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Abstract
Runtime monitoring is commonly used to detect the violation of desired properties in
safety critical cyber-physical systems by observing its executions. Bauer et al. introduced
an influential framework for monitoring Linear Temporal Logic (LTL) properties based on
a three-valued semantics for a finite execution: the formula is already satisfied by the given
execution, it is already violated, or it is still undetermined, i.e., it can still be satisfied and
violated by appropriate extensions of the given execution. However, a wide range of formu-
las are not monitorable under this approach, meaning that there are executions for which
satisfaction and violation will always remain undetermined no matter how it is extended. In
particular, Bauer et al. report that 44% of the formulas they consider in their experiments fall
into this category. Recently, a robust semantics for LTL was introduced to capture different
degrees by which a property can be violated. In this paper we introduce a robust semantics
for finite strings and show its potential in monitoring: every formula considered by Bauer et
al. is monitorable under our approach. Furthermore, we discuss which properties that come
naturally in LTLmonitoring—such as the realizability of all truth values—can be transferred
to the robust setting. We show that LTL formulas with robust semantics can be monitored by
deterministic automata, and provide tight bounds on the size of the constructed automaton.
Lastly, we report on a prototype implementation and compare it to the LTL monitor of Bauer
et al. on a sample of examples.

Keywords Runtime monitoring · Robust Linear Temporal Logic

1 Introduction

Runtime monitoring is nowadays routinely used to assess the satisfaction of properties of
systems during their execution. To this end, a monitor, a finite-state device that runs in
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parallel to the system during deployment, evaluates it with respect to a fixed property. This
is especially useful for systems that cannot be verified prior to deployment and, for this
reason, can contain hidden bugs. While it is useful to catch and document these bugs during
an execution of a system, we find that the current approach to runtime verification based on
Linear Temporal Logic (LTL) [14] is not sufficiently informative, especially in what regards
a system’s robustness. Imagine that we are monitoring a property ϕ and that this property is
violated during an execution. In addition to be alerted to the presence of a bug, there are several
other questions we would like to have answered such as: although ϕ was falsified, was there a
weaker version of ϕ that was still satisfied or did the system fail catastrophically? Similarly,
if we consider a property of the form ϕ → ψ , where ϕ is an environment assumption and
ψ is a system guarantee, and the environment violates ϕ slightly along an execution can we
still guarantee that ψ is only slightly violated?

Answering these questions requires a logical formalism for specifying properties that
provides meaning to terms such as weaker and slightly. Formalizing these notions within
temporal logic, so as to be able to reason about the robustness of a system, was the main
impetus behind the definition of robust Linear-time Temporal Logic (rLTL) [58]. While
reasoning in LTL yields a binary result, rLTL adopts a five-valued semantics representing
different shades of violation. Consider, for example, the specification a → b requiring
that b is always satisfied provided a is always satisfied. In LTL, if the premise a is violated
in a single position of the trace, then the specification is satisfied vacuously, eliminating all
requirements on the system regarding b. In this case, rLTL detects a mild violation of the
premise and thus allows for a mild violation of the conclusion.

While recent work covers the synthesis [58] and verification problem [5, 6, 58] for rLTL,
the runtime verification problem is yet to be addressed, except for a preliminary version of
the results in this paper presented in the 2020 International Conference on Hybrid Systems:
Computation and Control [47]. Since runtime verification can only rely on finite traces by
its nature, interesting theoretical questions open up for rLTL with finite semantics. On the
practical side, the very same reasons that make runtime verification for LTL so useful also
motivate the need for developing a finite semantics suitable for rLTL runtime verification. To
this end, we tackle the problem of evaluating a property over infinite traces based on a finite
prefix similarly to Bauer et al. [14]. If the available information is insufficient to declare a
specification violated or satisfied, the monitor reports a ?. This concept is applied to each
degree of violation of the rLTL semantics. Thus, the rLTL monitor’s verdict consists of four
three-valued bits, as the rLTL semantics is based on four two-valued bits. Each bit represents
a degree of violation of the specification in increasing order of severity.

As an example, consider an autonomous drone that may or may not be in a stable state.1

The specification requires that it remains stable throughout the entiremission. However, if the
take-off is shaky due to bad weather, the drone is unstable for the first couple of minutes. An
LTL monitor thus jumps to the conclusion that the specification is violated whereas an rLTL
monitor only reports a partial violation. As soon as the drone stabilizes, the LTL monitor
does not indicate any improvement while the rLTL monitor refines its verdict to also report
a partial satisfaction.

Some interesting properties that come naturallywith LTLmonitoring cannot be seamlessly
lifted to rLTL monitoring. While it is obvious that all three truth values for finite trace LTL,
i.e. , satisfied, violated, and unknown, can be realized for some prefix and formula, the same
does not hold for rLTL. Intuitively, the second and third bit of the rLTL monitor’s four-bit
output for the property a represent whether a eventually holds forever or whether it holds

1 By this we mean, e.g. , that the error in tracking a desired trajectory is below a certain threshold.
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infinitely often, respectively. Based on a prefix, a monitor cannot distinguish between these
two shades of violation, rendering some monitor outputs unrealizable.

In addition to that, we investigate how the level of informedness of an LTLmonitor relates
to the one of an rLTL monitor. The first observation is that a verdict of an LTL monitor
can be refined at most once, from an unknown to either true or false. With rLTL semantics,
however, amonitor can refine its output for a given formula up to four times. Secondly, an LTL
monitor can only deliver meaningful verdicts for monitorable [13] properties. Intuitively, a
property is monitorable if every prefix can be extended by a finite continuation that gives a
definite verdict. We adapt the definition to robust monitoring and show that neither does LTL
monitorability imply rLTL monitorability, nor vice versa.

Notwithstanding the above, empirical data suggests that rLTLmonitoring indeed provides
more information than LTL monitoring: This paper presents an algorithm synthesizing mon-
itors for rLTL specifications. An implementation thereof allows us to validate the approach
by replicating the experiments of Bauer et al. [13]. As performance metric, we use LTL
and rLTL monitorability. While 44% of the formulas considered by Bauer et al. [13] are not
LTL-monitorable, we show all of them to be rLTL-monitorable. This indicates that rLTLmon-
itoring is an improvement over LTL monitoring in terms of monitorability and complements
the theoretical results with a practical validation.

This paper is an extended version of the work presented in the 2020 International Con-
ference on Hybrid Systems: computation and control [47]. The main research contributions
are a finite trace semantics for rLTL coupled with an investigation of its properties when
compared to LTL, as well as an algorithm to synthesize monitors for rLTL specifications.
Our construction is doubly-exponential in the size of the formula, showing that rLTL mon-
itoring is no more costly than LTL monitoring. In addition to the original work [47], this
article features (i) a more detailed discussion of the properties of our finite trace semantics
for rLTL, (ii) a new running example detailing each step of the monitor construction, (iii)
a new example illustrating the nesting of rLTL operators, (iv) refined complexity bounds
on our monitor construction, and (v) all proofs omitted from the conference paper, which
provide important additional insight into the problem of monitoring rLTL properties.

Related work

In runtime verification [22, 35, 42, 49] the specification is often given in LTL [46]. While
properties arguing about the past or current state of a system are alwaysmonitorable [34], LTL
can also express assumptions on the future that cannot be validated using only a finite prefix
of a word. Thus, adaptations of LTL have been proposed which include different notions of
a next step on finite words [24, 45], lifting LTL to a three- or four-valued domain [13, 14],
or applying predictive measures to rule out impossible extensions of words [60].

Non-binary monitoring has also been addressed by adding quantitative measures such as
counting events [9, 48]. Most notably, Bartocci et al. [10] evaluate the “likelihood” that a
satisfying or violating continuation will occur. To this end, for a given prefix, they count how
long a continuation needs to be such that the specification is satisfied/violated; these numbers
are then compared against each other. The resulting verdict is quinary: satisfying/violating,
presumably satisfying/violating, or inconclusive. This approach is similar in nature to our
work as it assesses the degree of satisfaction or violation of a given prefix. However, the
motivation and niche of both approaches differs: Bartocci et al.’s approach computes—
intuitively speaking—the amount of work that is required to satisfy or violate a specification,
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which allows for estimating the likelihood of satisfaction. Our approach, however, focuses
on measuring the extent to which a specification was satisfied or violated.

Apart from that, monitoring tools collecting statistics [1, 4, 30] become increasingly
popular: Snort [55] is a commercial tool for rule-based network monitoring and computing
efficient statistics, Beep Beep 3 [33] is a tool based on a query language allowing for pow-
erful aggregation functions and statistical measures. On the downside, these tools impose
the overhead of running a heavy-weight application on the monitored system. In contrast,
we generate monitor automata out of an rLTL formula. Such an automaton can easily and
automatically be implemented on almost any system with statically determined memory
requirements and negligible performance overhead. Similarly, the Copilot [52] framework
based on synchronous languages [16, 19] transforms a specification in a declarative data-flow
language into a C implementation of a monitor with constant space and time requirements.
Lola [2, 19] allows for more involved computations, also incorporating parametrization [27]
and real-time capabilities [28] while retaining constant space and time requirements.

Another approach is to enrich temporal logics with quantitative measures such as taking
either the edit distance [37], counting the number of possible infinite models for LTL [31,
59], incorporating aggregation expressions into metric first-order temporal logic [11], or
using averaging temporal operators that quantify the degree of satisfaction of a signal for a
specification by integrating the signal w.r.t. a constant reference signal [3].

Rather than enriching temporal logics with such strong quantitativemeasures, we consider
a robust version of LTL: rLTL [5–7, 58]. Robust semantics yields information about to which
degree a trace violates a property. We adapt the semantics to work with finite traces by
allowing for intermediate verdicts. Here, a certain degree of violation can be classified as
“indefinite” and refined when more information becomes available to the monitor. Similarly,
for Signal Temporal Logic [43, 44], Fainekos et al. [25] introduced a notion of spacial
robustness based on interpreting atomic propositions over the real numbers. The sign of
the real number provides information about satisfaction/violation while its absolute value
provides information about robustness, i.e., how much can this value be altered without
changing satisfaction/violation. This approach is complementary to ours since the notion
of robustness in rLTL is related to the temporal evolution of atomic propositions which
are interpreted classically, i.e, over the Booleans. Donze et al. [21] introduced a notion of
robustness closer to rLTL in the sense that it measures how long we need to wait for the truth
value of a formula to change. For this, Cralley et al. [18] presented a convenient toolbox,
achieving high efficiency through parallel evaluation. While the semantics of rLTL does
not allow for quantifying the exact delay needed to change the truth value of a formula, it
allows for distinguishingbetween the influence that different temporal evolutions, e.g., delays,
persistence, and recurrence, have on the truth value of an LTL formula. Closer to rLTL is
the work of Radionova et al. [54] (see also [57]) that established an unexpected connection
between LTL and filtering through a quantitative semantics based on convolution with a
kernel. By using different kernels, one can express weaker or stronger interpretations of the
same formula. However, this requires the user to choose multiple kernels and to use multiple
semantics to reason about how the degradation of assumptions leads to the degradation of
guarantees. In contrast, no such choices are required in rLTL. Finally, it is worth mentioning
that extensions similar to rLTL have been proposed for other temporal logics, such as prompt
LTL and linear dynamic logic [50, 51].

