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Abstract
There has been a growing interest in defining models of automata enriched with time, such 
as finite automata extended with clocks (timed automata). In this paper, we study deter-
ministic timed finite state machines (TFSMs), i.e., finite state machines with a single clock, 
timed guards and timeouts which transduce timed input words into timed output words. We 
solve the problem of equivalence checking by defining a bisimulation from timed FSMs to 
untimed ones and vice versa. Moreover, we apply these bisimulation relations to build the 
intersection of two timed finite state machines by untiming them, intersecting them and 
transforming back to the timed intersection. It is known that many problems like inclu-
sion and equivalence checking are undecidable for timed automata. Our results show that 
TFSMs correspond to a decidable subclass of timed automata that admits a restricted form 
of �-transitions (i.e., timeouts) where most of the relevant problems like equivalence and 
intersection are decidable.
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1  Introduction

Finite automata (FA) and finite state machines (FSMs) are formal models widely used in 
the practice of engineering and science, e.g., in application domains ranging from sequen-
tial circuits, communication protocols, embedded and reactive systems, to biological 
modelling.

Since the 90s, the standard classes of FA have been enriched with the introduction of 
time constraints to represent more accurately the behaviour of systems in discrete or con-
tinuous time. Timed automata (TA) are such an example: they are finite automata aug-
mented with a number of resettable real-time clocks, whose transitions are triggered by 
predicates involving clock values [3].

More recently, timed models of FSMs (TFSMs) have been proposed in the literature by 
the introduction of time constraints such as timed guards or timeouts. Timed guards restrict 
the input/output transitions to happen within given time intervals. The meaning of timeouts 
is the following: if no input is applied at a current state for some timeout period, the timed 
FSM moves from the current state to another state using a timeout function; e.g., timeouts 
are common in telecommunication protocols and systems.

For instance, the timed FSM proposed in [21, 22, 29] features: one clock variable, time 
constraints to limit the time elapsed at a state, and a clock reset when a transition is exe-
cuted. Instead, the timed FSM proposed in [31, 37] features: one clock variable, time con-
straints to limit the time elapsed when an output has to be produced after an input has been 
applied to the FSM, a clock reset when an output is produced, and timeouts.

In [13] the following models of deterministic TFSMs with a single clock were investi-
gated: TFSMs with only timed guards, TFSMs with only timeouts, and TFSMs with both 
timed guards and timeouts.

The problem of equivalence checking was solved for all three models, their expressive 
power compared, and subclasses of TFSMs with timeouts and with timed guards equiv-
alent to each other were characterized (see Fig.  1 from  [13] for a diagram showing the 
expressivity hierarchy of TFSMs with timed guards and timeouts, TFSMs with only timed 
guards, TFSMs with only timeouts, loop-free TFSMs with timeouts, TFSMs with LCRO 
- Left Closed Right Open - timed guards, and finally untimed FSMs). Equivalence check-
ing was obtained by introducing relations of bisimulation that define untimed finite state 
machines whose states include information on the clock regions, such that the timed behav-
iours of two timed FSMs are equivalent if and only if the behaviours of the companion 
untimed FSMs are equivalent. This operation is reminiscent and stronger than the region 
graph construction for timed automata [3].

TFSM with timed guards and timeouts

TFSM with timeouts TFSM with timed guards

Loop-free TFSM with timeouts TFSM with LCRO timed guards

Untimed FSM

Fig. 1   Comparison of TFSM models
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Here we work directly with deterministic TFSMs with both timed guards and timeouts, 
since they subsume the previous two models. For such TFSMs, we give the detailed con-
struction of the untimed FSM from a timed FSM (what we get is the FSM abstraction of 
the TFSM), and then we provide the complete proof that we can describe the behavior of 
a TFSM using the corresponding untimed FSM, i.e., that two deterministic TFSMs are 
equivalent if and only if their timed-abstracted FSMs are equivalent.

Then we study the conditions under which the opposite transformation is possible: we 
take an untimed deterministic FSM that accepts and produces words from input and out-
put alphabets (both including a special symbol that simulates the passing of time), and we 
build an equivalent deterministic TFSM with timeouts and timed guards, under the same 
notion of abstraction of timed words. This is the key technical result of this paper.

Finally, we apply the previous transformations to perform the intersection of two deter-
ministic TFSMs, as an example of composition operator under which TFSMs are closed. 
We prove how the transformation from TFSMs to untimed FSMs of Sect. 2 and the trans-
formation from untimed FSMs to TFSMs of Sect. 3 can be used to construct the intersec-
tion of two TFSMs.

We outline the structure of the paper. Section  2 introduces deterministic timed finite 
state machines with timed guards and timeouts, describes the untiming procedure to obtain 
a finite state machine and proves the bisimulation with the original timed one, from which 
an equivalence checking procedure follows. This is a revision of the material in   [13], 
whereas the following sections are completely new. Section  3 describes the backward 
transformation from untimed FSMs to TFSMs and proves the backward bisimulation rela-
tion. The two results are used in Sect. 4 to compute the TFSM that is the intersection of 
two given deterministic TFSMs. Section 5 relates TFSMs to timed automata, and surveys 
expressiveness and complexity results of various models of timed automata, with final con-
clusions drawn in Sect. 6.

2 � Models of timed FSMs (TFSMs)

Let A be a finite alphabet, and let ℝ+ be the set of non-negative reals. A timed symbol is a 
pair (a, t) where t ∈ ℝ

+ is called the timestamp of the symbol a ∈ A . A timed word is then 
defined as a finite sequence (a1, t1)(a2, t2)(a3, t3)… of timed symbols where the sequence 
of timestamps t1 ≤ t2 ≤ t3 ≤ … is non decreasing. Timestamps represent the absolute times 
at which symbols are received or produced. In the following we will sometime also reason 
in terms of relative times, or delays, measured as the difference between the timestamps of 
two successive symbols. More formally, the delay of a symbol ai is defined as ti − ti−1 when 
i > 1 and as t1 when i = 1.

The timed models considered in this paper are initialized input/output machines that 
operate by reading a timed input word (i1, t1)(i2, t2)… (ik, tk) defined on some input alphabet 
I, and producing a corresponding timed output word (o1, t1) (o2, t2)… (ok, tk) on some out-
put alphabet O. The production of outputs is assumed to be instantaneous: the timestamp 
of the j-th output oj is the same of the j-th input ij . Models where there is a delay between 
reading an input and producing the related output are possible but not considered here. 
Given a timed word (a1, t1)(a2, t2)… (ak, tk) , Untime ((a1, t1)(a2, t2)… (ak, tk)) = a1a2 … ak 
denotes the word obtained when deleting the timestamps.

A timed possibly non-deterministic and partial FSM (TFSM) is an FSM augmented 
with a clock. The clock is a real number that measures the time delay at a state, and its 
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value is reset to zero when a transition is executed. In this section we introduce the TFSM 
model with both timed guards and timeouts defined in [13]. Such a model subsumes the 
TFSM model with timed guards only given in [21, 29] and the TFSM model with timeouts 
only given in [37, 53]. In addition, we establish a very precise connection between timed 
and untimed FSMs, showing that it is possible to describe the behavior of a TFSM using a 
standard FSM that is called the FSM abstraction of the TFSM.

A timed guard defines the time interval when a transition can be executed. Intuitively, a 
TFSM in the present state s accepts an input i at a time t only if t satisfies the timed guard 
of some transition labelled with input symbol i. The transition defines the output o to be 
produced and the next state s′ . A timeout instead defines for how long the TFSM can wait 
for an input in the present state before spontaneously moving to another state. Each state 
of the machine has a timeout (possibly ∞ ) and all outgoing transitions of the state have 
timed guards with upper bounds less than the state timeout. The clock is reset to 0 every 
time the TFSM activates a transition or a timeout expires. Without loss of generality, we 
can assume that timeouts and boundaries of the timed guards are integers. If the bounds are 
rational numbers, they can always be transformed into integers by multiplying them by an 
appropriate scaling factor.

