structural fragment (i.e., that combine extraction with other bit-vector operations). The
rule extr- arith encodes an operation extrul (s, r) using amodulo constraint to eliminate bits
above position u, and division to strip away bits below position l. We express the division by
existentially quantifying the remainder. Amore direct rule to perform evaluation is introduced
in Sect. 5.4.

Example 10 We continue Example 9, and show how an interpolating proof can be constructed
for the conjunction A′

core ∧ B ′
core. The root sequent of the proof is �A′

core�L , �B ′
core�R � ∅.

In the proof tree shown in Fig. 10, we first split the given formulas using Boolean rules.
Then, the literal extr50 (x, z) can be decomposed using our extr- split rule at the cut
point 2, and congruence closure is applied to the literals extr52 (z, c1) and extr52 (z, 11).
We similarly decompose the literal extr72 (y, 6) at cut point 6, and then use extr- arith to
reduce extr30 (6, c2) to c2 = 6. Finally, we need a second application of congruence closure,
extr- ccLR , to relate the extractions from x and y.

The resulting interpolant is the formula ∃c.(extr52 (x, c) ∧ c = 11). The quantifier in the
formula stems from the application of extr- ccLR , which transfers the local symbol c1 from
L to R, and thus makes it shared. A quantifier is needed to eliminate the symbol again from
the interpolant. However, as can be seen the quantifier naturally disappears when translating
the interpolant back to functional notation, which yields the formula bvextract[5,2](x) = 11
in the structural fragment.

It is quite easy to see that our calculus is sound and complete for formulas in the structural
fragment. The calculus does not guarantee, however, that interpolants computed for formu-
las in the structural fragment are again in the structural fragment, or that interpolants are
quantifier-free. This leads to the question whether the structural fragment is actually closed
under interpolation, i.e., whether every unsatisfiability conjunction has an interpolant that is
again in the fragment. The answer to this question is positive, and it turns out that our calculus
can also be used to compute such interpolants, if the right strategy is used to construct proofs.

Theorem 1 The structural fragment is closed under interpolation.

Proof We give a simple proof that follows from the fact that our calculus can model bit-
blasting of bit-vector formulas, and builds on work on EUF interpolation in [3,4]. The
existence of more compact interpolants, avoiding the need to blast to individual bits, can
also be shown, but this is slightly more involved.

Suppose A∧B is an unsatisfiable conjunction in the structural fragment, and Acore∧Bcore

the translation to the (extended) core language. Further assume that x1, . . . , xm are the shared
bit-vector constants of A, B, and that w1, . . . , wm are their bit-widths, respectively. This
means that we are searching for an interpolant in the structural fragment that may only
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∗....
�c1 = c2	R, �c1 = 11	L, �c2 = 6	R, . . . � � c1 = 11

B
∗

�x = y	R � �x = y	R � true
closeRR B

�c2 = 6	R, �extr52(x, c1)	L , �extr52(y, c2)	R , . . . � � ∃c.(extr52(x, c) ∧ c = 11)
extr-ccLR

�extr52(y, c2)	R, �extr30(6, c2)	R , �in4(c2)	R, . . . � � I
extr-arithR

�c1 = 11	L, �extr72(y, 6)	R . . . � � I
extr-splitR, . . .

A
∗

· · · � �z = z	L � false A
�extr52(x, c1)	L, �extr52(z, c1)	L , �in4(c1)	L, �extr52(z, 11)	L , . . . � � I

extr-ccLL

�∃c. (extr52(x, c) ∧ extr52(z, c) ∧ in4(c))	L , �extr52(z, 11)	L, . . . � � I
∃-leftL, ∧-left∗

L

�extr50(x, z)	L , �extr52(z, 11)	L, �extr72(y, 6)	R, �x = y	R, . . . � � I
extr-splitL

�A′
core	L, �B′

core	R � � I
∧-left∗

L, ∧-left∗
R

with I = ∃c.(c = 11 ∧ extr52(x, c)), or in the structural fragment bvextract[5,2](x) = 11.