Another venue for robust monitoring is machine learning. Cheng [17] presents an algo-
rithm for generating monitors evaluating the distance between the input of a neural net and
its training data. While neural nets are prone to fragility, the monitor is provably robust in the
sense that minor input deviations invariably lead to minor changes in the output. Similarly,
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Finkbeiner et al. [29] generate monitors for medical cyber-physical systems controlled by
machine learned components. Due to the complexity of the underlying specification lan-
guage, they opt for the simpler task of analyzing the robustness of the specification instead.
If the specification is robust, then so will be the generated monitors.

2 Robust Linear Temporal Logic

Throughout this work, we assume basic familiarity with classical LTL and refer the reader
to a textbook for more details on the logic (see, e.g. , [8]). Moreover, let us fix some finite
set P of atomic propositions throughout the paper and define Σ = 2P . We denote the set of
finite and infinite words over Σ by Σ∗ and Σω, respectively. The empty word is denoted by
ε and � and � denote the non-strict and the strict prefix relation, respectively. Moreover, we
denote the set of Booleans by B = {0, 1}.

The logics LTL and rLTL share the same syntax save for a dot superimposed on temporal
operators. More precisely, the syntax of rLTL is given by the grammar

ϕ:=p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ → ϕ | ϕ | ϕ U ϕ | ϕ R ϕ | ϕ | ϕ,

where p ranges over atomic propositions in P and the temporal operators , U , R ,
and correspond to “next”, “until”, “release”, “eventually”, and “always”, respectively. 2

The size |ϕ| of a formula ϕ is the number of its distinct subformulas. Furthermore, we denote
the set of all LTL and rLTL formulas over P by ΦLTL and ΦrLTL , respectively.

The development of rLTL was motivated by the observation that the difference between
“minor” and “major” violations of a formula cannot be adequately described in a two-valued
semantics. If anLTL formulaϕ, for example, demands that the property p holds at all positions
of a word σ ∈ Σω, then σ violates ϕ even if p does not hold at only a single position, a very
minor violation. The semantics of LTL, however, does not differentiate between the σ above
and a σ ′ in which the property p never holds, a major violation of the property ϕ.

In order to alleviate this shortcoming, Tabuada and Neider introduced Robust Linear-time
Temporal Logic (rLTL) [58], whose semantics allows for distinguishing various “degrees” to
which aword violates a formula.More precisely, the semantics of rLTLare definedover the set
B4 = {0000, 0001, 0011, 0111, 1111} of five truth values, each of which is a monotonically
increasing sequence of four bits. We order the truth values in B4 by 0000 < 0001 < 0011 <

0111 < 1111.
Intuitively, this order reflects increasingly desirable outcomes. If the specification is p,

the least desirable outcome, represented by 0000, is that p never holds on the entire trace.
A slightly more desirable outcome is that p at least holds sometime but not infinitely often,
which results in the value 0001. An even more desirable outcome would be if p holds
infinitely often, while also being violated infinitely often, represented by 0011. Climbing up
the ladder of desirable outcomes, the next best one requires p to hold infinitely often while
being violated only finitely often, represented by the value 0111. Lastly, the optimal outcome
fully satisfies p, so p holds the entire time, represented by 1111. Thus, the first bit states
whether p is satisfied, the second one stands for p, the third one for p,
and the fourth one for p. If all of them are 0, ¬p holds. The robust release is defined
analogously.

2 Note that we include the operators ∧, →, and R explicitly in the syntax as they cannot be derived from
other operators due to the many-valued nature of rLTL. Following the original work on rLTL [58], we also
include the operators and explicitly (which can be derived from U and R , respectively).
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The robust eventually-operator considers future positions in the trace and returns the
truth value with the least degree of violation, which is a maximization with respect to the
order defined above. This closely resembles the LTL definition. The robust until is defined
analogously.

Based on this, the boolean conjunction and disjunction are defined as min and max,
respectively, w.r.t. the order defined above, which generalizes the classical definition thereof.
For the implication, consider a specification a → g, where a is an assumption on
the environment and g is a system guarantee. If the truth value of g is greater or
equal to the one of a, the implication is fully satisfied. Thus, the rLTL semantics takes
the violation of the assumption into account and lowers the requirements on the guarantees.
However, if the guarantee exhibits a greater violation than the assumptions, the truth value of
the implication is the same as the one of the guarantee. Lastly, the intuition behind the negation
is that every truth value that is not 1111 constitutes a violation of the specification. Thus, the
negation thereof is a full satisfaction (1111). The negation of the truth value representing a
perfect satisfaction (1111) is a full violation (0000).

To introduce the semantics, we need some additional notation: for a word σ =
σ(0)σ (1)σ (2) · · · ∈ Σω and a natural number n, define σ [n,∞) = σ(n)σ (n + 1)σ (n +
2) · · · , (i.e. , as the suffix of σ obtained by removing the first n letters of σ ). To be able to
refer to individual bits of an rLTL truth value β ∈ B4, we use β[i] with i ∈ {1, . . . , 4} as to
denote the i-th bit of β.

For the sake of a simpler presentation, we denote the semantics of both LTL and rLTL not
in terms of satisfaction relations but by means of valuation functions. For LTL, the valuation
function V : Σω × ΦLTL → B assigns to each infinite word σ ∈ Σω and each LTL formula
ϕ ∈ ΦLTL the value 1 if σ satisfies ϕ and the value 0 if σ does not satisfy ϕ, and is defined
as usual (see, e.g., [8]). The semantics of rLTL, on the other hand, is more complex and
formalized next by an valuation function Vr : Σω × ΦrLTL → B4 mapping an infinite word
σ ∈ Σω and an rLTL formula ϕ to a truth value in B4.

– Vr (σ, p) =
{
1111 if p ∈ σ(0),

0000 if p /∈ σ(0),

– Vr (σ,¬ϕ) =
{
1111 if Vr (σ, ϕ) 
= 1111,

0000 if Vr (σ, ϕ) = 1111,
– Vr (σ, ϕ1 ∧ ϕ2) = min{Vr (σ, ϕ1), Vr (σ, ϕ2)},
– Vr (σ, ϕ1 ∨ ϕ2) = max{Vr (σ, ϕ1), Vr (σ, ϕ2)},
– Vr (σ, ϕ1 → ϕ2) =

{
1111 if Vr (σ, ϕ1) ≤ Vr (σ, ϕ2),

Vr (σ, ϕ2) if Vr (σ, ϕ1) > Vr (σ, ϕ2),

– Vr (σ, ϕ) = Vr (σ [1,∞), ϕ),
– Vr (σ, ϕ) = β with β[i] = maxn≥0 Vr (σ [n,∞), ϕ)[i] for i ∈ {1, . . . , 4},
– Vr (σ, ϕ) = β with

β[1] = min
n≥0

Vr (σ [n,∞), ϕ)[1],
β[2] = max

m≥0
min
n≥m

Vr (σ [n,∞), ϕ)[2],
β[3] = min

m≥0
max
n≥m

Vr (σ [n,∞), ϕ)[3],
β[4] = max

n≥0
Vr (σ [n,∞), ϕ)[4],

123



176 Formal Methods in System Design (2021) 59:170–204

– Vr (σ, ϕ1 U ϕ2) = β with

β[i] = max
n≥0

min{Vr (σ [n,∞), ϕ2)[i], min
0≤n′<n

Vr (σ [n′,∞), ϕ1)[i]},

for i ∈ {1, . . . , 4},
– Vr (σ, ϕ1 R ϕ2) = β with

β[1] = min
n≥0

max{Vr (σ [n,∞), ϕ2)[1], max
0≤n′<n

Vr (σ [n′,∞), ϕ1)[1]},
β[2] = max

m≥0
min
n≥m

max{Vr (σ [n,∞), ϕ2)[2], max
0≤n′<n

Vr (σ [n′,∞), ϕ1)[2]},
β[3] = min

m≥0
max
n≥m

max{Vr (σ [n,∞), ϕ2)[3], max
0≤n′<n

Vr (σ [n′,∞), ϕ1)[3]}, and

β[4] = max
n≥0

max{Vr (σ [n,∞), ϕ2)[4], max
0≤n′<n

Vr (σ [n′,∞), ϕ1)[4]}.

Soas to not clutter this section toomuch,we refer the reader to the originalworkbyTabuada
and Neider [58] for a thorough introduction and motivation to the preceding semantics.
However, we here want to illustrate the definition above and briefly argue that it indeed
captures the intuition described at the beginning of this section. To this end, we reconsider
the formulas p, a → g, (q → p) in Examples 1, 2, and 3 respectively.

Example 1 Consider the formula p and the following five infinite words over the set
P = {p} of atomic propositions:

σ1 = {p}ω (“p holds always”)

σ2 = ∅{p}ω (“p holds almost always”)

σ3 = (∅{p})ω (“p holds infinitely often”)

σ4 = {p}∅ω (“p holds finitely often”)

σ5 = ∅ω (“p holds never′′)

Let us begin the example with the word σ1 = {p}ω. It is not hard to verify that
Vr (σ1, p)[1] = 1 because p always holds in σ1, i.e., minn≥0 Vr (σ [n,∞), p)[1] = 1
for n ≥ 0. Using the same argument, we also have Vr (σ1, p)[2] = Vr (σ1, p)[3] =
Vr (σ1, p)[4] = 1. Thus, Vr (σ1, p) = 1111.

As another example, consider the word σ2 = ∅{p}ω. In this case, we have
Vr (σ1, p)[1] = 0 because Vr (σ [0,∞), p)[1] = 0 (p does not hold in the first
symbol of σ2). However, Vr (σ1, p)[2] = 1 because p holds almost always, i.e.,
maxm≥0 minn≥m Vr (σ [n,∞), p)[2] = 1. Moreover, Vr (σ1, p)[3] = Vr (σ1, a)[4] =
1 and, therefore, Vr (σ2, p) = 0111. Similarly, we obtain Vr (σ3, p) = 0011,
Vr (σ4, p) = 0001, and Vr (σ5, p) = 0000.