Definition 1  (Timed FSM) A timed FSM M is a finite state machine augmented with timed 
guards and timeouts. Formally, a timed FSM (TFSM) is a 6-tuple (S, I,O, �S, s0, ΔS) where S, 
I, and O are finite disjoint non-empty sets of states, inputs and outputs, respectively, s0 is the 
initial state, 𝜆S ⊆ S × (I × Π) × O × S is a transition relation where Π is the set of input timed 
guards, and ΔS ∶ S → S × (ℕ ∪ {∞}) is a timeout function such that ΔS(s)↓ℕ > 0 for each 
s ∈ S . Each guard in Π is an interval g = ⟨tmin, tmax⟩ where tmin is a nonnegative integer, while 
tmax is either a nonnegative integer or ∞ , tmin ≤ tmax , and ⟨∈

�
(, [

�
 while ⟩ ∈

�
), ]

�
.

The timed state of a TFSM is a pair (s, x) such that s ∈ S is a state of M and x ∈ ℝ
+ is 

the current value of the clock, with the additional constraint that x < ΔS(s)↓ℕ (the value of 
the clock cannot exceed the timeout). If no input is applied at a current state s before the 
timeout ΔS(s)↓ℕ expires, then the TFSM will move to anther state ΔS(s)↓S as prescribed 
by the timeout function. If ΔS(s)↓ℕ = ∞ , then the TFSM can stay at state s infinitely long 
waiting for an input. An input/output transition can be triggered only if the value of the 
clock is inside the guard ⟨tmin, tmax⟩ labeling the transition. Transitions between timed states 
can be of two types:

–	 timed transitions of the form (s, x)
t
����→ (s�, x�) where t ∈ ℝ

+ , representing the fact that 
a delay of t time units has elapsed without receiving any input. The relation t

����→ is the 
smallest relation closed under the following properties:

–	 for every timed state (s, x) and delay t ≥ 0 , if x + t < ΔS(s)↓ℕ , then (s, x)
t
����→ (s, x + t);

–	 for every timed state (s, x) and delay t ≥ 0 , if x + t = ΔS(s)↓ℕ , then (s, x)
t
����→ (s�, 0) 

with s� = ΔS(s)↓S;
–	 if (s, x)

t1
�������→ (s�, x�) and (s�, x�)

t2
�������→ (s��, x��) then (s, x)

t1+t2
�����������������→ (s��, x��).

–	 input/output transitions of the form (s, x)
i,o
���������→ (s�, 0) , representing reception of the input 

symbol i ∈ I , production of the output o ∈ O and reset of the clock. An input/output 
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transition can be activated only if there exists (s, i, ⟨tmin, tmax⟩, o, s�) ∈ �S such that 
x ∈ ⟨tmin, tmax⟩.

A timed run of a TFSM M interleaves timed transitions with input/output transitions. 
Given a timed input word v = (i1, t1)(i2, t2)… (ik, tk) , a timed run of M over v is a finite 

sequence � = (s0, 0)
t1
�������→ (s�

0
, x0)

i1,o1
����������������→ (s1, 0)

t2−t1
�����������������→ (s�

1
, x1)

i2,o2
����������������→ (s2, 0)

t3−t2
�����������������→ …

ik ,ok
���������������→ (sk, 0) 

such that s0 is the initial state of M, and for every j ≥ 0 (sj, 0)
tj+1−tj
���������������������→ (s�

j
, xj)

ij+1,oj+1
��������������������������→ (sj+1, 0) 

is a valid sequence of transitions of M. The timed run � is said to accept the 
timed input word v = (i1, t1)(i2, t2)… (ik, tk) and to produce the timed output word 
u = (o1, t1)(o2, t2)… (ok, tk) . The behavior of M is defined in terms of the input/output 
words accepted and produced by the machine. Notice that in our model timeouts are always 
greater than 0, but timed guards can be of the form [0, 0] and [0, tmax⟩ , and thus timed runs 
may include timed transitions with zero delay, i.e. of the form (s, x)

0

�����→ (s, x).
The usual definitions for FSMs of deterministic and non-deterministic, submachine, 

etc., can be extended to the timed FSM model considered here. In particular, a TFSM is 
complete if for each state s, input i and value of the clock x there exists at least one transi-
tion (s, x)

i,o
���������→ (s�, 0) , otherwise the machine is partial. A TFSM is deterministic if for each 

state s, input i and value of the clock x < ΔS(s)↓ℕ there exists at most one input/output tran-
sition, otherwise is non-deterministic.

For the sake of simplicity, from now on we consider only deterministic machines (pos-
sibly partial), leaving the treatment of non-deterministic TFSMs to future work.

Definition 2  The behavior of a deterministic TFSM M is a partial mapping 
BM ∶ (I ×ℝ

+)∗ ↦ (O ×ℝ
+)∗ that associates every input word w = (i1, t1)(i2, t2)… (ik, tk) 

accepted by M with the unique output word BM(w) = (o1, t1)(o2, t2)… (ok, tk) produced by 
M under input w, if it exists. When M is an untimed FSM the behavior is defined as a par-
tial mapping BM ∶ I∗ ↦ O∗.

Two machines M and M′ with the same input and output alphabets are equivalent if and 
only if they have same behavior, i.e, BM = BM�.

So for a partial and deterministic TFSM M, we have that for every input word w, BM(w) 
is either not defined or a singleton set. Moreover, we can consider the transition relation of 
the machine as a partial function �S ∶ S × I ×ℝ

+ ↦ S × O that takes as input the current 
state s, the delay t and the input symbol i and produces the (unique) next state and output 
symbol �S(s, t, i) = (s��, o) such that (s, 0)

t
����→ (s�, t�)

i,o
���������→ (s��, 0) . With a slight abuse of the 

notation, we can extend it to a partial function �S ∶ S × (I ×ℝ
+)∗ ↦ S × O∗ that takes as 

inputs the initial state s and a timed word w, and returns the state reached by the machine 
after reading w and the generated output word. We will use s

w,u
������������→ s′ as a shorthand for 

�S(s,w) = (s�, u).
Abstracting TFSMs with timeouts and timed guards.
In this section we show how to build an abstract untimed FSM that describes the behav-

iour of a TFSM with guards. To do this we define an appropriate notion of abstraction of 
a timed word into an untimed word and a notion of bisimulation to compare a TFSM with 
guards with an untimed FSM. From the properties of the bisimulation relation, we con-
clude that the behaviour of the abstract untimed FSM is the abstraction of the behaviour of 
the TFSM.
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For every N ≥ 0 , we define �N as the set of intervals 
�N = {[n, n] ∣ n ≤ N} ∪ {(n, n + 1) ∣ 0 ≤ n < N} ∪ {(N,∞)}. Given a TFSM M, we define 
max(M) as the maximum between the greatest timeout value of the function ΔS (differ-
ent from ∞ ) and the greatest integer constant (different from ∞ ) appearing in the guards 
of �S . The set �N defines a discretization of the clock values of TFSMs. The following 
lemma proves that such a discretization is correct, namely, that a TFSM cannot distin-
guish between two timed states where the discrete state is the same and the values of the 
clocks are in the same interval of �N.

Lemma 1  Let M = (S, I,O, �S, s0,ΔS) be a deterministic TFSM, N = max(M) , and let (s, x) 
and (s, x�) be two timed states of M such that x, x� ∈ ⟨n, n�⟩ for some interval ⟨n, n�⟩ ∈ �N . 
Then �S(s, x, i) = �S(s, x

�, i) for every input symbol i ∈ I.