Fig. 10 Proof tree for the formula A′
core ∧ B′

core in Example 10

contain the constants x1, . . . , xm . To model bit-blasting, we augment Acore, Bcore by adding
fresh names {b j

i , c
j
i }i, j for the individual bits of x1, . . . , xm :

A′
core = Acore ∧

∧

i∈{1,...,m}
j∈{0,...,wi−1}

in1(b
j
i ) ∧ extr j

j (xi , b
j
i )

B ′
core = Bcore ∧

∧

i∈{1,...,m}
j∈{0,...,wi−1}

in1(c
j
i ) ∧ extr j

j (xi , c
j
i )

This means that b j
i /c

j
i is the name of the j th bit of xi in the L/R partition. Note that a

formula Icore is an interpolant of Acore ∧ Bcore iff it is an interpolant of A′
core ∧ B ′

core, because
no shared symbols are added, and we can therefore work with the latter conjunction.

Without loss of generality, we further assume that even every local constant in A′
core and

B ′
core occurs as first argument of some extrul -literal, and that every bit in such constants is

extracted by some of the literals. This assumption can be ensured by adding further literals
to the formulas, without changing the set of possible interpolants.

We then construct a proof for the root sequent �A′
core�L , �B ′

core�R � ∅ in our interpolating
calculus by systematically applying the calculus rules. Rules are applied likewise to the L-
and the R-formulas, so that we only mention the L-versions at this point for sake of brevity:

– ∧- leftL to split conjunctions, and ∃- leftL to eliminate quantifiers;
– extr- splitL to split every occurring extr predicate down to the level of individual bits;
– extr- ccLL whenever two extracts �extr j

j (s, r)�L , �extr j
j (s, r

′)�L for the same bit
occur, followed by arithmetic rules to close the left premise; this generates an equa-
tion �r = r ′�L ;
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– extr- ccLL whenever two extracts �extr j
j (s, r)�L , �extr j

j (t, r
′)�L in combination with

an equation �s = t�L occur, followed by an application of closeLL to close the left
premise; again, this generates an equation �r = r ′�L ;

– extr- arithL whenever an extract �extr j
j (α, r)�L froma concrete numberα ∈ Z occurs,

followed by arithmetic rules to simplify the generated formula to an equation �r = 0�L
or �r = 1�L ;

– extr- arithL whenever an extract �extr00 (s, r)�L in combination with the domain con-
straint in1(s) occurs, i.e., when the single bit of a bit-vector of width 1 is extracted,
followed by arithmetic rules to simplify the generated formula to an equation �r = s�L .
After those rule applications, we can focus on the obtained bit-level equations in the proof

goal: on equations �s = t�D or �s = α�D in which s, t have width 1 (i.e., in1(s) and in1(t))
and α ∈ {0, 1}, with D ∈ {L, R}. By construction, the set of L-labelled bit-level equations is
equi-satisfiable to the original formula A′

core, and the R-labelled equations are equi-satisfiable
to B ′

core, so that we can continue constructing a bit-level proof using the equations.
Since the conjunction A′

core∧ B ′
core is by assumption unsatisfiable, there are three possible

cases:
(i) the equations labelled with L are by themselves unsatisfiable, the interpolant is false,

and the proof can be closed by applying arithmetic rules;
(ii) symmetrically, the equations labelled with R are unsatisfiable, and the interpolant is

true; or
(iii) the equations are unsatisfiable only in combination.
In case (iii), there has to be a chain of equations, alternating between L- and R-equations,

that witnesses unsatisfiability. There are several symmetric cases, of which we only consider
one:

0 = · · · = b j1
i1︸ ︷︷ ︸

L−equations

.= c j1i1 = · · · = c j2i2︸ ︷︷ ︸
R−equations

.= b j2
i2

= · · · = b j3
i3︸ ︷︷ ︸

L−equations

.= · · · .= c jkik = · · · = 1
︸ ︷︷ ︸

R−equations

(3)