In conclusion, this indeed illustrates that the semantics of the robust always is in accordance
with the intuition provided at the beginning of this section. ��
Example 2 Let us nowconsider themore complex formula a → g,wherewe interpreta
to be an assumption on the environment of a cyber-physical systemand g one of its guarantees.
Moreover, let σ be an infinite word over P = {a, g} such that Vr (σ, a → g) = 1111.
We now distinguish various cases.

First, let us assume that σ is such that Vr (σ, a) = 1111, i.e., a always holds. By
definition of the robust implication and since Vr (σ, a → g) = 1111, this can only
be the case if Vr (σ, g) = 1111. Thus, the formula a → g ensures that if the
environment assumption a always holds, so does the system guarantee g.

123



Formal Methods in System Design (2021) 59:170–204 177

Next, assume thatσ is such thatVr (σ, a) = 0111, i.e.,a does not alwaysholdbut almost
always. By definition of the robust implication and since Vr (σ, a → g) = 1111, this
can only be the case if Vr (σ, g) ≥ 0111. In this case, the formula a → g ensures
that if the environment assumption a holds almost always, then the system guarantee g holds
almost always or—even better—always.

It is not hard to verify that we obtain similar results for the cases Vr (σ, a) ∈
{0011, 0001, 0000}. In other words, the semantics of rLTL ensures that the violation of the
system guarantee g is always proportional to the violation of the environment assumption a
(given that Vr (σ, a → g) evaluates to 1111). Again, this illustrates that the semantics
of the implication is in accordance with the intuition provided at the beginning of this section.

��

Example 3 As a last example, let us discuss the nesting of temporal operators. Consider the
formula ϕ = (q → p) where we interpret q as a request and p as a response.

We have Vr (σ [n,∞), p) = 1111 if σ [n,∞) contains a response, otherwise we have
Vr (σ [n,∞), p) = 0000. Similarly, we have Vr (σ [n,∞), q → p) = 1111 if q ∈
σ(n) implies that σ [n,∞) contains a response. On the other hand, if q ∈ σ(n) and σ [n,∞)

does not contain a response then we have Vr (σ [n,∞), q → p) = 0000.
From these observations, we can deduce Vr (σ, ϕ) = 1111 if every request in σ is followed

by a response, which is equivalent to the LTL formula ϕ1 = (q → p) that expresses a
request-response property. Further, we have Vr (σ, ϕ) = 0111 if and only if σ violates ϕ1 and
if from some point onwards, every request in σ is followed by a response. This is equivalent
to the LTL formula ¬ϕ1 ∧ ϕ2 with ϕ2 = ( q) → ( p), which expresses strong
fairness. Similarly, we have Vr (σ, ϕ) = 0011 if and only if σ violates ϕ2 and if for infinitely
many positions, if there is a request in σ at that position, then it is followed by a response.
This is equivalent to the LTL formula ¬ϕ2 ∧ϕ3 with ϕ3 = ( q) → ( p), which
expresses weak fairness. Moreover, we have Vr (σ, ϕ) = 0001 if and only if σ violates ϕ3 and
if there is some position such that if there is a request in σ at that position, then it is followed
by a response. This is equivalent to the LTL formula¬ϕ3 ∧ϕ4 with ϕ4 = ( q) → ( p),
which expresses a very weak notion of fairness. Finally, we have Vr (σ, ϕ) = 0000 if and
only if σ violates ϕ4.

For i ∈ {1, 2, 3}, the LTL formula ϕi implies ϕi+1. Thus, if a trace σ violates ϕi+1, it also
violates ϕi . This further illustrates the monotonicity of rLTL. This monotonicity also allows
us to only require that ϕi+1 violates ϕi in the intuitive explanations above, instead of having
to require violations of all ϕi ′ with i ′ ≤ i . ��

It is important to note that rLTL is an extension of LTL. In fact, the LTL semantics can be
recovered from the first bit of the rLTL semantics (after every implication ϕ → ψ has been
replaced with ¬ϕ ∨ ψ).3

Lemma 1 ([58], Proposition 5) Let ϕ be an LTL formula without implications, and let ϕ′ be
the corresponding rLTL formula (obtained by dotting all temporal operators). Then, we have
Vr (σ, ϕ′)[1] = V (σ, ϕ) for every trace σ .

3 It turns out that Tabuada and Neider’s original proof [58, Proposition 5] has a minor mistake. Although
the first bit of the rLTL semantics coincides with the original LTL semantics for all formulas that do not
contain implications, the formula ¬a → a is an example witnessing this claim is no longer correct in
the presence of implications, e.g., for {a}∅ω . However, this issue can be fixed by replacing every implication
ϕ →ψ with ¬ϕ ∨ψ . This substitution results in an equivalent LTL formula for which the first bit of the rLTL
semantics indeed coincides with the LTL semantics.
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Table 1 The function ltl : {1, . . . , 4} × ΦrLTL → ΦLTL

Operator Symbol Semantics (ϕ, ψ ∈ ΦrLTL)

Atomic proposition p ∈ P 1 ≤ i ≤ 4: ltl(i, p) = p

Negation ¬ 1 ≤ i ≤ 4: ltl(i, ¬ϕ):=¬ltl(1, ϕ)

Disjunction ∨ 1 ≤ i ≤ 4: ltl(i, ϕ ∨ ψ):=ltl(i, ϕ) ∨ ltl(i, ψ)

Conjunction ∧ 1 ≤ i ≤ 4: ltl(i, ϕ ∧ ψ):=ltl(i, ϕ) ∧ ltl(i, ψ)

Implication → 1 ≤ i ≤ 3: ltl(i, ϕ → ψ):=(ltl(i, ϕ) → ltl(i, ψ)) ∧ ltl(i + 1, ϕ → ψ);

ltl(4, ϕ → ψ):=ltl(4, ϕ) → ltl(4, ψ)

Robust next 1 ≤ i ≤ 4: ltl(i, ϕ):= ltl(i, ϕ)

Robust eventually 1 ≤ i ≤ 4: ltl(i, ϕ):= ltl(i, ϕ)

Robust always ltl(1, ϕ):= ltl(1, ϕ);ltl(2, ϕ):= ltl(2, ϕ);

ltl(3, ϕ):= ltl(3, ϕ);ltl(4, ϕ):= ltl(4, ϕ)

Robust until U 1 ≤ i ≤ 4:ltl(i, ϕ U ψ):=ltl(i, ϕ) U ltl(i, ψ)

Robust release R ltl(1, ϕ R ψ):=ltl(1, ϕ) R ltl(1, ψ);

ltl(2, ϕ R ψ):= ltl(2, ψ) ∨ ltl(2, ϕ);

ltl(3, ϕ R ψ):= ltl(3, ψ) ∨ ltl(3, ϕ);

ltl(4, ϕ R ψ):= ltl(4, ψ) ∨ ltl(4, ϕ)

To reduce the number of cases we have to consider in our inductive proofs (for instance
the one for Lemma 3), we note that the robust eventually and the robust always operator are
syntactic sugar. Formally, we say that two rLTL formulas ϕ1, ϕ2 are equivalent if Vr (σ, ϕ1) =
Vr (σ, ϕ2) for every σ ∈ Σω. Now, let � = p ∨ ¬p and ⊥ = p ∧ ¬p for some atomic
proposition p. Then, the robust eventually and the robust always are, as usual, expressible in
terms of the robust until and the robust release, respectively.

Remark 1 1. ϕ and � U ϕ are equivalent.
2. ϕ and ⊥ R ϕ are equivalent.

2.1 An alternative definition of robust semantics for LTL

Before we introduce rLTL monitoring, we need to introduce an alternative definition of the
semantics of rLTL, which is more convenient to prove some of the results from Sect. 3. This
alternative definition has been introduced in later works on rLTL [5, 6].

Definition 1 Let the function ltl : {1, . . . , 4} × ΦrLTL → ΦLTL be inductively defined as in
Table 1. The rLTL semantics is then given as the valuation function Vr : Σω × ΦrLTL → B4,
where for every σ ∈ Σω, every rLTL formula ϕ, and every i ∈ {1, . . . , 4}, the i-th bit
of Vr (σ, ϕ) is defined as Vr (σ, ϕ)[i] = V

(
σ, ltl(i, ϕ)

)
(i.e. , via the semantics of the LTL

formulas ltl(i, ϕ)).

As a consequence of Lemma 1 (cf. [58], Proposition 5), we know that rLTL is at least as
expressive as LTL. The latter definition of the semantics of rLTL shows that it is not more
expressive than LTL, in the sense that for all rLTL formulas there exist LTL formulas giving
the truth values of each of the four bits. However, it is more convenient to work with one
formula of rLTL than to work with the four LTL formulas capturing it.

A useful feature of the alternative semantics is the following property: to determine the
truth value of an rLTL formula ϕ on σ , it suffices to determine the truth values of the LTL
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formulas ltl(i, ϕ) on σ . For certain formulas, ltl(i, ϕ) is obtained from ϕ by a very simple
rewriting, as shown below.

Remark 2 Let ϕ be an rLTL formula that has no always in the scope of a negation and only
uses negation, conjunction, disjunction, next, eventually, and always. Then,

– ltl(1, ϕ) is equivalent to the formula obtained from ϕ by replacing every by , every
by , and every by ,

– ltl(2, ϕ) is equivalent to the formula obtained from ϕ by replacing every by , every
by , and every by ,

– ltl(3, ϕ) is equivalent to the formula obtained from ϕ by replacing every by , every
by , and every by , and

– ltl(4, ϕ) is equivalent to the formula obtained from ϕ by replacing every by , every
by , and every by .

3 Monitoring robust LTL

In their work on LTL monitoring, Bauer et al. [14] define the problem of runtime monitoring
as “check[ing] LTL properties given finite prefixes of infinite [words]”. More formally, given
some prefix u ∈ Σ∗ and some LTL formula ϕ, it asks whether all, some, or no infinite
extension uσ ∈ Σω of u by some σ ∈ Σω satisfies ϕ. To reflect these three possible results,
the authors use the set B? = {0, ?, 1} to define a three-valued logic that is syntactically
identical to LTL, but equipped with a semantics in form of an evaluation function V m : Σ∗ ×
ΦLTL → B

? over finite prefixes. This semantics is defined such that V m(u, ϕ) is equal to 0
(is equal to 1) if no (if every) extension uσ of u satisfies ϕ. If neither is the case, i.e. , if there
is an extension of u that satisfies ϕ and there is an extension of u that does not satisfy ϕ, then
V m(u, ϕ) is equal to ?.