Proof  Suppose by contradiction that there exist two timed states (s, x) and (s, x�) such that 
x, x� ∈ ⟨n, n�⟩ for some ⟨n, n�⟩ ∈ �N and �S(s, x, i) ≠ �S(s, x

�, i) . Since x ≠ x′ we have that the 
interval ⟨n, n′⟩ must be an open interval of the form (n, n + 1) (it cannot be a point inter-
val [n, n]) with n = ⌊x⌋ = ⌊x�⌋ and n + 1 = ⌈x⌉ = ⌈x�⌉ . Suppose, without loss of general-
ity, that �S(s, x, i) is defined and equal to (s�, o) . By the definition of TFSM we have that 
there exists a transition (s, i, ⟨tmin, tmax⟩, o, s�) ∈ �S such that x ∈ ⟨tmin, tmax⟩ . Since tmin, tmax 
are nonnegative integers (or ∞ ), it is easy to see that (n, n + 1) ⊆ ⟨tmin, tmax⟩ . Hence, 
x� ∈ ⟨tmin, tmax⟩ and thus �S(s, x�, i) = (s�, o) = �S(s, x, i) , in contradiction with the hypoth-
esis that �S(s, x, i) ≠ �S(s, x

�, i) . 	�  ◻

We can exploit the discretization given by �N to build the abstract FSM as follows. 
States of the abstract FSM will be pairs (s, ⟨n, n�⟩) where s is a state of M and ⟨n, n′⟩ is 
either a point-interval [n, n] or an open interval (n, n + 1) from the set �N defined above, 
where N = max(M) . Transitions can be either standard input/output transitions labelled 
with pairs from I × O or “time elapsing” transitions labelled with the special pair (t, t) , 
which intuitively represents a time delay 0 < t∗ < 1 without inputs.

Definition 3  Given a TFSM with timeouts and timed guards M = (S, I,O, �S, s0,ΔS) , let 
N = max(M) . We define the t-abstract FSM AM = (S × �N , I ∪ {t},O ∪ {t}, �A, (s0, [0, 0])) 
as the untimed FSM such that:

–	 (s, [n, n])
t,t

�����������→ (s, (n, n + 1)) if and only if n + 1 ≤ ΔS(s)↓ℕ;
–	 (s, (n, n + 1))

t,t

�����������→ (s, [n + 1, n + 1]) if and only if n + 1 < ΔS(s)↓ℕ;
–	 (s, (n, n + 1))

t,t

�����������→ (s�, [0, 0]) if and only if ΔS(s) = (s�, n + 1);
–	 (s, [N,N])

t,t

�����������→ (s, (N,∞)) and (s, (N,∞))
t,t

�����������→ (s, (N,∞)) if and only if ΔS(s)↓ℕ = ∞;
–	 (s, ⟨n, n�⟩)

i,o
���������→ (s�, [0, 0]) if and only if there exists (s, i, ⟨t, t�⟩, o, s�) ∈ �S such that 

⟨n, n′⟩ ⊆ ⟨t, t′⟩.

Figure  2 shows an example of a TFSM with timeouts and its t-abstraction. In this 
case the untimed abstraction accepts untimed input words on I ∪ {t} . The delay is 
implicitly represented by sequences of the special input symbol t interleaving the occur-
rences of the real input symbols from I. The representation of delays in the abstraction 
is quite involved:
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–	 two input symbols from I with no interleaving of t symbols represent a delay of 0 
time units;

–	 an even number 2n of t symbols represents a delay of exactly n time units;
–	 an odd number 2n + 1 of t symbols represents a delay t included in the open interval 

(n, n + 1).

The notion of abstraction of a timed word captures the above intuition.

Definition 4  Let t(t) be a function mapping a delay t ∈ ℝ
+ to a sequence of t as follows: 

t(0) = � , t(t) = t
2t if ⌊t⌋ = t and t > 0 , t(t) = t

2⌊t⌋+1 otherwise. Given a finite alphabet A 
and a finite timed word v = (a1, t1) (a2, t2)(a3, t3)… (am, tm) , we define its t-abstraction as 
the finite word t(v) = t(t1)a1t(t2 − t1)… t(tj − tj−1)ajt(tj+1 − tj)… t(tm−1 − tm)am.

t-bisimulation connects timed states (s, x) of a timed FSM with states of an untimed 
FSM. Conditions 1. and 2. formalize the connection between timed transitions and the spe-
cial symbol t . Conditions 3. and 4. formalize the connection between the actual input/out-
put transitions in the two machines.

Definition 5  Given a TFSM with timed guards and timeouts T = (S, I,O, �S, s0,ΔS) 
and an untimed FSM U = (R, I ∪ {t},O ∪ {t}, �R, r0) , a t-bisimulation is a rela-
tion ∼⊆ (S ×ℝ

+) × R that respects the following conditions for every pair of states 
(s, x) ∈ S ×ℝ

+ and r ∈ R such that (s, x) ∼ r : 

Fig. 2   t-abstraction of TFSM with timeout and timed guards

(a)

(b)
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1.	 if (s, x)
t
����→ (s�, x�) with 0 < t < 1 and either x ∈ ℕ or x + t ∈ ℕ then there exists r� ∈ R 

such that r
t,t

�����������→ r′ and (s�, x�) ∼ r�;
2.	 if r

t,t

�����������→ r′ then for every 0 < t < 1 such that either x ∈ ℕ or x + t ∈ ℕ there exists 
(s�, x�) ∈ S ×ℝ

+ such that (s, x)
t
����→ (s�, x�) and (s�, x�) ∼ r�;

3.	 if (s, x)
i,o
���������→ (s�, 0) then there exists r� ∈ R such that r

i,o
���������→ r′ and (s�, 0) ∼ r�;

4.	 if r
i,o
���������→ r′ then there exists (s�, 0) ∈ S ×ℝ

+ such that (s, x)
i,o
���������→ (s�, 0) and (s�, 0) ∼ r�.

T and U are t-bisimilar if there exists a t-bisimulation ∼⊆ (S ×ℝ
+) × R such that 

(s0, 0) ∼ r0.
To prove that t-bisimilar machines have the same behavior we need to introduce the fol-

lowing technical result, connecting timed transitions with the special symbol t.

Lemma 2  Given a TFSM with timed guards and timeouts T = (S, I,O, �S, s0,ΔS) 
and an untimed FSM U = (R, I ∪ {t},O ∪ {t}, �R, r0) , every t-bisimulation relation 
∼⊆ (S ×ℝ

+) × R respects the following properties for every (s, 0) ∼ r and t > 0 : 

	 (i)	 if (s, 0)
t
����→ (s�, x�) then there exists r′ such that (s�, x�) ∼ r� and r

t(t),t(t)
�������������������������→ r�;

	 (ii)	 if r
t(t),t(t)
�������������������������→ r� then there exists (s�, x�) ∼ r� such that (s, 0)

t
����→ (s�, x�).

Proof  The proof is by induction on the number of symbols n in t(t) . For the basis of the 
induction, suppose n = 1 and let (s, 0) ∼ r : by the definition of t(t) , we have that 0 < t < 1 . 
The two properties are a direct consequence of the definition of t-bisimulation. By condi-
tion 1 of Definition 5, we have that for every 0 < t < 1 , (s, 0)

t
����→ (s�, x�) implies that there 

exists r′ such that (s�, x�) ∼ r� and r
t,t

�����������→ r′ . By condition 2 of Definition 5, we have that for 
every 0 < t < 1 , r

t,t

�����������→ r′ implies that there exists (s�, x�) ∼ r� such that (s, 0)
t
����→ (s�, x�).

For the inductive case, suppose that n ≥ 1 and that the Lemma holds for n − 1 . Now, let 
(s, 0)

t
����→ (s�, x�) . Two cases may arise: either ⌊t⌋ = t or ⌊t⌋ > t . In the former case, consider 

the timed state (s��, x��) such that (s, 0)
t−0.5
������������������→ (s��, x��)

0.5

�����������→ (s�, x�).1 Since the number of sym-
bols in t(t − 0.5) is exactly n − 1 , by inductive hypothesis we have that there exists r′′ such 
that (s��, x��) ∼ r�� and r

t,tn−1

��������������������→ r�� . By condition 1 of Definition 5, we have that there exists 
r′ such that (s�, x�) ∼ r� and r′′

t,t

�����������→ r′ and thus that r
t(t),t(t)
�������������������������→ r� . To prove property (ii), sup-

pose r
t(t),t(t)
�������������������������→ r� and consider the state r′′ such that r

t,tn−1

��������������������→ r��
t,t

�����������→ r� . By inductive hypoth-
esis we have that there exists (s��, x��) ∼ r�� such that (s, 0)

t−0.5
������������������→ (s��, x��) . By condition 2 of 

Definition 5 it is possible to find a state (s�, x�) such that (s�, x�) ∼ r� and (s��, x��)
0.5

�����������→ (s�, x�) . 
This shows that (s, 0)

t
����→ (s�, x�) . When ⌊t⌋ > t , we can consider the timed state (s��, x��) such 

that (s, 0)
⌊t⌋
�����������→ (s��, x��)

t−⌊t⌋
������������������→ (s�, x�) . Since the number of symbols in t(⌊t⌋) is exactlyn − 1 , 

1  Here 0.5 is an arbitrary value chosen for the sake of simplicity. Indeed, the argument holds for every 
delay 0 < t

∗
< 1.
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by an argument similar to the above we can prove that both properties (i) and (ii) hold also 
in this case, concluding the proof. 	�  ◻

The following lemma proves that t-bisimilar machines have the same behavior.