In the other cases, the chain can start in R and end in L , or start and end in the same partition.
The dotted equations b j

i
.= c ji are implied by the literal �extr j

j (xi , b
j
i )�L , �extr j

j (xi , c
j
i )�R ,

but do not exist explicitly in the proof goal.
From (3), it is easy to read off an interpolant for A ∧ B in the structural fragment by

summarising the L-chains:

I = bvextract[ j1, j1](xi1) = 0 ∧
k−1∧

l=2

bvextract[ jl , jl ](xil ) = bvextract[ jl+1, jl+1](xil+1)

Clearly, I follows from A, and I ∧ B is unsatisfiable due to (3).
To construct an interpolant mechanically in our calculus, there are several strategies. The

simplest one is to apply the interpolating cut-rule cutRL to each the formulas extr j1
j1

(xi1 , 0)

and { ∃z. (extr jl
jl
(xil , z)∧extr jl+1

jl+1
(xil+1 , z)) }k−1

l=2 , which yields an interpolant Icore in the core
language that corresponds to the structural interpolant I shown above. ��

5.4 A rewriting rule for constant extraction

Given an extraction extrul (s, r) and bounds on s, it is in some cases possible to determine
value of extracted bits. For example, the longest prefix on which the lower and upper bound
agree is guaranteed to be present in any consistent value of s. Therefore, extractions that
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overlap with that prefix yield some bit values of the extraction without knowing the exact
value of s. We allow rewriting if the extraction operator falls entirely within the common
prefix:

(lbound(Π, s) xor ubound(Π, s)) < 2l∧
c = (lbound(Π, s) rem 2u) div 2l ∧ 0 ≤ c < 2

Π : extrul (s, r) � r = c extr- const

where rem and div are the integer remainder and division, respectively. The rule extr- const
allows in particular evaluation of extractions from constant bit-vectors.

5.5 Splitting of disequalities

As shown above, proofs can be closed byfinding contradicting assignments to (a slice of) a bit-
vector. In general, formulas can also contain bit-vector disequalities, i.e., negative equalities
between bit-vectors. As an optimisation, disequalities can be split using the notion of cut
points as well. Given a formula with a disequality s 	= t , we extend the notion of cut point
configurations (Sect. 5.2) by also propagating between s and t . For a cut point i ∈ C(s) = C(t),
we can then replace the disequality with a disjunction of two disequalities, as expressed by
the following rule:

Γ , inw(s), inw(t), inw−i (c), inw−i (d), extrw−1
i (s, c), extrw−1

i (t, d) � c = d,Δ

Γ , inw(s), inw(t), ini (c), ini (d), extr i−1
0 (s, c), extr i−1

0 (t, d) � c = d,Δ

Γ , inw(s), inw(t) � s = t,Δ
	= - split

The constants c, d must be fresh and not occur in the conclusion in this rule.

6 Experiments

Toevaluate the effectiveness of the approach, the procedures described in this article havebeen
implemented in the Princess theorem prover6 [25]. The implementation of the full SMT-LIB
theory of bit-vectors in Princess is still an ongoing effort, and at this point includes fairly
refined versions of the calculi for non-linear arithmetic (Sect. 3) and for arithmetic bit-vector
operators (Sect. 4). The implementation of the calculus for the structural fragment (Sect. 5) has
been added more recently, and still lacks many optimisations that could be applied. Support
for bit-wise operations (like bvand) is also quite naïve at the moment, and simply bit-blasts
each bit-wise operation separately by introducing bvextract[i,i] terms for the individual bits,
as shown in Fig. 7. A more refined encoding would choose, for each sub-expression, whether
the arithmetic encoding or bit-blasting should be applied, but this refinement is left for future
work. The implementation also supports the SMT-LIB shift operators, which are handled by
splitting over the possible values of the second argument. The SMT-LIB rotation operators are
not supported yet; those operators are over-approximated as uninterpreted functions, which
means that it might be possible to prove problems involving the operators unsatisfiable, but
not satisfiable.

All experiments were done on an AMD Opteron 2220 SE machine, running 64-bit Linux
and Java 1.8. Runtime was limited to 10min wall clock time, and heap space to 2GB. We
used Princess version 2019-10-02 for all experiments. Where runtimes are reported, we use
wall clock time.