We aim to extend the approach of Bauer et al. to rLTL, whose semantics is based on truth
values from the set B4 (containing the sequences of length four in 0∗1∗). As a motivating
example, let us consider the formula ϕ = s for some atomic proposition s and study
which situations can arise when monitoring this formula. Note that the truth value of ϕ can
be obtained by concatenating the truth values of the LTL formulas ϕ1 = s, ϕ2 = s,
ϕ3 = s, and ϕ4 = s.

First, consider the empty prefix and its two extensions ∅ω and {s}ω. We have Vr (∅ω, ϕ) =
0000 and Vr ({s}ω, ϕ) = 1111. Thus, all four bits can both be equal to 0 and 1. This situation
is captured by the sequence ???? which signifies that for every position i and every bit b ∈ B,
there exists an extension of ε that has bit b in the i-th position of the truth value with respect
to ϕ.

Now, consider the prefix {s} for which we have Vr ({s}σ, ϕ)[4] = 1 for every σ ∈ Σω as
ϕ4 = s is satisfied on each extension of {s} (s has already occurred). On the other hand,
Vr ({s}∅ω, ϕ) = 0001 and Vr ({s}{s}ω, ϕ) = 1111, i.e. , the first three bits can both be 0 and 1
by picking an appropriate extension. Hence, the situation is captured by the sequence ???1,
signifying that the last bit is determined by the prefix, but the first three are not. Using dual
arguments, the sequence 0??? is used for the prefix ∅, signifying that the first bit is determined
by the prefix as every extension violates ϕ1 = s. However, the last three bits are not yet
determined by the prefix, hence the trailing ?’s.

Finally, consider the prefix {s}∅.Using the same arguments as for the previous twoprefixes,
we obtain Vr ({s}∅σ, ϕ)[1] = 0 and Vr ({s}∅σ, ϕ)[4] = 1 for every σ ∈ Σω. Also, as before,
we have Vr ({s}∅∅ω, ϕ) = 0001 and Vr ({s}∅{s}ω, ϕ) = 0111. Hence, here we obtain the
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sequence 0??1 signifying that the first and last bit are determined by the prefix, but the
middle two are not.

In general, we use truth values of the form 0∗?∗1∗, which follows from the fact that the
truth values of rLTL are in 0∗1∗. Hence, let B?

4 denote the set of sequences of length four in
0∗?∗1∗. Based on B

?
4, we now formally define the rLTL monitoring semantics as a bitwise

generalization of the LTL definition.

Definition 2 The semantics of the robust monitor V m
r : Σ∗ × ΦrLTL → B

?
4 is defined as

V m
r (u, ϕ) = β with

β[i] =

⎧⎪⎨
⎪⎩
0 if Vr (uσ, ϕ)[i] = 0 for all σ ∈ Σω;
1 if Vr (uσ, ϕ)[i] = 1 for all σ ∈ Σω; and

? otherwise,

for every i ∈ {1, . . . , 4}, every rLTL formula ϕ, and every u ∈ Σ∗.

First, let us remark that our notion of rLTL monitoring indeed refines the notion of LTL
monitoring, which follows immediately from Lemma 1.

Remark 3 Let ϕ be an LTL formula without implications, and let ϕ′ be the corresponding
rLTL formula (obtained by dotting all temporal operators). Then, we have V m

r (u, ϕ′)[1] =
V m(u, ϕ) for every u ∈ Σ∗.

Using rLTL monitoring semantics, we are able to infer information about the infinite
run of a system after having read only a finite prefix thereof. In fact, this robust semantics
provides far more information about the degree of violation of the specification than classical
LTL monitoring as each bit of the monitoring output represents a degree of violation of
the specification: a ? turning into a 0 or 1 indicates a deterioration or improvement in the
system’s state, respectively. Consider, for instance, an autonomous drone with specification
ϕ = s where s denotes a state of stable flight (recall the motivating example on Page 11).
Initially, themonitor would output ???? due to a lack of information. If taking off under windy
conditions, the state s is not reached initially, hence themonitor issues awarning by producing
V m

r (∅n, ϕ) = 0??? for every n > 0. Thus, the safety condition is violated temporarily, but
not irrecoverably. Hence, mitigation measures can be initiated. Upon success, the monitoring
output turns into V m

r (∅n{s}, ϕ) = 0??1 for every n > 0, signaling that flight was stable for
some time.

Before we continue, let us first state that the new semantics is well-defined, i.e. , that the
sequence β[1]β[2]β[3]β[4] in Definition 2 is indeed in B

?
4.

Lemma 2 V m
r (u, ϕ) ∈ B

?
4 for every rLTL formula ϕ and every u ∈ Σ∗.

Proof Let V m
r (u, ϕ)[i] = 0 and j < i . By definition of V m

r , we have Vr (uσ, ϕ)[i] = 0 for
every σ ∈ Σω. Hence, due to the monotonicity of the truth values from B4 used to define
Vr , we obtain Vr (uσ, ϕ)[ j] = 0 for every such σ . Hence, V m

r (u, ϕ)[ j] = 0.
A dual argument shows that V m

r (u, ϕ)[i] = 1 and j > i implies V m
r (u, ϕ)[ j] = 1.

Combining both properties yields V m
r (u, ϕ) ∈ 0∗?∗1∗, i.e. , V m

r (u, ϕ) ∈ B
?
4. ��

After having shown that every possible output of V m
r is in B

?
4, the next obvious question

is whether V m
r is surjective, i.e. , whether every truth value β ∈ B

?
4 is realized by some

prefix u ∈ Σ∗ and some rLTL formula ϕ in the sense that V m
r (u, ϕ) = β. Recall the

motivating example above: The formula s realizes at least the following four truth values:
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Table 2 Realizable truth values. For every truth value β, the next two columns show prefixes u and formulas
ϕ such that V m

r (u, ϕ) = β, or that β is unrealizable

Value Prefix Formula Value Prefix Formula

0000 ε a ∧ ¬a 0?11 ∅{a} a ∨ ¬a

000? ε a ∧ ¬ a 0111 ∅{a} a R a

0001 unrealizable ???? ε a

00?? ε a ∧ ¬a ???1 {a} a

00?1 ∅{a} a ∧ ¬a ??11 ε a ∨ ¬ a

0011 unrealizable ?111 ε a ∨ ¬ ¬ ¬a

0??? ∅ a 1111 ε a ∨ ¬a

0??1 ∅{a} a

???? (on ε), ???1 (on {s}), 0??? (on ∅), and 0??1 (on {s}∅). It is not hard to convince oneself
that these are all truth values realized by s as they represent the following four types of
prefixes that can be distinguished: the prefix is empty (truth value ????), the prefix is in {s}+
(truth value ???1), the prefix is in ∅+ (truth value 0???), or the prefix contains both an {s}
and an ∅ (truth value 0??1).

For most other truth values, it is straightforward to come up with rLTL formulas and
prefixes that realize them.SeeTable 2 for anoverviewand recallRemark2,which is applicable
to all these formulas.

For others, such as 0011, it is much harder. Intuitively, to realize 0011, one needs to find
an rLTL formula ϕ and a prefix u ∈ Σ∗ such that the formula obtained by replacing all
in ϕ by is not satisfied by any extension of u, but the formula obtained by replacing
all in ϕ by is satisfied by every extension of u.4 Thus, intuitively, the prefix has to
differentiate between a property holding almost always and holding infinitely often. It turns
out that no such u and ϕ exist. A similar argument is true for 0001, leading to the following
theorem.

Theorem 1 All truth values except for 0011 and 0001 are realizable.

The unrealizability results for the truth values 0011 and 0001 are based on the following
technical lemma (the reader might want to skip the proof for now and consult it at a later
time).

Lemma 3 Let ϕ be an rLTL formula. Then, the following holds:

1. Vr (u∅ω, ϕ)[2] = Vr (u∅ω, ϕ)[3] for all u ∈ Σ∗.
2. Vr (uω, ϕ)[3] = Vr (uω, ϕ)[4] for all non-empty u ∈ Σ∗.
3. If ϕ does not contain the release operator, then Vr (uω, ϕ)[1] = Vr (uω, ϕ)[2] for all

non-empty u ∈ Σ∗.

Proof The proofs of all three items proceed by induction over the construction of ϕ. The
induction start and the induction steps for Boolean connectives can be abstracted into the
following closure property, which follows easily from the original definition of Vr in Sect. 2:

4 Note that this intuition breaks down in the presence of implications and negation, due to their non-standard
definitions.
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Let T ⊆ B4 contain 0000 and 1111. If Vr (σ, ϕ1) and Vr (σ, ϕ2) are in T , then so are
Vr (σ, p) for atomic propositions p, Vr (σ,¬ϕ1), Vr (σ, ϕ1 ∧ ϕ2), Vr (σ, ϕ1 ∨ ϕ2), and
Vr (σ, ϕ1 → ϕ2).

Claim 1 The induction start and the induction step for the Boolean operators follow from
the closure property, where we pick T to be the set of truth values from B4 whose second
and third bit coincide. Furthermore, due to Remark 1, we only have to consider the inductive
steps for the next, until, and release operator. All three cases rely on the following simple
fact: A suffix u∅ω[n,∞) for some n is again of the form u′∅ω, i.e. , the induction hypothesis
is applicable to suffixes. Also, if n ≥ |u|, then u∅ω[n,∞) = ∅ω. In particular, u∅ω has only
finitely many distinct suffixes.

So, first consider a formula of the form ϕ = ϕ1. Then, we have, for an arbitrary u ∈ Σ∗,

Vr (u∅ω, ϕ)[2] =Vr (u∅ω[1,∞), ϕ1)[2]
=Vr (u∅ω[1,∞), ϕ1)[3] = Vr (u∅ω, ϕ)[3],

where the second equality is due to the induction hypothesis being applied to the suffix
u∅ω[1,∞).

Next, consider a formula of the formϕ = ϕ1 U ϕ2. Then,wehave, for an arbitraryu ∈ Σ∗,

Vr (u∅ω, ϕ)[2]
= max

n≥0
min{Vr (u∅ω[n,∞), ϕ2)[2], min

0≤n′<n
Vr (u∅ω[n′,∞), ϕ1)[2]}

= max
n≥0

min{Vr (u∅ω[n,∞), ϕ2)[3], min
0≤n′<n

Vr (u∅ω[n′,∞), ϕ1)[3]}
= Vr (u∅ω, ϕ)[3],

where the second equality follows from an application of the induction hypothesis to the
suffixes u∅ω[n,∞) and u∅ω[n′,∞).