Lemma 3  Given a TFSM with timeouts and timed guards T = (S, I,O, �S, s0,ΔS) and 
an untimed FSM U = (R, I ∪ {t},O ∪ {t}, �R, r0) , if there exists a t-bisimulation ∼ 
such that (s0, 0) ∼ r0 then for every timed input word v = (i1, t1)… (im, tm) we have that 
t(BT (v)) = BU(t(v)).

Proof  We prove the lemma by showing that the following claim holds:

for every pair of states s ∈ S and r ∈ R such that (s, 0) ∼ r and timed word v, 
�S(s, v) = (s�,w) if and only if �R(r, t(v)) = (r�, t(w)) with (s�, 0) ∼ r�.

We prove the claim by induction on the length m of the input word. Suppose m = 1 , 
v = (i1, t1) and w = (o1, t1) . We have to show that �S(s, (i1, t1)) = (s�, (o1, t1)) if and only if 
�R(r, t(i1, t1)) = (r�, t(o1, t1)) for some r′ such that (s�, 0) ∼ r�.

To prove the direct implication, suppose �S(s, v) = (s�,w) . By the definition of TFSM we 

have that �S(s, (i1, t1)) = (s1, (o1, t1)) if and only if there exists a timed state (s�, x�) such that 

(s, 0)
t1
�������→ (s�, x�)

i1,o1
����������������→ (s1, 0) . We distinguish between two cases depending on the value of t1.

–	 If t1 = 0 , then (s, 0)
0

�����→ (s, 0)
i1,o1
����������������→ (s1, 0) and by condition 3 of the definition of t

-bisimulation (since (s, 0)
i1,o1
����������������→ (s1, 0) ), there exists r1 ∈ R such that r

i1,o1
����������������→ r1 . Hence, 

�R(r, t(i1, t1)) = (r1, t(o1, t1)).
–	 If t1 > 0 , by Lemma 2 (i), there exists r′ such that r

t(t1),t(t1)
�������������������������������→ r� and (s�, x�) ∼ r� . By 

condition 3 of the definition of t-bisimulation (since (s�, x�)
i1,o1
����������������→ (s1, 0) ), we have 

that it is possible to find a state r1 ∈ R such that r′
i1,o1
����������������→ r1 . This implies that under 

input t(t1)i1 = t(i1, t1) the FSM U produces the output word t(t1)o1 = t(o1, t1) , and 
thus we can conclude that �R(r, t(i1, t1)) = (r1, t(o1, t1)).

To prove the converse implication, suppose �R(r, t(i1, t1)) = (r1, t(o1, t1)) . We distin-
guish between two cases depending on the value of t1.

–	 If t1 = 0 , then by the assumption �R(r, t(i1, 0)) = (r1, t(o1, 0)) we have that r
i1,o1
����������������→ r1 , 

and so by condition 4 of the definition of t-bisimulation, there exists (s1, 0) ∈ S ×ℝ
+ 

such that (s, 0)
i1,o1
����������������→ (s1, 0) . Hence, �S(s, (i1, 0)) = (s1, (o1, 0)).

–	 If t1 > 0 , then by the assumption �R(r, t(i1, t1)) = (r1, t(o1, t1)) there exists r� ∈ R 
such that r

t(t1),t(t1)
�������������������������������→ r�

i1,o1
����������������→ r1 . By Lemma  2 (ii), there exists (s�, x�) ∈ S ×ℝ

+ such 
that (s, 0)

t1
�������→ (s�, x�) and (s�, x�) ∼ r� . By condition 4. of the definition of t-bisimula-

tion, we have that there exists a timed state (s1, 0) such that (s�, x�)
i1,o1
����������������→ (s1, 0) . This 

implies that under input (i1, t1) the TFSM T produces the timed output word (o1, t1) , 
and thus we can conclude that �S(s, (i1, t1)) = (s1, (o1, t1)).

Since our machines may be partial, we have that �S(s, (i1, t1)) and �R(r, t(v)) are not nec-
essarily defined. However, the above argument also shows that �S(s, (i1, t1)) is defined if 
and only if �R(r, t(v)) is defined.
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To prove the inductive case, suppose m > 1 , v = (i1, t1)… (im, tm) and w = (i1, t1)… 
(im, tm) . Now, let v� = (i1, t1)… (im−1, tm−1) and w� = (o1, t1)… (om−1, tm−1) . By inductive 
hypothesis, we have that �S(s, v�) = (sm−1,w

�) if and only if �R(r, t(v�)) = (rm−1, t(w
�)) 

for some (sm−1, 0) ∼ rm−1 , and that �S(sm−1, (im, tm − tm−1)) = (sm, (om, tm − tm−1)) 
if and only if �R(rm−1, t(im, tm − tm−1)) = (rm, t(om, tm − tm−1)) for some 
(sm, 0) ∼ rm . This implies that �S(s, v

�(im, tm)) = (sm,w
�(om, tm)) if and only if 

�R(r, t(v)) = �R(r, t(v
�(im, tm))) = (rm, t(w

�)t(om, tm − tm−1)) = (rm, t(w)) , and thus that the 
claim holds also for m.

To conclude the proof of the Lemma it is sufficient to recall that from the definition of 
behaviour we have that BT (v) = w if and only if �S(s0, v) = (sm,w) for some state sm ∈ S . 
From (s0, 0) ∼ r0 (hypothesis of the lemma) we can conclude that �R(r0, t(v)) = (rm, t(w)) 
and thus that BU(t(v)) = t(w) = t(BT (v)) . 	�  ◻

Theorem 1  A TFSM with timeouts and timed guards M is t-bisimilar to the abstract FSM 
AM.

Proof  The relation ∼= {((s, x), (s, ⟨n, n�⟩)) ∣ x ∈ ⟨n, n�⟩} is a t-bisimulation for M and AM . 	
� ◻

We can use the above theorem to solve the equivalence problem for TFSM with timed guards.

Corollary 1  Let M and M′ be two TFSM with timeouts and timed guards. Then M and M′ 
are equivalent if and only if the two abstract FSM AM and AM′ are equivalent.

Proof  The claim is a direct consequence of Theorem 1 and Lemma 3. 	�  ◻

3 � From untimed FSMs to TFSMs

In the previous section we have shown how to build an abstract untimed FSM that rep-
resents the behaviour of a TFSM, by means of appropriate notions of bisimulation and 
of abstraction of timed words. In this section we study the conditions under which the 
opposite transformation is possible: we take an untimed FSM that accepts and produces 
words from input and output alphabets that include the special symbol t , and we show how 
to build an equivalent TFSM with timeouts and timed guards, under the same notion of 
abstraction of timed words.

Now, let I and O be, respectively, the input and output alphabets of our machines. We 
are interested in studying untimed FSMs that accept words in (I ∪ {t})∗ and produce words 
in (O ∪ {t})∗ . Clearly, not all untimed FSMs represent valid timed behaviours. In par-
ticular, since in our TFSMs model outputs are instantaneously produced when an input is 
received, and since a TFSM cannot stop the advancing of time, we have that a determinis-
tic untimed FSM U = (R, I ∪ {t},O ∪ {t}, �R, r0) can be transformed into a TFSM only if 
every state r of U respects the following two conditions: 

1.	 �R(r, t) is defined and such that �R(r, t) = (r�, t) for some r� ∈ R (when the input t is 
received, the FSM should produce the output t);

2.	 for every input i ∈ I , if �(r, i) is defined then �(r, i) = (r�, o) for some output o ∈ O and 
state r� ∈ R (when an input from I is received, the FSM produces an output from O).
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We call any untimed FSM that respects the above two conditions time progressive.
Notice that the t-abstractions of a deterministic TFSM built following Definition 3 is 

always a time progressive deterministic FSM. In the following we prove that every deter-
ministic time progressive FSM can be transformed into an equivalent deterministic TFSM 
with timeouts and timed guards. Since we cannot directly compare the behavior of an 
untimed FSM with the behavior of a timed FSM, we will use the notion of t-abstraction of 
a timed word (Definition 4) to compare timed and untimed machines.