6 http://www.philipp.ruemmer.org/princess.shtml.
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We evaluate the performance of our approach in three different ways:

– Sect. 6.1: performance of satisfiability queries on quantifier-free bit-vector formulas
(SMT-LIBQF_BV), in comparison to the state-of-the-art solvers Z3 4.8.0 [37] andCVC4
1.6 [38].

– Section 6.2: performance of satisfiability queries on bit-vector formulas with quantifiers
(SMT-LIB BV), again with comparison to Z3 and CVC4.

– Section 6.3: applicability of the interpolation procedure for software model checking,
using the integration in the Horn solver Eldarica. We compare to the software model
checker CPAchecker 1.7 [39], which internally uses MathSAT 5 [20] and the inter-
polation method from [16].

6.1 Satisfiability queries on quantifier-free formulas

While our procedure is not specifically designed for just checking satisfiability of formulas,
it is nevertheless interesting to evaluate how the approach performs on problems from the
QF_BVcategory of the SMT-LIB. Results for this category are given in Table 1, and show that
our implementation can overall solve a decent number of benchmarks, but is not competitive
with Z3 andCVC4 onmost of the benchmark families. As a general trend, and unsurprisingly,
it can be observed that our lazy arithmetic encoding works relatively well for problems that
use arithmetic bit-vector operators, but does not pay off for problems that aremostly Boolean,
or problems involving bit-wise operators.

Our implementation can solve the “challenge/multiplyOverflow.smt2” problem discussed
in Example 3, and it performs particularly well on the “brummayerbiere4” and “pspace” fam-
ilies, which contain benchmarks with large bit-widths, with variables with up to 30 000 bits.
This is to be expected, since our arithmetic encoding is essentially agnostic about the bounds
of bit-vector variables, so that the complexity of a problem hardly changes when addingmore
bits.

The family “bruttomesso/core” consists of SMT-LIB problems in the structural fragment
from Sect. 5 (with additional Boolean structure). Compared to the implementation described
in the FMCAD 2018 paper [17], the performance on those problems has improved signifi-
cantly as a result of adding the procedure described in Sect. 5. In 2018, only 8 benchmarks
from the “core” family could be solved, compared to 142 in the new version. This is still lower
than the results for Z3 and CVC4, which is likely due to more efficient Boolean reasoning.

We also investigated how often the rules ×- split, bmod- split, and bmod- const for
splitting and eliminating predicates were applied on the benchmarks. We first determined
how many of the problems required the application of the rules at all:

Total solved bmod- split bmod- const ×- split

SAT 7331 2699 268 334
UNSAT 15,148 647 130 44

The statistics show that a large number of the benchmarks can indeed be solved without
those rules. This is in particular the case for unsatisfiable problems, for which it is apparently
largely sufficient to work with the simplification rules from Fig. 4, in combination with
the rules for Presburger arithmetic, (non-splitting) multiplication, and extraction. In Fig. 11
we compare the required number of applications of bmod- split and bmod- const for the
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individual benchmarks; the scatter plot shows that often a small number of rule applications
is sufficient.

The runtimes reported in Table 1 for Princess are somewhat higher than those of Z3 and
CVC4, which can partly be explained by the fact that Princess is entirely implemented in
Scala, and runs on a JVM. This results in repeated overhead for starting up the JVM and
for just-in-time compilation. In actual applications, for instance software model checking as
discussed in Sect. 6.3, normally many queries are handled without restarts in between, and
the amortised overhead is smaller.

6.2 Satisfiability queries on formulas with quantifiers

Weevaluate the effectiveness of our quantifier elimination approach on problems from theBV
category of SMT-LIB. In order to check whether a quantified bit-vector formula is satisfiable,
QE often does not have to be run to completion, instead the elimination approach from
Sect. 2.2 can be stopped as soon as a statement about satisfiability of the resulting formula
can bemade. This incremental approach to solving quantified formulas has been implemented
in Princess for Presburger arithmetic, and in combination with our lazy encoding for bit-
vectors also directly applies to quantified bit-vector formulas.