It remains to consider a formula of the form ϕ = ϕ1 R ϕ2. Then, we have, for an arbi-
trary u ∈ Σ∗, that Vr (u∅ω, ϕ)[2] is by definition equal to

max
m≥0

min
n≥m

max{Vr (u∅ω[n,∞), ϕ2)[2], max
0≤n′<n

Vr (u∅ω[n′,∞), ϕ1)[2]}
= max

m≥0
min
n≥m

max{Vr (u∅ω[n,∞), ϕ2)[3], max
0≤n′<n

Vr (u∅ω[n′,∞), ϕ1)[3]}
= max

m≥|u|min
n≥m

max{Vr (u∅ω[n,∞), ϕ2)[3], max
0≤n′<n

Vr (u∅ω[n′,∞), ϕ1)[3]}
= max

m≥|u|min
n≥m

max{Vr (∅ω, ϕ2)[3], max
0≤n′≤|u|

Vr (u∅ω[n′,∞), ϕ1)[3]}
= max{Vr (∅ω, ϕ2)[3], max

0≤n′≤|u|
Vr (u∅ω[n′,∞), ϕ1)[3]},

The first equality follows from twice applying the induction hypothesis. For the second one,
observe that

min
n≥m

max{Vr (u∅ω[n,∞), ϕ2)[3], max
0≤n′<n

Vr (u∅ω[n′,∞), ϕ1)[3]}

is increasing in m. For the third one, note that for all n ≥ |u|, u∅ω[n,∞) = ∅ω, which
means that we have eliminated every occurrence of m and n. This explains the last equality.
Similarly, Vr (u∅ω, ϕ)[3] is by definition equal to

min
m≥0

max
n≥m

max{Vr (u∅ω[n,∞), ϕ2)[3], max
0≤n′<n

Vr (u∅ω[n′,∞), ϕ1)[3]}
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= max{Vr (∅ω, ϕ2)[3], max
0≤n′≤|u|

Vr (u∅ω[n′,∞), ϕ1)[3]},

where the equality again follows from all suffixes u∅ω[n,∞) with n ≥ |u| being equal to
∅ω. Thus, we have derived the desired equality between Vr (u∅ω, ϕ)[2] and Vr (u∅ω, ϕ)[3].
Claim 2 The induction start and the induction steps for Boolean operators follow from
the closure property, where we here pick T to be the set of truth values from B4 whose
third and fourth bit coincide. For u = u(0) · · · u(|u| − 1) and n < |u|, we define
ρ(u, n) = u(n) · · · u(|u| − 1)u(0) · · · u(n − 1), i.e. , ρ(u, n) is obtained by “rotating” u
n times. The induction steps for the temporal operators are based on the following simple
fact: The suffix uω[n,∞) is equal to (ρ(u, n mod |u|))ω, i.e. , the induction hypothesis is
applicable to the suffixes. In particular, uω has only finitely many distinct suffixes, which all
appear infinitely often in a cyclic order.

Now, the induction steps for the next and until operator are analogous to their counterparts
in Item 1, as the only property we require there is that the induction hypothesis is applicable
to suffixes. Hence, due to Remark 1, it only remains to consider the inductive step for the
release operator.

So consider a formula of the form ϕ = ϕ1 R ϕ2. Then, we have, for an arbitrary u ∈ Σ∗,
that Vr (uω, ϕ)[3] is by definition equal to

min
m≥0

max
n≥m

max{Vr (u
ω[n,∞), ϕ2)[3], max

0≤n′<n
Vr (u

ω[n′,∞), ϕ1)[3]}
= min

m≥0
max
n≥m

max{Vr (u
ω[n,∞), ϕ2)[4], max

0≤n′<n
Vr (u

ω[n′,∞), ϕ1)[4]}
= max

0≤n<|u|max{Vr ((ρ(u, n))ω, ϕ2)[4], max
0≤n′<n

Vr ((ρ(u, n′))ω, ϕ1)[4]},

where the first equality follows from twice applying the induction hypothesis and the second
one is due to all suffixes uω[n,∞) being equal to ρ(u, n mod |u|)ω, and that there are only
finitely many, which all appear infinitely often in a cyclic order among the (ρ(u, n))ω for
0 ≤ n < |u|.

Similarly, Vr (uω, ϕ)[4] is by definition equal to

max
n≥0

max{Vr (u
ω[n,∞), ϕ2)[4], max

0≤n′<n
Vr (u

ω[n′,∞), ϕ1)[4]}
= max

0≤n<|u|max{Vr ((ρ(u, n))ω, ϕ2)[4], max
0≤n′<n

Vr ((ρ(u, n′))ω, ϕ1)[4]},

where the equality again follows from all suffixes uω[n,∞) being equal to ρ(u, n mod |u|)ω,
and that there are only finitely many, which appear in a cyclic order: In particular, after the
first |u| suffixes, we have seen all of them. Thus, we have derived the desired equality between
Vr (uω, ϕ)[3] and Vr (uω, ϕ)[4].
Claim 3 The induction start and the induction steps for Boolean operators are covered by the
closure property, where we here pick T to be the set of truth values from B4 whose first and
second bit coincide. The cases of the next and until operator are again analogous to the first
and second item. Hence, we only have to consider the inductive step for the always operator,
as we here only consider formulas without release.

So, consider a formula of the form ϕ = ϕ1. Here, we again rely on the fact that the
suffix uω[n,∞) is equal to (ρ(u, n mod |u|))ω. By definition, Vr (uω, ϕ)[1] is equal to
min
n≥0

Vr (u
ω[n,∞), ϕ1)[1] = min

n≥0
Vr (u

ω[n,∞), ϕ1)[2] = min
0≤n<|u| Vr ((ρ(u, n))ω, ϕ1)[2],
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where the first equality is due to the induction hypothesis and the second one due to the fact
that uω has only finitely many suffixes, which are all already realized by some uω[n,∞) for
0 ≤ n < |u|.

Similarly, Vr (uω, ϕ)[2] is by definition equal to

max
m≥0

min
n≥m

Vr (u
ω[n,∞), ϕ1)[1] = max

m≥0
min
n≥m

Vr (u
ω[n,∞), ϕ1)[2]

= min
0≤n<|u| Vr ((ρ(u, n))ω, ϕ1)[2],

where the two equalities follow as before: the first by induction hypothesis and the second
one by the fact that uω has only finitely many suffixes, which all appear infinitely often in a
cyclic order and which are all already realized by some uω[n,∞) for 0 ≤ n < |u|. Thus, we
have derived the desired equality between Vr (uω, ϕ)[1] and Vr (uω, ϕ)[2]. ��

Now, we are able to prove Theorem 1.

Proof We begin by showing that 0011 and 0001 are not realizable.
First, towards a contradiction, assume there is an rLTL formula ϕ and a prefix u such that

V m
r (u, ϕ) = 0011, i.e. , for every extension uσ , we have Vr (uσ)[2] = 0 and Vr (uσ)[3] = 1.

However, by picking σ = ∅ω we obtain the desired contradiction to Lemma 3.1.
The proof for 0001 is similar. Assume there is an rLTL formula ϕ and a prefix u such

that V m
r (u, ϕ) = 0001. Due to Lemma 4, we can assume that u is non-empty. Thus, we have

Vr (uω, ϕ) = 0001 by definition of V m
r , which contradicts Lemma 3.2.

Finally, applying Lemma 3.3, one can show that no rLTL formula without the release
operator realizes 0111. However, we show below that it is realizable by a formula with the
release operator.

Next, we show that every other truth value β /∈ {0011, 0001} is indeed realizable. The
witnessing pairs of prefixes and formulas are presented in Table 2.

First, consider β = 0111 with prefix u = ∅{a} and formula ϕ = a R a. We have
ltl(1, ϕ) = a R a and ltl(2, ϕ) = a ∨ a. Note that a R a is violated by uσ ,
for every σ ∈ Σω. Dually, a ∨ a is satisfied by uσ , for every σ ∈ Σω. Hence,
for arbitrary σ ∈ Σω, we have Vr (uσ, ϕ)[1] = 0 and Vr (uσ, ϕ)[2] = 1. Hence, we have
Vr (uσ, ϕ) = 0111 for every σ , as this is the only truth value that matches this pattern. Hence,
by definition, we obtain V m

r (u, ϕ) = 0111.
The verification for all other truth values is based on Remark 2, which is applicable to all

formulas ϕ in the third column witnessing the realization of a truth value β 
= 0111. Now, for
every such truth value β and corresponding pair (u, ϕ), one can easily verify the following:

– If β[i] = 0, then no uσ satisfies ltl(i, ϕ).
– If β[i] = 1, then every uσ satisfies ltl(i, ϕ).
– If β[i] =?, then there are σ, σ ′ such that uσ satisfies ltl(i, ϕ) and such that uσ ′ violates

ltl(i, ϕ). In all such cases, σ, σ ′ ∈ {∅ω, {a}ω, {a}∅ω,∅{a}ω, ({a}∅)ω} suffice.
We leave the details of this slightly tedious, but trivial, verification to the reader. ��

As shown in Table 2, all of the realizable truth values except for 0111 are realized by
formulas using only conjunction, disjunction, negation, eventually, and always. Further, 0111
can only be realized by a formula with the release operator while the truth values 0011 and
0001 are indeed not realizable at all.

Note that the two unrealizable truth values 0011 and 0001 both contain a 0 that is directly
followed by a 1. The proof of unrealizability formalizes the intuition that such an “abrupt”
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transition from definitive violation of a property to definitive satisfaction of the property
cannot be witnessed by any finite prefix. Finally, the only other truth value of this form,
0111, is only realizable by using a formula with the release operator.

Going again back to the motivating example s, consider the evolution of the truth
values on the sequence ε, {s}, {s}∅: They are ????, ???1, and 0??1, i.e. , 0’s and 1’s are stable
when extending a prefix, only a ? may be replaced by a 0 or a 1. This property holds in
general. To formalize this, say that β ′ ∈ B

?
4 is more specific than β ∈ B

?
4, written as β � β ′,

if, for all i , β[i] 
= ? implies β ′[i] = β[i].

Lemma 4 Let ϕ be an rLTL formula and u, u′ ∈ Σ∗. If u � u′, then V m
r (u, ϕ) � V m

r (u′, ϕ).