Definition 6  Given a deterministic and time progressive FSM U = (R, I ∪ {t},O ∪ {t}, �R, 
r0) , and a TFSM with timed guards and timeouts T = (S, I,O, �S, s0,ΔS) , we say that 
T refines U if and only if for every timed input word v = (i1, t1)… (im, tm) we have that 
BU(t(v)) = t(BT (v)).

The intuition behind the construction is the following. Since we start from a determin-
istic and time progressive FSM U, from every state of U there exists exactly one transition 
with input t (and output t ). Hence, given a state s we can build the (infinite) “delay run”

Since the number of states of U is finite, we have that the delay run is “lasso shaped”, 
namely, that it consists of a prefix s

t,t

�����������→ …
t,t

�����������→ sp followed by the infinite repetition of a 
loop sp

t,t

�����������→ …
t,t

�����������→ sp.
The refined TFSM T will have the same set of states of U. Then, for every state s the 

delay run is computed, and the transitions and timeouts are defined as follows:

–	 every I/O transition leaving a state in the prefix is replaced with a timed transition from 
s with an appropriate timed guard;

–	 a timeout corresponding to the length of the prefix forces T to switch from s to a state in 
the loop.

Algorithms 1 and 2 describe the above procedure in detail. To simplify the code, we 
will unfold the final loop once, and put the timeout in correspondence to the second occur-
rence of sp in the delay run. Moreover, since U is assumed to be deterministic, we consider 
the transition relation as a partial function �U ∶ S × (I ∪ {t}) ↦ S × (O ∪ {t}) returning 
the next state and the output.

�
s
t
= s

t,t

�����������→ s1
t,t

�����������→ s2
t,t

�����������→ …



88	 Formal Methods in System Design (2021) 59:77–102

1 3

Figure 3 shows the TFSM with timeouts and timed guards that can be obtained by applying 
Algorithm 1 to the untimed FSM of Fig. 2(b), where the states have been renamed as follows:

(s0, [0, 0]) = q0 (s0, (0, 1)) = q1 (s1, [0, 0]) = q2

(s1, (0, 1)) = q3 (s1, [1, 1]) = q4 (s1, (1,∞)) = q5

Fig. 3   Example of application of Algorithm 1
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In the picture, transitions with adjacent guards have been merged: for instance, the 
application of the algorithm creates the transition (q0, i, o1, [0, 0], q0) and the transition 
(q0, i, o1, (0, 1), q0) that are merged into the unique transition (q0, i, o1, [0, 1), q0) in the pic-
ture. The picture includes only the states that are reachable from the initial state q0 . This 
shows that in the final result only the three states q0 , q2 and q5 are relevant: the other states 
have been replaced by either timed guards or timeouts.

To better understand how Algorihm 1 works, let us review the application of function 
AddTimedTrans (Algorithm 2) to the initial state q0 (state (s0, [0, 0]) in the picture) of the 
untimed FSM AM of Fig. 2(b). The procedure starts by unmarking all states of AM and by 
initialising the current state r to q0 and the current guard g to [0, 0]. Then the while loop of 
lines 7–19 follows the sequence of t∕t transitions in AM , marking the states it reaches, until 
a previously marked state is found. At lines 7-9, for every I/O transition exiting the current 
state, a corresponding timed transition labelled with the current value of g is added to the 
TFSM. Then the current state r is updated to the next state in the sequence of t∕t transi-
tions and g is increased following the sequence [0, 0], (0, 1), [1, 1], (1, 2),… . In this exam-
ple, the first iteration of the while loop considers all I/O transitions exiting from the state q0 
of AM , namely the transition q0

i∕o1
��������������→ q0 , and adds the transition q0

[0,0]∶i∕o1
���������������������������������→ q0 to the TFSM 

(the initial value of g is indeed [0, 0]). Then r is updated to q1 , g to (0, 1) and the second 
iteration is started. The transition q1

i∕o1
��������������→ q0 corresponds to the transition q0

(0,1)∶i∕o1
���������������������������������→ q0 in 

the TFSM. Notice that the starting state of the timed transition is still q0 . The t∕t transition 
between q0 and q1 of AM models the fact that the machine waits for a time included in the 
interval (0, 1) before accepting an input. This situation is modelled in the TFSM by adding 
the guard (0, 1) to the transition while keeping q0 as starting state. Then the loop continues 
by adding the following transitions to the TFSM:

At this point, the current state r of AM is q5 (i.e., (s1, (1,∞)) ) and the guard g is (2,  3). 
Because of the self loop on t∕t of AM in state q5 , at the end of the loop r does not 
change and g is updated to [3, 3]: a previously marked state is reached and the loop ter-
minates. Lines 20–29 of AddTimedTrans set the timeout at state q0 to (q5, 3) , terminat-
ing the function call. The value of the timeout is set to 3 because the first marked state 
is reached after 6 t∕t transitions, which corresponds to 3 time units. A subsequent call 
to AddTimedTrans on state q5 will set the timeout at state q5 to (q5, 1) (i.e., the self-
loop on t = 1 depicted in the figure), to model the fact that in the untimed FSM AM 
there is a self-loop on t∕t at state q5 . In this way, the sequence of t∕t transitions 

q0
t∕t
�������������→ q1

t∕t
�������������→ q2

t∕t
�������������→ q3

t∕t
�������������→ q4

t∕t
�������������→ q5

t∕t
�������������→ q5

t∕t
�������������→ q5

t∕t
�������������→ q5

t∕t
�������������→ q5

t∕t
�������������→ … of AM 

is replaced by the sequence of timeout transitions q0
3

�����→ q5
1

�����→ q5
1

�����→ … . In both cases the 
machines can wait in q5 forever, if no input is received in the first 3 time units. The applica-
tion of AddTimedTrans to the other states of AM builds the rest of the TFSM.

By applying the equivalence checking methodology presented in Sect. 2, we can ver-
ify that the TFSM of Fig. 3 is indeed equivalent to the TFSM of Fig. 2a. Figure 4 shows 
the t-abstraction of the TFSM of Fig.  3, which is equivalent to the FSM of Fig.  2b ( t
-abstraction of the TFSM of Fig. 2a). By standard FSM state-minimization of the FSM in 
Fig. 4, we get a reduced FSM isomorphic to the one in Fig. 2b: the two FSMs are untimed 
t-abstractions, and thus it is safe to use the standard FSM state-minimization algorithm to 
test for equivalence, since the algorithm preserves the language of untimed FSMs. Since 

q0
[1,1]∶i∕o2
���������������������������������→ q2q0

(1,2)∶i∕o2
���������������������������������→ q2 q0

[2,2]∶i∕o2
���������������������������������→ q2q0

(2,3)∶i∕o1
���������������������������������→ q0
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the two t-abstractions are equivalent, equivalence of the TFSM of Fig. 3 with the TFSM of 
Fig. 2a follows from Corollary 1.

To formally prove the correctness of our construction we show that the TFSM T 
obtained from Algorithm 1 is t-bisimilar to U. Then, by Lemma 3, we can immediately 
conclude that T is a refinement of U.

Theorem 2  Given a time progressive and deterministic FSM U = (S, I ∪ {t},O ∪ {t}, �U , 
s0) , Algorithm 1 builds a TFSM with timeouts and timed guards T = (S, I,O, �T , s0,ΔT ) for 
which there exists a t-bisimulation ∼ such that (s0, 0) ∼ s0.