Results on the SMT-LIB BV benchmarks are given in Table 2. Our procedure can solve
a similar number of problems as Z3 and CVC4 on many of the BV families, although the
total number of problems solved is still lower than for Z3 and CVC4. Like for QF_BV, the
results confirm that the encoding of bit-vectors into arithmetic is more effective for problems
that are arithmetic in nature (e.g., the families “Automizer,” “model,” and “Heizmann”), than
for more combinatorial problems (e.g., “psyco”). In general, quantified bit-vector problems
tend to be smaller and harder than quantifier-free problems, which leads to a situation where
it is essential to have the right heuristics and optimisations in place; in this respect our
implementation is clearly still lagging behind Z3 and CVC4.

In the experiments, we used a simple portfolio mode enabled by the option
-portfolio=bv. This mode is inspired by the observation that a closed bit-vector for-
mula φ (i.e., a formula without free variables or uninterpreted predicates) can be shown to be
satisfiable also be proving that the negation ¬φ is unsatisfiable, and vice versa. Experiments
showed that often one of φ or ¬φ is significantly simpler to solve than the other, but that it is
difficult to predict the easier one; in the portfolio mode the prover therefore simultaneously
tries to solve φ and ¬φ.

6.3 Interpolation and verification of C programs

The main purpose of our procedure is the computation of Craig interpolants for bit-vector
formulas. Unfortunately, comparing and evaluating interpolation procedures is relatively
tricky, since the properties that can be measured easily (e.g., the size, shape, or strength
of interpolants, or the time required to extract interpolants) are ultimately only of limited
importance in applications. The decisive property that makes interpolants useful is the ability
to generalise, which is hard to measure syntactically. Adding to this, there is no standard set
of interpolation benchmarks that could be used, and the interpolation queries that occur in
model checking can differ from run to run. Inmodel checking,moreover interpolation queries
are interdependent: the results of earlier queries in a run will affect the later interpolation
queries being generated.
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Table 1 Performance on SMT-LIB QF_BV Problems. For each row, the first/second value gives sat/unsat
problems. Experiments were done with Princess 2019-10-02, default settings

Family Princess Z3 CVC4
Solved Time (s) Solved Time (s) Solved Time (s)