Proof Let u � u′ and assume we have V m
r (u, ϕ)[i] ∈ {0, 1}. Thus, by definition,

Vr (uσ, ϕ)[i] = V m
r (u, ϕ)[i] for every σ ∈ Σω. Now, as u is a prefix of u′, we can decompose

u′ into u′ = uv for some v ∈ Σ∗ and every extension u′σ ′ of u′ is the extension uvσ ′ of u.
Hence, we have Vr (u′σ ′, ϕ)[i] = Vr (uvσ ′, ϕ)[i] = V m

r (u, ϕ)[i] for every σ ′ ∈ Σω. Thus,
V m

r (u′, ϕ)[i] = V m
r (u, ϕ)[i].

As this property holds for every i , we obtain V m
r (u, ϕ) � V m

r (u′, ϕ). ��

Let us discuss two properties of the semantics: impartiality and anticipation [20]. Impar-
tiality states that a definitive verdict will never be revoked: If V m

r (u, ϕ)[i] 
= ?, then for all
finite extensions v ∈ Σ∗, the verdict will not change, so V m

r (uv, ϕ)[i] = V m
r (u, ϕ)[i]. This

property follows immediately from Lemma 4. Anticipation requires that a definitive verdict
is decided as soon as possible, i.e. , if V m

r (u, ϕ)[i] = ?, then u can still be extended to satisfy
and to violate ϕ with the i-th bit. Formally, there have to exist infinite extensions σ0 and
σ1 such that Vr (uσ0, ϕ)[i] = 0 and Vr (uσ1, ϕ)[i] = 1. Anticipation holds by definition of
V m

r (u, ϕ).
Due to Lemma 4, for a fixed formula, the prefixes of every infinite word can assume at

most five different truth values, which are all of increasing specificity. It turns out that this
upper bound is tight. To formalize this claim, we denote the strict version of � by ≺, i.e. ,
β ≺ β ′ if and only if β � β ′ and β 
= β ′.

Lemma 5 There is an rLTL formula ϕ and prefixes u0 � u1 � u2 � u3 � u4 such that
V m

r (u0, ϕ) ≺ V m
r (u1, ϕ) ≺ V m

r (u2, ϕ) ≺ V m
r (u3, ϕ) ≺ V m

r (u4, ϕ).

Proof Consider the sequence β0, . . . , β4 with β j = 0 j?4− j and note that we have β j ≺ β j+1

for every j < 4. Furthermore, let u j = ∅ j for j ∈ {0, . . . , 4}. We construct a formula ϕ such
that V m

r (u j , ϕ) = β j for every j ∈ {0, . . . , 4}.
To this end, let

– ψβ1 = (a ∧ ¬ a),
– ψβ2 = (a ∧ ¬a) ∧ ¬ ¬ a, and
– ψβ3 = a ∧ ¬ a.

Later, we rely on the following fact about these formulas, which can easily be shown by
applying Remark 2: we have V m

r (u, ψβ j ) = β j for every prefix u.
Further, for j ∈ {0, 1, 2, 3}, let ψ j be a formula that requires the proposition a to be

violated at the first j −1 positions, but to hold at the j-th position (recall that we start counting
at zero), i.e. , ψ j = (

∧
0≤ j ′< j

j ′ ¬a) ∧ j a. Here, we define the nesting of next operators

as usual: 0 ξ = ξ and j+1 ξ = j ξ . By definition, we have Vr (∅ j+1σ,ψ j ) = 0000
for every σ ∈ Σω (†).
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Now, we define

ϕ = ψ0 ∨
3∨

j=1

(
ψβ j ∧ ψ j

)
and claim that it has the desired properties. To this end, we note that property (†) implies
Vr (∅4σ, ϕ) = 0000 for every σ ∈ Σω (††), as every disjunct of ϕ contains a conjunct of the
form ψ j for some j ≤ 3. Also, let us mention that Remark 2 is applicable to ϕ.

It remains to prove V m
r (u j , ϕ) = β j for every j ∈ {0, . . . , 4}.

– For j = 0, we have u0 = ε and β0 = ????. Hence, it suffices to present σ0, σ1 ∈ Σω

such that Vr (σ0, ϕ) = 0000 and Vr (σ1, ϕ) = 1111.
Due to property (††), we can pick σ0 = ∅ω. To conclude, we pick σ1 = {a}ω, as we have

Vr (σ1, ϕ) ≥ Vr (σ1, ψ0) = Vr ({a}ω, a) = 1111,

where the first inequality follows from ψ0 being a disjunct of ϕ.
– For j = 1, we have u1 = ∅ and β1 = 0???. To show V m

r (u1, ϕ) = β1, it suffices to
present σ0, σ1 ∈ Σω such that Vr (u1σ0, ϕ) = 0000, Vr (u1σ1, ϕ) = 0111, and show that
Vr (u1σ, ϕ)[1] = 0 for every σ ∈ Σω. First, we again pick σ0 = ∅ω due to property (††).
Now, consider σ1 = {a}ω. Then,

Vr (u1{a}ω,ψβ j ∧ ψ j ) = min{Vr (u1{a}ω,ψβ j ), Vr (u1{a}ω,ψ j )}
= min{0111, 1111} = 0111,

whereVr (u1{a}ω,ψβ j ) = 0111 can easily be verified usingRemark 2. To conclude, using
Remark 2, one can easily verify that ltl(1, ϕ) is not satisfied by u1σ for any σ ∈ Σω.

– The reasoning for j = 2, 3 is along the same lines as the one for j = 1 and is left to the
reader.

– For j = 4, we have u4 = ∅∅∅∅ and β4 = 0000. Hence, our claim follows directly from
property (††), which shows Vr (u4σ, ϕ) = 0000 for every σ ∈ Σω.

��
After determining how many different truth values can be assumed by prefixes of a single

infinite word, an obvious question is howmany truth values can be realized by a fixed formula
on different prefixes. It is not hard to combine the formulas in Table 2 to a formula that realizes
all truth values not ruled out by Theorem 1.5

Lemma 6 There is an rLTL formula ϕ such that for every β ∈ B
?
4\{0011, 0001} there is a

prefix uβ with V m
r (uβ, ϕ) = β.

Proof For every β ∈ B
?
4 \ {0011, 0001} let ϕβ be an rLTL formula and u′

β be a prefix, both
over {a}, with V m

r (u′
β, ϕβ) = β. Such formulas and prefixes exist as shown in Table 2.

Now, consider the formula

ϕ =
∨

β∈B?
4\{0011,0001}

aβ ∧ ϕβ

5 Note that there are formulas in publicly available repositories that assume many truth values. One example
is the formula

(((a ∧ d) ∨ (¬a ∧ ¬d)) ∧ (¬b ∨ (¬a ∧ d))) ∨ (((¬a ∧ d) ∨ (a ∧ ¬d)) ∧ (b ∧ (a ∨ ¬d))) ∨ (a ∧ b),

which is taken from the LTLStore [38] and assumes ten different truth values.
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over the propositions {a} ∪ {aβ | β ∈ B
?
4\{0011, 0001}}.

By construction, we have V m
r (uβ, ϕ) = β for every β, where

uβ = (u′
β(0) ∪ {aβ})u′

β(1) · · · u′
β(|u′

β | − 1),

i.e, we obtain uβ from u′
β by adding the proposition aβ to the first letter. Hence, ϕ has the

desired properties. ��
Finally, let us consider the notion of monitorability [53], an important concept in the

theory of runtime monitoring. As a motivation, consider the LTL formula ψ = s and
an arbitrary prefix u ∈ Σ∗. Then, the extension u{s}ω satisfies ψ while the extension u∅ω

does not satisfy ψ , i.e. , satisfaction of ψ is independent of any prefix u. Hence, we have
V m(u, ψ) = ? for every prefix u, i.e. , monitoring the formula ψ does not generate any
information.

In general, for a fixed LTL formula ϕ, a prefix u ∈ Σ∗ is called ugly if we have
V m(uv, ϕ) = ? for every finite v ∈ Σ∗, i.e. , every finite extension of u yields an indef-
inite verdict.6 Now, ϕ is LTL-monitorable if there is no ugly prefix with respect to ϕ. A wide
range of LTL formulas (e.g. , ψ = s as above) are unmonitorable in that sense. In
particular, 44% of the LTL formulas considered in the experiments of Bauer et al. are not
LTL-monitorable.

We next generalize the notion of monitorability to rLTL. In particular, we answer whether
there are unmonitorable rLTL formulas. Then, in Sect. 5, we exhibit that all LTL formu-
las considered by Bauer et al.’s experimental evaluation, even the unmonitorable ones, are
monitorable under rLTL semantics. To conclude the motivating example, note that the rLTL
analogue s of the LTL formulaψ induces two truth values fromB

?
4 indicating whether

s has been true at least once (truth value ???1) or not (truth value ????). Even more so, every
prefix inducing the truth value ???? can be extended to one inducing the truth value ???1.

Definition 3 Let ϕ be an rLTL formula. A prefix u ∈ Σ∗ is called ugly if we have
V m(uv, ϕ) = ???? for every finite v ∈ Σ∗. Further, ϕ is rLTL-monitorable if it has no
ugly prefix.

As we have argued above, the formula s has no ugly prefix, i.e. , it is rLTL-
monitorable. Thus, we have found an unmonitorable LTL formula whose rLTL analogue
(the formula obtained by adding dots to all temporal operators) is monitorable. The con-
verse statement is also true. There is a monitorable LTL formula whose rLTL analogue is
unmonitorable. To this end, consider the LTL formula

( s ∧ ¬s)→( s ∧ ¬ s),

which is a tautology and therefore monitorable. On the other hand, we claim that ∅{s} is an
ugly prefix for the rLTL analogue ϕ obtained by adding dots to the temporal operators. To
this end note that we have both Vr (∅{s}v∅ω, ϕ) = 1111 and Vr (∅{s}v{s}ω, ϕ) = 0000 for
every v ∈ Σ∗. Hence, V m

r (∅{s}v, ϕ) = ???? for every such v, i.e. , ∅{s} is indeed ugly and
ϕ therefore not rLTL-monitorable.

Thus, there are formulas that are unmonitorable under LTL semantics, but monitorable
under rLTL semantics and there are formulas that are unmonitorable under rLTL semantics,
but monitorable under LTL semantics. Using these formulas one can also construct a formula
that is unmonitorable under both semantics.