Proof  Let U = (S, I ∪ {t},O ∪ {t}, �U , s0) be a time progressive and deterministic FSM, 
and let T = (S, I,O, �T , s0,ΔT ) be the TFSM built by Algorithm 1. We define the following 
relation between states of T and states of U:

where 𝜆̂U ∶ S × (I ∪ {t})∗ ↦ S × (O ∪ {t})∗ is the usual extension of the transition func-
tion �U to input words.

We show that ∼ is indeed a t-bisimulation between T and U by proving that the function 
AddTimedTransition (Algorithm 2) respects the following invariant: 

INV	� (s, x) ∼ r for all x ∈ g , and all conditions of Definition 5 are respected by the transi-
tions in �T.

Before entering into the while loop, AddTimedTransition sets r = s and g = [0, 0] . Since 
t(0) = � , we have that (s, 0) ∼ s , and since �T is empty, Definition 5 is trivially respected.

Consider now a generic iteration of the while loop (lines 7–19). By the invariant, 
we have that (s, x) ∼ r for all x ∈ g . The for loop (lines 9–12) iterates through all tran-
sitions of U activated by an actual input i ∈ I , adding a transition (s, i, o, g, r�) to �T for 

(1)∼ = {((s, x), r) ∣ r = 𝜆̂U(s, t(x)) ↓S}

Fig. 4   t-abstraction of the TFSM in Fig. 3
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every transition (r, i, o, r�) ∈ �U . Hence, for every x ∈ g we have that (s, x)
i,o
���������→ (r�, 0) and 

r
i,o
���������→ r′ . Since (s, x) ∼ r and (r�, 0) ∼ r� , we have that conditions 3 and 4 of Definition 5 are 

respected. After updating �T , lines 13–18 update the value of r and g. Let us call rold and 
gold the values of r and g before the update. Then, r is set to the t-successor of rold and g is 
updated to the “next interval” as follows:

if gold = [n, n] then g = (n, n + 1);
if gold = (n, n + 1) then g = [n + 1, n + 1].

We consider the two cases separately. If g = [n, n] then the only possible state (s, x) such 
that x ∈ [n, n] is (s, n). Moreover, by the definition of ∼ , since (s, n) ∼ rold we have that 
rold = 𝜆̂U(s, t(n)) ↓S , with t(n) = t

2n . Since line 13 updates r to �U(rold, t) , and since 
t(x + t) = t

2n+1 for every 0 < t < 1 , we have that r = 𝜆̂U(s, t(x + t)) ↓S . Hence, since 
(s, n)

t
����→ (s, n + t) , (s, n + t) ∼ r and rold

t,t

�����������→ r we have that conditions 1 and 2 of Definition 5 
are respected. By a similar argument, if g = (n, n + 1) we can show that (s, x)

t
����→ (s, x + t) , 

(s, x + t) ∼ r and rold
t,t

�����������→ r for every x and t such that 0 < t < 1 and x + t = n + 1 , respect-
ing conditions 1 and 2 of Definition 5 also in this case. Hence, every iteration of the while 
loop respects the invariant.

The loop terminates when r is a marked state, that is, when it reaches the first repeti-
tion of a state in the delay run from s. Lines 20–29 take care of setting appropriately the 
timeout at state s. Two different situations may arise: either g = [n, n] or g = (n, n + 1) for 
some n ∈ ℕ . In the former case, the state r is repeated after an even number of transitions, 
which corresponds to an integer time delay. Hence, the timeout at s is set to ΔS(s) = (r, n) . 
Consider now the predecessor rpred of r in the delay run. By the invariant, we have that 
(s, x) ∼ rpred for every x ∈ (n − 1, n) . Hence, we have that (s, x)

n−x
��������������→ (r, 0) for every 

n − 1 < x < n , rpred
t,t

�����������→ r , (s, x) ∼ rpred and (r, 0) ∼ r , respecting conditions 1 and 2 of Def-
inition 5. In the latter case ( g = (n, n + 1) ), r is repeated after an odd number of transitions. 
Since the timeout at s must be an integer value, lines 22–29 repeat the construction of the 
while loop one more time and then update r to a state that corresponds to precisely n + 1 
time units before setting the timeout. As in the previous case, we can prove that the invari-
ant is respected.

To conclude the proof we observe that Algoritm  1 executes AddTimedTransition on 
every state s ∈ S . Hence, the final TFSM T is in relation ∼ with U. Since ∼ respects all 
conditions of Definition 5, we have that it is a t-bisimulation between T and U such that 
(s0, 0) ∼ s0 . 	�  ◻

Corollary 2  Given a time progressive and deterministic FSM U = (S, I ∪ {t},O ∪ {t}, �U , 
s0) , Algorithm  1 builds a TFSM with timeouts and timed guards T = (S, I,O, �T , s0,ΔT ) 
that refines U.

The computational complexity of Algorithm 1 is quadratic in the number of states of the 
FSM U, as proved by the following theorem.

Theorem 3  Given a time progressive and deterministic FSM U = (S, I ∪ {t},O ∪ {t}, �U , 
s0) , Algorithm 1 runs in O(|S|2 ⋅ |I|) time.
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Proof  The computational complexity of Algorithm 1 depends on the computational com-
plexity of Algorithm 2. Algorithm 2 adds timed transitions originating from a state s by 
traversing the delay run �s

t
 starting from s, marking the visited states and adding at most 

|I| timed transitions for each visited state. Since marked states are never unmarked and the 
while loop stops at the first already marked state, the loop is executed for at most |S| + 1 
iterations. Hence, the time complexity of Algorithm  2 is O(|S| ⋅ |I|) . Since Algorithm  1 
calls AddTimedTransition (Algorithm  2) on all states s ∈ S , the time complexity of the 
complete algorithm is O(|S|2 ⋅ |I|) . 	�  ◻

4 � Intersection of TFSMs

In this section we apply the previous transformations to perform the intersection of TFSMs. 
In general, TFSMs can be composed to build complex systems out of simpler components. 
Several composition operators exist for untimed FSMs, the most relevant ones being the 
intersection operator, the serial composition, and synchronous and asynchronous paral-
lel composition (see [49]). Parallel composition of TA was discussed in [41]. Preliminary 
work on parallel composition of TFSMs with timed guards and output delays can be found 
in  [33], and on parallel composition of TFSMs with timeouts and output delays in  [30]. 
When extending compositions to Timed FSMs, one must verify that TFSMs are closed 
under the type of composition of interest. In our setting, this means that the behaviour of 
the composed system should be represented by a machine with only a single clock. Here 
we focus on the intersection operator for which we show that closure holds.

In the following we show how the transformation from TFSMs to untimed FSMs of 
Sect. 2 and the transformation from untimed FSMs to TFSMs of Sect. 3 can be used to 
implement the intersection of TFSMs. Suppose that we have two TFSMs M1 and M2 and 
that we want to compute the intersection M1 ∩M2 whose behaviour is the intersection of 
the behaviours of M1 and M2 . We can proceed as follows: 

1.	 compute the t-abstract FSMs AM1
 and AM2

 as in Definition 3 for, respectively, M1 and 
M2;

2.	 intersect AM1
 and AM2

 using the standard algorithm for untimed FSMs, obtaining the 
untimed FSM C = AM1

∩ AM2
;

3.	 compute the TFSM T that is t-bisimilar with C using Algorithm 1.

The following theorem shows that T is equivalent to the intersection of M1 and M2.

Theorem  4  Let M1 and M2 be two deterministic TFSMs, and let T = REFINEAM1
∩ AM2

 . 
Then, for every timed input word v = (i1, t1)… (ik, tk) we have that 
BT (v) = w = (o1, t1)… (ok, tk) if and only if BM1

(v) and BM2
(v) are defined and such that 

BM1
(v) = BM2

(v) = w.

Proof  Let M1 and M2 be two deterministic TFSMs, and let AM1
 and AM2

 be their respective 
t-abstractions. By Definition 3 we have that AM1

 and AM2
 are deterministic and time pro-

gressive. Hence, the intersection AM1
∩ AM2

 is also deterministic and time progressive and 
Algorithm 1 can be applied to obtain the TFSM T.