2.-BuchwaldFried 0/1 -/292 0/1 -/0.7
2.-Hansen-Check 1/2 0.9/0.7 1/2 0.0/0.0 1/2 0.0/0.0
asp 1/3 9.8/14.5 202/68 86.5/67.6 104/22 130.5/82.4
RWS 16/0 16.5/- 16/0 34.0/-
VS3 2/0 217/-
bench ab 284/0 2.2/- 285/0 0.0/- 285/0 0.0/-
bmc-bv 10/8 5.3/45.0 15/15 2.2/13.6 15/12 7.5/35.8
bmc-bv-svcomp14 0/17 -/65.5 8/56 1.5/6.0 8/54 67.1/47.2
brummayerbiere 0/6 -/40.6 0/40 -/30.7 0/37 -/37.6
brummayerbiere2 0/1 -/181 4/25 46.1/90.4 6/43 61.3/54.6
brummayerbiere3 1/0 574/- 5/37 112/97.5 6/12 0.7/85.9
brummayerbiere4 9/0 32.4/- 10/0 0.0/-
bruttomesso
.../simple processor 0/1 -/38.1 0/64 -/53.1 0/64 -/1.2
.../core 0/142 -/56.3 0/672 -/1.2 0/672 -/16.1
.../lfsr 0/225 -/69.9 0/240 -/16.8
calypto 1/2 276/4.7 4/7 0.5/8.6 4/10 13.2/4.3
challenge 0/1 -/1.4
check2 3/2 1.2/0.9 3/3 0.0/0.0 3/3 0.0/0.0
crafted 2/18 1.0/2.6 2/19 0.0/0.0 2/19 0.0/0.0
dwp formulas 136/175 12.3/6.4 154/178 0.0/0.0 154/178 0.0/0.0
ecc 0/8 -/0.1 0/8 -/1.9
fft 5/4 40.8/212 1/0 5.7/-
float 0/1 -/270 59/53 116/89.6 38/28 75.6/131
galois 0/1 -/0.2 0/1 -/0.4
gulwani-pldi08 6/0 14.8/- 6/0 35.2/-
log-slicing 0/51 -/287 0/17 -/352
mcm 36/16 122/232 14/0 40.4/-
pspace 21/42 1.4/1.3 0/13 -/366 21/42 0.0/0.0
rubik 3/4 40.1/21.5 0/2 -/73.1
sage 6601/14658 8.2/23.6 8077/18530 0.3/0.1 8077/18530 0.3/1.7
spear
.../openldap v2.3.35 3/0 0.1/- 5/0 138/-
.../samba v3.0.24 34/0 46.6/- 1373/13 8.8/2.4 1343/13 19.9/16
.../zebra v0.95a 9/0 16.3/- 9/0 1.9/- 9/0 4.0/-
.../xinetd v2.3.14 0/2 -/2.4 0/2 -/1.4 0/2 -/1.6
.../cvs v1.11.22 0/5 -/5.3 24/5 4.9/7.4 24/5 14.4/4.5
.../wget v1.10.2 5/0 8.1/- 38/4 60.7/3.7 36/4 74.8/9.1
.../inn v2.4.3 163/0 14.2/- 219/0 13.7/- 204/0 29.1/-
stp 1/0 22.4/- 1/0 288/-
stp samples 48/35 114/27.9 151/273 0.0/0.0 151/273 0.3/0.5
tacas07 2/0 6.9/- 3/0 1.0/- 3/2 22.1/186
uclid/catchconv 0/16 -/35.5 262/152 2.2/0.9 262/152 7.79/9.6
uclid/tcas 0/2 -/1.4 0/2 -/0.0 0/2 -/0.1
uclid c. smtcomp09 0/6 -/218 0/6 -/383
uum 0/2 -/5.6 0/1 -/2.2
wienand-cav2008
.../Booth 0/2 -/12.0 0/2 -/16.6
.../Distrib 0/6 -/2.9 0/6 -/0.0 0/6 -/0.0
.../Commute 0/3 -/4.0 0/6 -/0.0 0/6 -/0.0
Total
SAT 7331 9.14 10980 4.69 10799 5.53
UNSAT 15148 23.7 20565 3.19 20471 3.42
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Fig. 11 Scatter plot comparing the number of applications of the rules bmod- split and bmod- const on
QF_BV benchmarks

Table 2 Performance on SMT-LIB BV problems

For each family, the first/second row gives sat/unsat problems. Several of the families contains benchmarks
with unknown status; for those families only the total number of benchmarks is specified. Experiments were
done with Princess 2019-10-02 and option -portfolio=bv
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We therefore decided to evaluate in an application-oriented way, by integrating our inter-
polation procedure into a model checker and measuring its ability to verify safety properties
of C programs with machine integer semantics. As model checker we use Eldarica version
2.0.27 [40], a Horn clause-based model checker that uses Cartesian predicate abstraction
and the CEGAR algorithm. Eldarica was already previously tightly integrated with Prin-

cess, and was in the scope of this work extended to also handle Horn clauses over bit-vectors.
Since Eldarica internally uses the Princess data-structures to store Horn clauses, we could
implement the translation from bit-vectors to our core language (Sect. 4.1) as a preprocessing
step that is applied to all Horn clauses upfront. This means that the actual model checking
engine operates purely on expressions in the core language, and all interpolation queries
and implication checks stay within the core language; the need to translate back and forth
between bit-vector formulas and core language is eliminated. As an obvious downside of this
approach, however, it is no longer easily possible to replace the interpolation procedure with
other solvers.