6 Note that the good/bad prefixes introduced by Kupfermann and Vardi [40] can only be extended into infinite
words satisfying/unsatisfying the formula, respectively, and thus provide a verdict immediately. On the other
hand, no finite extension of an ugly prefix [14] allows to conclude on the satisfaction of the formula.
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To this end, fix LTL formulas ϕ� and ϕr over disjoint sets of propositions and a fresh
proposition p not used in either formula such that

– ϕ� has an ugly prefix u� under LTL semantics, and
– ϕr (with dotted operators) has an ugly prefix ur under rLTL semantics.

We can assume both prefixes to be non-empty, as ugliness is closed under finite extensions.
Let ϕ = (p ∧ϕ�)∨ (¬p ∧ϕr ). Then, the prefix obtained from u� by adding the proposition p
to the first letter is ugly for ϕ under LTL semantics and ur is ugly for ϕ (with dotted operators)
under rLTL semantics.

As a final example, recall that we have shown that s is rLTL-monitorable and
consider its negation ¬ s. It is not hard to see that V m

r (u, ϕ) = ???? holds for every
prefix u. Hence, ε is an ugly prefix for the formula, i.e. , we have found another unmonitorable
rLTL formula. In particular, the example shows that, unlike for LTL, rLTL-monitorability is
not preserved under negation.

After having studied properties of rLTLmonitorability, we next show our main result: The
robust monitoring semantics V m

r can be implemented by finite-state machines.

4 Construction of rLTLmonitors

An rLTL monitor is an implementation of the robust monitoring semantics V m
r in form of a

finite-state machine with output. More precisely, an rLTL monitor for an rLTL formula ϕ is a
finite-state machine Mϕ that on reading an input u ∈ Σ∗ outputs V m

r (u, ϕ). In this section,
we show how to construct rLTL monitors and that this construction is asymptotically not
more expensive than the construction of LTL monitors. Let us fix an rLTL formula ϕ for the
remainder of this section.

Our rLTLmonitor construction is inspired by Bauer et al. [14] and generates a sequence of
finite-state machines (i.e. , Büchi automata over infinite words, (non)deterministic automata
over finite words, andMoore machines). Underlying these machines are transition structures
T = (Q, qI ,Δ) consisting of a nonempty, finite set Q of states, an initial state qI ∈ Q, and a
transition relation Δ ⊆ Q × Σ × Q. An (infinite) run of T on a word σ = a0a1a2 · · · ∈ Σω

is a sequence ρ = q0q1 · · · of states such that q0 = qI and (q j , a j , q j+1) ∈ Δ for j ∈ N.
Finite runs on finite words are defined analogously. The transition structure T is deterministic
if (a) (q, a, q ′) ∈ Δ and (q, a, q ′′) ∈ Δ imply q ′ = q ′′ and (b) for each q ∈ Q and a ∈ Σ

there exists a (q, a, q ′) ∈ Δ.
We then replace the transition relationΔ by a function δ : Q ×Σ → Q. Finally, we define

the size of a transition structure T as |T | = |Q| in order to measure its complexity.
Our construction then proceeds in three steps:

1. We bring ϕ into an operational form by constructing Büchi automata Aϕ
β for each truth

value β ∈ B4 that can decide the valuation Vr (σ, ϕ) of infinite words σ ∈ Σω.
2. Based on these Büchi automata, we then construct nondeterministic automataBϕ

β that can
decide whether a finite word u ∈ Σ∗ can still be extended to an infinite word uσ ∈ Σω

with Vr (uσ, ϕ) = β.
3. We determinize the nondeterministic automata obtained in Step 2 and combine them into

a single Moore machine that computes V m
r (u, ϕ).

Let us now describe each of these steps in detail.
Step 1 We first translate the rLTL formula ϕ into several Büchi automata using a construction
by Tabuada and Neider [58], summarized in Theorem 2 below. A (nondeterministic) Büchi
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s

(a) The NBA A s
1111

true

¬s

s

(b) The NBA A s
0111

¬s

s

¬s
s

¬s
s

(c) The NBA A s
0011

true

s

¬s

(d) The NBA A s
0001

¬s

(e) The NBA A s
0000

Fig. 1 The Büchi automata A s
β constructed in Step 1 of our monitor construction

automaton (NBA) is a four-tuple A = (Q, qI ,Δ, F) where T = (Q, qI ,Δ) is a transition
structure and F ⊆ Q is a set of accepting states. A run π ofA on σ ∈ Σω is a run of T on σ ,
and we say that π is accepting if it contains infinitely many states from F . The automatonA
accepts a word σ if there exists an accepting run of A on σ . The language L(A) is the set of
all words accepted by A, and the size of A is defined as |A| = |T |.
Theorem 2 (Tabuada and Neider [58]) Given a truth value β ∈ B4, one can construct a
Büchi automaton Aϕ

β with 2O(|ϕ|) states such that L(Aϕ
β) = {σ ∈ Σω | Vr (σ, ϕ) = β}. This

construction can be performed in 2O(|ϕ|) time.

The Büchi automata Aϕ
β for β ∈ B4 serve as building blocks for the next steps. However,

before we proceed, let us illustrate this step with an example.

Example 4 Let us consider the formula ϕ = s, which already served as a running example
inSect. 3.ApplyingTheorem2 results in thefivenondeterministicBüchi automataAϕ

β , one for
each β ∈ B4, shown in Fig. 1.We here use the standard way to represent finite-state machines
graphically. States are drawn as circles and transitions are drawn as arrows. Moreover, the
initial state has an incoming arrow, while accepting states are indicted by double circles.
Finally, note that we use propositional formulas to symbolically define sets of transitions.
For instance, a transition labeled with s in Fig. 1a represents all transitions labeled with a
symbol from the set {A ⊆ P | s ∈ A} ⊆ Σ . In particular, true represents all symbols in Σ .
��
Step 2 For each Büchi automaton Aϕ

β obtained in the previous step, we now construct a

nondeterministic automaton Bϕ
β over finite words. This automaton determines whether a

finite word u ∈ Σ∗ can be continued to an infinite word uσ ∈ L(Aϕ
β) (i.e. , Vr (uσ, ϕ) = β)

and is used later to construct the rLTL monitor.
A nondeterministic finite automaton (NFA) is a four-tuple A = (Q, qI ,Δ, F) that is

syntactically identical to a Büchi automaton. The size of A is defined analogously to Büchi
automata. In contrast to Büchi automata, however, NFAs only admit finite runs on finite
words, i.e. , a run of A on u = a0 · · · an−1 ∈ Σ∗ is a sequence q0 · · · qn such that q0 = qI
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s

(a) The NFA B s
1111

true

¬s

s

(b) The NFA B s
0111

¬s

s

¬s
s

¬s
s

(c) The NFA B s
0011

true

s

¬s

(d) The NFA B s
0001

¬s

(e) The NFA B s
0000

Fig. 2 The NFAs B s
β constructed in Step 2 of our monitor construction

and (q j , a j , q j+1) ∈ Δ for every j < n. A run q0 · · · qn is called accepting if qn ∈ F .
Accepted words as well as the language ofA are again defined analogously to the Büchi case.
If (Q, qI ,Δ) is deterministic, A is a deterministic finite automaton (DFA). It is well-known
that for each NFA A one can construct a DFA A′ with L(A) = L(A′) and |A′| ∈ O(2|A|).

Given the Büchi automaton Aϕ
β = (Qβ, qI ,β ,Δβ, Fβ), we first compute the set F�

β =
{q ∈ Qβ | L(Aϕ

β(q)) 
= ∅}, where Aϕ
β(q) denotes the Büchi automaton Aϕ

β but with initial
state q instead of qI . Intuitively, the set F�

β contains all states q ∈ Qβ from which there

exists an accepting run in Aϕ
β and, hence, indicates whether a finite word u ∈ Σ∗ reaching a

state of F�
β can be extended to an infinite word uσ ′ ∈ L(Aϕ

β). The set F�
β can be computed,

for instance, using a nested depth-first search [56] for each state q ∈ Qβ . Since each such
search requires time quadratic in |Aϕ

β |, the set F�
β can be computed in time O(|Aϕ

β |3).
Using F�

β , we define the NFA Bϕ
β = (Qβ, qI ,β ,Δβ, F�

β ). It shares the transition structure

of Aϕ
β and uses F�

β as the set of accepting states. Let us illustrate this construction using our
running example.

Example 5 Given the NBAs Aϕ
β from Step 1 of our construction, we now compute the cor-

responding NFAs Bϕ
β , which are depicted in Fig. 2. Note that the transition structure has

remained the same as compared to the preceding step (see Fig. 1). By contrast, the accepting
states have changed according to the definition of F�

β , causing all states to be accepting. Note,
however, that this does not mean that the resulting NFAs accept any finite word. For instance,
the NFA B s

1111 in Fig. 2a is a counterexample to this claim. ��
The next lemma now states that Bϕ

β indeed recognizes prefixes of words in L(Aϕ
β).

Lemma 7 Let β ∈ B4 and u ∈ Σ∗. Then, u ∈ L(Bϕ
β) if and only if there exists an infinite

word σ ∈ Σω with Vr (uσ, ϕ) = β.

Proof We show both directions separately.
From left to right Assume u ∈ L(Bϕ

β). Moreover, let q ∈ F�
β be the accepting state reached

by Bϕ
β on an accepting run on u (which exists since u ∈ L(Bϕ

β)). By definition of F�
β , this

123



Formal Methods in System Design (2021) 59:170–204 191

means that L(Aϕ
β(q)) 
= ∅, say σ ∈ L(Aϕ

β(q)). Since Aϕ
β and Bϕ

β share the same transition

structures, the run of Bϕ
β on u is also a run ofAϕ

β on u, which both lead to state q . Therefore,

uσ ∈ L(Aϕ
β). By Theorem 2, this is equivalent to Vr (uσ, ϕ) = β.

From right to left Let u ∈ Σ∗ and σ ∈ Σω such that V (uσ, ϕ) = β. By Theorem 2, we have
uσ ∈ L(Aϕ

β). Consider an accepting run of Aϕ
β on uσ , and let q be the state that Aϕ

β reaches

after reading the finite prefix u. Since uσ ∈ L(Aϕ
β), this means that σ ∈ L(Aϕ

β(q)). Thus,

q ∈ F�
β because L(Aϕ

β(q)) 
= ∅. Moreover, since the run of Aϕ
β on u is also a run of Bϕ

β on

u, the NFA Bϕ
β can also reach state q after reading u. Therefore, u ∈ L(Bϕ

β) since q ∈ F�
β . ��

Before we continue to the last step in our construction, let us briefly comment on the
complexity of computing the NFAs Bϕ

β . Since Bϕ
β and Aϕ

β share the same underlying tran-

sition structure, we immediately obtain |Bϕ
β | ∈ 2O(|ϕ|). Moreover, the construction of Bϕ

β is

dominated by the computation of the set F�
β and, hence, can be done in time 2O(|ϕ|).