To prove the direct implication, let v = (i1, t1)… (ik, tk) be an input timed word and sup-
pose that BT (v) = w for some timed output word w = (o1, t1)… (ok, tk) . Since 
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T = REFINEAM1
∩ AM2

 , by Corollary 2 we have that T refines AM1
∩ AM2

 . Hence, by Defini-
tion 6 we have that BAM1

∩AM2

(t(v)) = t(BT (v)) = t(w) . Since AM1
∩ AM2

 is the intersection 
of AM1

 and AM2
 , we have that BAM1

(t(v)) = BAM2

(t(v)) = t(w) . Since AM1
 and AM2

 are the t
-abstraction of M1 and M2 , by Theorem  1 and Lemma  3 we have that 
t(w) = B

A
M1

(t(v)) = t(B
M

1
(v)) and t(w) = B

A
M2

(t(v)) = t(B
M

2
(v)) . This proves that BM1

(v) 
and BM2

(v) are defined and such that BM1
(v) = BM2

(v) = w.
To prove the opposite implication, let v = (i1, t1)… (ik, tk) be an input timed word and 

suppose that BM1
(v) and BM2

(v) are defined and such that BM1
(v) = BM2

(v) = w for some 
timed output word w = (o1, t1)… (ok, tk) . Since AM1

 and AM2
 are the t-abstraction of M1 and 

M2 , by Theorem  1 and Lemma  3 we have that B
A
M1

(t(v)) = t(B
M

1
(v)) = t(w) and 

B
A
M2

(t(v)) = t(B
M

2
(v)) = t(w) . Hence, the intersection AM1

∩ AM2
 is such that 

BAM1
∩AM2

(t(v)) = BAM1

(t(v)) = BAM2

(t(v)) = t(w) . Since T = REFINEAM1
∩ AM2

 , by Corol-
lary  2 and Definition  6 we have that t(BT (v)) = BAM1

∩AM2

(t(v)) = t(w) . Hence, we have 
proved that BT (v) = w . 	�  ◻

As an example, consider the TFSMs M1 and M2 of Fig. 5, and suppose we want to com-
pute the intersection M1 ∩M2 . Following the above procedure, the first step is to obtain 
the t-abstract FSMs AM1

 and AM2
 in Fig. 6. Then, by applying the standard constructions 

for intersection and minimization of untimed FSMs, we obtain the machine C depicted 
in Fig. 7 and finally, using Algorithm 1, the TFSM T = REFINEAM1

∩ AM2
 of Fig. 8. It is 

worth pointing out that the intersection of two complete and deterministic TFSMs is still 
a deterministic machine, but it may be partial. This is indeed the case of our example: for 
instance, when the TFSM in Fig. 8 is in state 0 it can react to the input i only when the 
clock is in the intervals [0, 0] or (1, 2). No behaviour is specified when the clock is inside 
the interval (0, 1] and [2, 3). In states 1 and 13 no behaviour is specified when the clock has 
an integer value smaller than the timeout (0, 1, 2 and 3 for state 1, 0 for state 13).

Fig. 5   TFSMs M
1
 and M

2
 to be intersected
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5 � Timed FSMs and Timed Automata

In this section, we compare TFSMs with Timed Automata (TAs), and survey the known 
results on the expressivity and computability of various classes of TAs, according to their 
computational resources. The landscape of finite automata augmented with time is much 
more complex than in the case of untimed ones, where both language recognizers (FA) 
and producers (FSMs) share the fact that there is an underlying common model which 

Fig. 6   Untimed abstractions of M
1
 and M

2

Fig. 7   The intersection of A
M

1
 and A

M
2
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corresponds to regular languages (FSMs transform regular input languages into regular 
output languages). TAs are the most common formalism obtained by adding timing con-
straints (as clocks) to finite-state automata [3], defining timed regular recognizers. TAs are 
a more expressive model than TFSMs because they allow multiple clocks, invariants as 
conditions on clocks associated to a location, guards as conditions on clocks associated to 
a transition, resets by which a clock may be reset to 0 or may be kept unchanged, and states 
which are products of a location and clock valuations. Excellent surveys about the classes 
of TAs proposed in the literature can be found in [27, 52].

TFSMs can be transformed into TAs with �-transitions (called also in the literature 
silent transitions or internal transitions or non-observable transitions) by the following 
transformation:

–	 there is one location of the TA for every state of the TFSM;
–	 given the input and output alphabets I and O of the TFSM, the alphabet of the TA is 

given by I × O;
–	 as in the TFSM, the TA has a single clock, reset to zero at every transition;
–	 intervals on transitions are replaced with guards;
–	 timeouts of the TFSM are replaced by invariants and � - transitions.

An example of such transformation is shown in Fig. 9, where on the left there is a TFSM 
and on the right the corresponding TA.

This reduction is not necessarily practical, since decision problems are in general unde-
cidable for timed automata, even for restricted versions of them. In the following we men-
tion some of these relevant results. For a classic survey on decision problems for timed 
automata, see [5], where the following results can be found: 

Fig. 8   The TFSM for M
1
∩M

2

Fig. 9   Transformation from TFSM (on the left) to �-timed automaton (on the right)
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1.	 TAs are closed under union, intersection, projection, but not under complementation.
2.	 The language emptiness problem is PSPACE-complete (a by-product of reachability 

analysis obtained by means of the region construction).
3.	 The universality, inclusion and equivalence problems for TAs are undecidable.
4.	 Deterministic TAs are closed under union. intersection and complementation, but not 

under projection. The language emptiness, universality, inclusion and equivalence prob-
lems for deterministic TAs are PSPACE-complete.

Further results are proved in [25] and [26], e.g., that one cannot decide whether a given 
timed automaton is determinizable or whether the complement of a timed regular lan-
guage is timed regular.

One may wonder whether the complexity goes down, if we reduce the resources of 
the timed automaton. The answer is sometimes yes, but only in very restricted cases. 
In  [1, 40] it is shown that the problem of checking language inclusion L(A) ⊆ L(B) of 
TAs A and B is decidable if B has no �-transitions, and either B has only one clock, 
or the guards of B use only the constant 0. These two cases are essentially the only 
decidable instances of language inclusion, in terms of restricting the various resources 
of timed automata. Similar conclusions for the universality problem (does a given TA 
accept all timed words) are drawn in  [2]: the one-clock universality problem is unde-
cidable for TAs over infinite words, and decidable for TAs over finite words, but unde-
cidable for both if �-transitions are allowed. Model checking and reachability of timed 
automata with one or two clocks are discussed in [24, 35].

It is a fact that reducing resources, like the number of clocks, may simplify some 
problems, but allowing �-transitions, even with few resources, makes the problems as 
hard as in the general case. A score of papers [8–10, 17] investigated the expressiveness 
of timed automata augmented with �-transitions, and proved the following results: 

1.	 The class of timed languages recognized by timed automata with �-transitions is more 
robust and expressive than those without them.

2.	 A timed automaton with �-transitions that do not reset clocks can be transformed into an 
equivalent one without �-transitions (equivalent means with the same timed language).

3.	 A (non-Zenonian) timed automaton such that no �-transitions that reset clocks lie on a 
direct cycle can be transformed into an equivalent one without �-transitions.

4.	 There is a timed automaton, with an �-transition which resets clocks on a cycle, which 
is not equivalent to any timed automaton without �-transitions.

More undecidability questions for timed automata with �-transitions were answered 
in [12], e.g.: given a timed automaton with �-transitions, it is undecidable to determine 
if there exists an equivalent timed automaton without �-transitions. The problem of 
removing �-transitions got a new twist in  [20], where it was shown that if one allows 
periodic clock constraints and periodic resets (updates), then we can remove �-transi-
tions from a timed automaton; moreover, the authors proved that periodic updates are 
necessary, defining a language that cannot be accepted by any timed automaton with 
periodic constraints and transitions which reset clocks to 0 and no �-transitions.

The direct transformation of TFSMs to untimed FSMs given in Sect. 2, paired with 
the opposite transformation from untimed FSMs to TFSMs given in Sect. 3, shows that 
it is possible to solve many interesting problems for TFSMs by using the standard algo-
rithms for untimed FSMs and translating back and forth to TFSMs. Our previous work 
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in  [13] showed that timeouts cannot be removed from TFSMs without restricting the 
expressive power of the model. Hence, our TFSM formalism can be viewed as a sub-
class of TAs with one clock that admits a restricted form of �-transitions (i.e., timeouts), 
which cannot be removed, and where most of the relevant problems like equivalence 
and intersection are decidable.