Benchmarks. For the experiments, we used the built-in C parser of Eldarica, and work
with the benchmark set of 551 C programs already used in [41] for evaluating different
predicate generation strategies. The programs stem from a variety of sources, including the
SV-COMP 2016 categories “Integers and Control Flow” and “Loops,” and were selecting by
taking all programs that do not include arrays or heap data structures (i.e., only arithmetic
operations). The verification task consisted in showing that safety assertions included in the
programs can never fail. For the experiment, we interpret the programs as operating either
on the unbounded mathematical integers (math, Eldarica option -arithMode:math),
or on signed 32-bit bit-vectors (ilp32, Eldarica option -arithMode:ilp32) with wrap-
around semantics. Eldarica was otherwise run with default settings, which means that it
also applies the interpolation abstraction technique from [42].

Comparison math versus ilp32. The results formath and ilp32 semantics are given in Table 3
and Fig. 12. It has to be pointed out that the status of the programs depends on the chosen
semantics: for instance, the 46 HOLA programs [43] are all known to be safe in mathematical
semantics, but several of the programs turn out to be unsafe in bit-vector semantics due to
the possibility of overflow. Eldarica can consistently verify safety of more programs in
math than in ilp32, but it can disprove safety in more of the ilp32 cases. The total number of
solved cases is higher in math than in ilp32, but ilp32 is quite close (403 vs. 337); given the
higher complexity of the bit-vector semantics, this is an encouraging result. The scatter plot
in Fig. 12 shows that the runtimes for the two semantics are strongly correlated, and while
ilp32 is on average slower than math the difference is relatively small.

Table 3 also shows that the number of CEGAR iterations is comparable for math and
ilp32, while the size of interpolants (measured as the average number of sub-formulas of
interpolants) is bigger for ilp32 than for math, but usually by less than a factor of 2. The
exception is the category “llreve/unsafe,” where drastically bigger interpolants are computed
for ilp32 than for math. Inspecting this case, we found that there was a single benchmark in
“llreve” that was solved after 579 seconds with interpolants of size 2133; when removing
this outlier, the average interpolant size for “llreve/unsafe” is only 1.1.

Comparison with CPAchecker. As comparison, we also ran the model checker
CPAchecker1.7 [39], using options-predicateAnalysis -32 andMathSAT5 [20]
as solver. MathSAT 5 uses the interpolation method from [16]. The results are given
in Table 4 and Fig. 13. Our method is competitive with CPAchecker on all consid-

7 https://github.com/uuverifiers/eldarica.
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Table 3 Comparison of Eldarica configurations math and ilp32

For each category, the table shows the number of safe/unsafe results, and for the solved cases the average
time, the required number of CEGAR iterations, and the average size of computed interpolants. For ∗, after
removing an outlier the number is 1.1, and ∗∗ becomes 1.3

Fig. 12 Comparison of the Eldarica runtime in seconds for math and ilp32 semantics

ered categories: Eldarica with ilp32 can consistently prove more programs safe, whereas
CPAchecker can show more programs unsafe, with a lower number of CEGAR iterations.
We suspect that the use of large-block encoding [44] in CPAchecker is responsible for this
phenomenon, and indeed makes CPAchecker very effective for bug finding. The runtimes
of the systems are on average close, but the scatter plot in Fig. 13 shows no clear trend.

Altogether, we remark that we are comparing different verification systems here: although
both Eldarica and CPAchecker apply CEGAR and interpolation, there are many factors
affecting the results.What the experiments do show, however, is that the interpolationmethod
proposed in this paper can be used to create a software model checker that is competitive
with the state of the art.
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Table 4 Comparison of Eldarica configuration ilp32 and CPAchecker

For each category, the table shows the number of safe/unsafe results, and for the solved cases the average time,
and the required average number of CEGAR iterations

Fig. 13 Eldarica versus CPAchecker runtime in seconds for ilp32 semantics

7 Conclusions

We have presented a new calculus for Craig interpolation and quantifier elimination in bit-
vector arithmetic. Furthermore, we have shown how to efficiently integrate reasoning over the
structural fragment.While the experimental results in model checking are already promising,
we believe that there is still a lot of room for extension and improvement of the approach.
This includes more powerful propagation and simplification rules, and more sophisticated
strategies to apply the splitting rules ×- split and bmod- split. Future work also includes
more efficient use of bounds, and a strategy to employ bit-blasting directly to whole sub-
expressions when deemed more efficient.
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