In conclusion, timed automata are a rich model with and without �-transitions, 
therefore in general their decision problems are undecidable or very difficult also for 
restricted versions, even more so if �-transitions are admitted. TFSMs correspond to a 
decidable subclass of timed automata with �-transitions that has never been identified 
before.

Related works on learning timed automata prove that deterministic timed automata 
with one clock can be learned efficiently [6, 47], while TAs with two or more clocks can 
not be learned efficiently [48]. This result has been exploited by Caldwell et al. to define 
the model of Time Delay Mealy Machines (TDMM)  [15]: a class of FSMs with delays 
between application of an input and observation of an output that shares many features 
with our TFSM model. TDMMs are expressive enough to model PLC software and to be 
learned efficiently from PLC software. Another recent model of Mealy machines with a 
single timer (MM1Ts) introduced by Vaandrager et al.  [46] can be learned efficiently by 
learning algorithms obtained via a reduction to the problem of learning Mealy machines. 
MM1Ts allow the clock to be stopped or time out in later transitions and are more expres-
sive than TDMMs, where the clock is reset on every transition.

Another interesting restricted model are Real-Time Automata (RTAs) introduced by C. 
Dima  [19] in 2001: they are finite automata with a labeling function (from states to an 
alphabet) and a time labeling function (from states to rational intervals) which together 
define the label of a state. RTAs work over signals that are functions with finitely many 
discontinuities from non-negative rational intervals [0, e) (with e > 0 ) to an alphabet, so 
that the domain of a signal is partitioned into finitely many intervals where the signal is 
constant. A run is associated with a signal iff there is a sequence of partitioning points con-
sistent with the state labels (stuttering, i.e., repetition of signal values is allowed); signals 
associated with an accepting run are the timed language associated to an RTA. The author 
states in  [19] that RTAs can be viewed as a class of state-labeled timed automata over 
timed words (instead than signals) with a single clock which is reset at every transition 
(stuttering being reduced to �-transitions). Moreover, it is claimed that RTAs are the largest 
timed extension of finite automata whose emptiness and universality problems are decid-
able, �-transitions can be removed, there is a determinization construction, are closed under 
complementation, and a version of Kleene theorem holds. RTAs share some similarities 
with TFSMs, since they both have a single clock that is reset at every transition. Timeouts 
are not present in RTAs, which instead use a Kleene algebra on intervals to represent peri-
odic timed guards, needed to remove �-transitions.

More complex classes of timed automata have been studied, in which the interplay 
between variants of the basic constituents defining them yields interesting combinations of 
expressivity and computability.

Event-Clock Automata [4, 18, 28] (ECAs) are a determinizable robust subclass of timed 
automata. Event-clock automata are characterized with respect to timed automata by the 
fact that explicit resets of clocks are replaced by a predefined association with the input 
symbols such that for each input x ∈ Σ : a global recorder clock records the time elapsed 
since the last occurrence of x and a global predictor clock measures the time required for 
the next occurrence of x (clock valuations are determined only by the input timed words). 
They are closed under Boolean operations (TAs are not closed under complement) and 
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language inclusion is PSPACE-complete for them (it is undecidable for TAs). It is men-
tioned in [19] that RTAs are incomparable with ECAs, which are the largest known deter-
minizable subclass of timed automata, since RTAs may accept languages that ECAs can-
not. Since ECAs can use multiple clocks, they can accept languages that TFSMs cannot. 
However, TFSMs can accept some of the languages accepted by RTAs but not by ECAs.

Timed Automata with Non-Instantaneous Actions [7] are such that an action can take 
some time to be completed; they are more expressive than timed automata and less expres-
sive than timed automata with �-transitions. They share similarities with TFSMs where the 
production of outputs is not instantaneous but occurs after some time from the reception of 
inputs. Updatable Timed Automata were introduced in [11] as an extension to update the 
clocks in a more elaborate way than simply resetting them to 0; their emptiness problem 
is undecidable, but there are interesting decidable subclasses. Any updatable automaton 
belonging to some decidable subclass can be effectively transformed into an equivalent 
timed automaton without updates, but with �-transitions. Given that they allow multiple 
clocks and an elaborate way to reset them, Updatable Timed Automata are more expressive 
than TFSMs.

A complete taxonomy of timed automata is presented in  [27], and issues of undecid-
ability are discussed in depth in [38]. Properties of timed automata are contrasted in [14] 
with those of a special class of hybrid automata with severe restrictions on the discrete 
transitions: hybrid systems with strong resets, which have the property that all the continu-
ous variables are non-deterministically reset after each discrete transition (differently from 
timed automata, where flow rates are constant, and it is not compulsory to reset variables 
on each discrete transition). Connections between timed automata and timed discrete-event 
models are explored in [43].

The trade-off in preferring TAs vs. TFSMs depends also on the specific problem at hand. 
For instance, TAs and TFSMs are used when deriving tests for discrete event systems. 
However, methods for direct derivation of complete test suites over TAs return infinite test 
suites [44]. Therefore, to derive complete finite test suites with a guaranteed fault coverage, 
a TA is usually converted to an FSM and FSM-based test derivation is then used (see [23, 
42]). Therefore, TFSMs may be preferred over TAs and other models when the derivation 
of complete tests is required (as done in [22] for TFSMs with timed guards), even though 
the test suites so obtained are rather long. We mention also that the FSM abstraction intro-
duced in this paper was used in [45], to derive complete finite test suites for TFSMs with 
both timeouts and timed guards. Since FSMs are used for testing, state distinguishabil-
ity, and state identification problems of hardware and software designs (see [16, 32, 36]), 
TFSMs and similar formalisms may be applied to the timed versions of these problems, 
instead than using TAs, as witnessed by a number of application reports e.g. to derive tests 
for telecommunication protocols and microcontroller systems (see [21, 22, 29–31, 34, 37, 
45]). The critical role played in general by modeling timeouts to detect races in protocols of 
networking systems is discussed in [51]. The problem of equivalence of FSMs with timed 
guards and timeouts is implicitly discussed in  [39], where the equivalence of two complete 
TFSMs is not checked by deriving and comparing the FSM abstractions of the machines, 
rather it is addressed by the use of a so-called distinguishing automaton that in fact is the 
intersection of the TFSMs.
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6 � Conclusions

We investigated deterministic TFSMs with a single clock, with both timed guards and 
timeouts. We showed that the behaviours of the timed FSMs are equivalent if and only if 
the behaviours of the companion untimed FSMs obtained by time-abstracting bisimula-
tions are equivalent, so that they exhibit a good trade-off between expressive power and 
ease of analysis.

Then we defined and proved the correctness of the backward construction from Untimed 
FSMs to TFSMs. The construction starts from any deterministic FSM recognizing a subset 
of the language 

(
(t∕t)∗I∕O

)∗
(t∕t)∗ and builds a deterministic TFSM that recognizes the 

corresponding timed language. Using the two constructions we showed how to intersect 
two deterministic TFSMs, first by transforming them into untimed FSMs, then applying 
the standard intersection algorithm for untimed FSMs, and then transforming back into a 
deterministic TFSM.

The results presented in this paper can be extended along many directions. Here we 
point out some of the most relevant open questions: 

1.	 Find the direct intersection of TFSMs without abstracting time, and compare the direct 
approach based on TFSMs with the one based on time-abstracted FSMs.

2.	 Study the complement operation for TFSMs: can it be done without unfolding the TFSM 
and considering all time instances ?

3.	 Study synchronous and parallel composition of TFSMs to define and solve equations 
over deterministic TFSMs [50].

4.	 Study the previous operations for TFSMs restricted so that all states have the same 
timeout: are the operations on them computationally easier ?

5.	 Study the previous operations for TFSMs extended with output delays [37], where output 
symbols at each transition may be issued with some delay.

6.	 Study the previous operations for non-deterministic TFSMs (NDTFSMs).
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