Step 3 In the final step, we construct a Moore machine implementing an rLTL monitor for ϕ.
Formally, aMoore machine is a five-tupleM = (Q, qI , δ, Γ , λ) consisting of a deterministic
transition structure (Q, qI , δ), an output alphabet Γ , and an output function λ : Q → Γ . The
size of M as well of runs of M are defined as for DFAs. In contrast to a DFA, however, a
Moore machine M computes a function λM : Σ∗ → Γ that is defined by λM(u) = λ(qn)

where qn is the last state reached on the unique finite run q0 · · · qn ofM on its input u ∈ Σ∗.
The first step in the construction of the Moore machine is to determinize the NFAs Bϕ

β ,

obtaining equivalent DFAs Cϕ
β = (Q′

β, q ′
I ,β , δ′

β, F ′
β) of at most exponential size in |Bϕ

β |.
Subsequently, we combine these DFAs into a single Moore machine Mϕ implementing the
desired rLTL monitor. Intuitively, this Moore machine is the product of the DFAs Cϕ

β for
each β ∈ B4 and tracks the run of each individual DFA on the given input. Formally,Mϕ is
defined as follows.

Definition 4 Let B4 = {β1, β2, β3, β4, β5}. We define Mϕ = (Q, qI , Γ , δ, λ) by

– Q = Q′
β1

× Q′
β2

× Q′
β3

× Q′
β4

× Q′
β5
;

– qI = (q ′
I ,β1

, q ′
I ,β2

, q ′
I ,β3

, q ′
I ,β4

, q ′
I ,β5

);

– δ
(
(q1, q2, q3, q4, q5), a

) = (q ′
1, q ′

2, q ′
3, q ′

4, q ′
5) where q ′

j = δ′
β j

(q j , a) for each j ∈
{1, . . . , 5};

– Γ = B
?
4; and

– λ
(
(q1, q2, q3, q4, q5)

) = ξ
({

β j ∈ B4 | q j ∈ F ′
β j

, j ∈ {1, . . . , 5}}),
where the surjective function ξ : 2B4 → B

?
4 translates sets B ⊆ B4 of truth values to the

robust monitoring semantics as follows: ξ(B) = β? ∈ B
?
4 with

β?[ j] =

⎧⎪⎨
⎪⎩
0 ifβ[ j] = 0 for eachβ ∈ B;
1 ifβ[ j] = 1 for eachβ ∈ B; and

? otherwise.

Let us illustrate this last step of our construction by means of our running example.

Example 6 Given the NFAs B s
β from Step 2 of our construction, we first apply a standard

determinization step. This process results in equivalent DFAs C s
β , which are shown in

Fig. 3.
The final, minimized monitor M s , which results from the Cartesian product of all

DFAs, is shown in Fig. 4. Note that this monitor has four different verdicts, shown as labels
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s

¬s

true

(a) The DFA C s
1111

true

(b) The DFA C s
0111

true

(c) The DFA C s
0011

true

(d) The DFA C s
0001

¬s

s

true

(e) The DFA C s
0000

Fig. 3 The DFAs C s
β constructed in Step 3 of our monitor construction

????

???1

0???

0??1

s

¬s

s

¬s

¬s
s

true

Fig. 4 The final monitor M s

next to each state. These are four of the verdicts used to prove results in Table 2 (on Page 13).
��

The main result of this paper now shows that the Moore machine Mϕ implements V m
r ,

i.e. , we have λMϕ (u) = V m
r (u, ϕ) for every prefix u.

Theorem 3 For every rLTL formula ϕ, one can construct an rLTL monitor of size 22
O(|ϕ|)

.

Proof First observe that ξ indeed produces a valid value of B?
4 (i.e. , a truth value of the

form 0∗?∗1∗). This follows immediately from the definition of ξ and the fact that the truth
values of rLTL are sequences in 0∗1∗.

Next, we observe thatMϕ reaches state (q1, q2, q3, q4, q5) after reading a word u ∈ Σ∗ if
and only if for each β j ∈ B4 the DFA Cϕ

β j
reaches state q j after reading u. A simple induction

over the length of inputs fed to Mϕ proves this.
Now, let us fix a word u ∈ Σ∗ and assume that (q1, q2, q3, q4, q5) is the state reached

by Mϕ after reading u. This means that each individual DFA Cϕ
β j

= (Q′
β j

, q ′
I ,β j

, δ′
β j

, F ′
β j

)

reaches state q j after reading u. Let now

B = {
β j ∈ B4 | q j ∈ F ′

β j
, j ∈ {1, . . . , 5}}
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as in the definition of the output function λ of Mϕ . By applying Lemma 7, we then obtain

β j ∈ B ⇔ q j ∈ F ′
β j

⇔ u ∈ L(Cϕ
β j

) ⇔ u ∈ L(Bϕ
β j

) ⇔ ∃σ ∈ Σω : Vr (uσ, ϕ) = β j .

To conclude the proof, it is left to show that ξ(B) = V m
r (u, ϕ). We show this for each

bit individually using a case distinction over the elements of B? = {0, ?, 1}. So as to clutter
this proof not too much, however, we only discuss the case of ? here, while noting that the
remaining two cases can be proven analogously. Thus, let i ∈ {1, . . . , 4}. Then,

ξ(B)[i] = ? ⇔ ∃β, β ′ ∈ B : β[i] = 0 and β ′[i] = 1

⇔ ∃σ0, σ1 ∈ Σω : Vr (uσ0, ϕ)[i] = 0 and Vr (uσ1, ϕ)[i] = 1

⇔ V m
r (u, ϕ)[i] = ?.

Since λ
(
(q1, q2, q3, q4, q5)

) = ξ(B), the Moore machine Mϕ indeed outputs V m
r (u, ϕ)

for every word u ∈ Σ∗. Moreover,Mϕ has 22
O(|ϕ|)

states because the DFAs Cϕ
β = (Q′

β, q ′
I ,β ,

δ′
β, F ′

β) are of at most exponential size in |Bϕ
β |, which in turn is at most exponential in |ϕ|.

In total, this proves Theorem 3. ��
In a final post-processing step,weminimizeMϕ (e.g., using one of the standard algorithms

for deterministic automata). As a result, we obtain the unique minimal monitor for the given
rLTL formula.

It is left to determine the complexity of our rLTL monitor construction. Since each DFA
Cϕ

β is in the worst case exponential in the size of the NFA Bϕ
β , we immediately obtain that Cϕ

β

is at most of size 22
O(|ϕ|)

. Thus, the Moore machineMϕ is at most of size 22
O(|ϕ|)

as well and
can be effectively computed in doubly-exponential time in |ϕ|. Note that this matches the
complexity bound of Bauer et al.’s approach for LTL runtimemonitoring [14].Moreover, this
bound is tight since rLTL subsumes LTL (see Remark 3): Every monitor for an rLTL formula
(without implications) can be turned into a monitor for the corresponding LTL formula by
projecting every output to its first bit. Thus, the doubly-exponential bound, which is tight
for LTL [14, 40], is also tight for rLTL. Hence, robust runtime monitoring asymptotically
incurs no extra cost compared to classical LTL runtime monitoring. However, it provides
more useful information as we demonstrate next in our experimental evaluation.

5 Experimental evaluation

Besides incorporating a notion of robustness into classical LTL monitoring, our rLTL moni-
toring approach also promises to provide richer information than its LTL counterpart. In this
section, we evaluate empirically whether this promise is actually fulfilled. More precisely,
we answer the following two questions on a comprehensive suite of benchmarks:

1. How does rLTL monitoring compare to classical LTL monitoring in terms of monitora-
bility?

2. For formulas that are both LTL-monitorable and rLTL-monitorable, how do both
approaches compare in terms of the size of the resulting monitors and the time required
to construct them?

To answer these research questions, we have implemented a prototype, which we named
rLTL-mon. Our prototype is written in Java and builds on top of two libraries: Owl [39], a
library for LTL and automata over infinite words, as well as AutomataLib (part of LearnLib

123



194 Formal Methods in System Design (2021) 59:170–204

[36]), a library for automata over finite words and Moore machines. For technical reasons
(partly due to limitations of the Owl library and partly to simplify the implementation),
rLTL-mon uses a monitor construction that is slightly different from the one described
in Sect. 4: Instead of translating an rLTL formula into nondeterministic Büchi automata,
rLTL-mon constructs deterministic parity automata. These parity automata are then directly
converted into DFAs, thus skirting the need for a detour over NFAs and a subsequent deter-
minization step. Note, however, that this alternative construction produces the same rLTL
monitors than the one described in Sect. 4. Moreover, it has the same asymptotic complexity.
The sources of our prototype are available online under the MIT license.7

Benchmarks and experimental setup

The starting point of our evaluation was the original benchmark suite of Bauer et al. [14],
which is based on a survey by Dwyer on frequently used software specification patterns
[23]. This benchmark suite consists of 97 LTL formulas and covers a wide range of pat-
terns, including safety, scoping, precedence, and response patterns. For our rLTL monitor
construction, we interpreted each LTL formula in the benchmark suite as an rLTL formula
(by treating every operator as a robust operator).

We compared rLTL-mon to Bauer et al.’s implementation of their LTL monitoring
approach, which the authors named LTL3 tools. This tool uses LTL2BA [32] to translate
LTL formulas into Büchi automata and AT&T’s fsmlib as a means to manipulate finite-state
machines. Since LTL2BA’s and Owl’s input format for LTL formulas do not match exactly,
we have translated all benchmarks into a suitable format using a python script.

We conducted all experiments on an Intel Core i5-6600 @ 3.3 GHz in a virtual machine
with 4 GB of RAM running Ubuntu 18.04 LTS. As no monitor construction took longer than
600 s, we did not impose any time limit.

Results

Our evaluation shows that LTL3 tools and rLTL-mon are both able to generate monitors
for all 97 formulas in Bauer et al.’s benchmark suite.8 Aggregated statistics of this evaluation
are visualized in Fig. 5. 9

The histogram in Fig. 5a shows the aggregate number of LTL and rLTL monitors with
respect to their number of states. As Bauer et al. already noted in their original work, the
resulting LTL monitors are quite small (none had more than six states), which they attribute
to Dwyer et al.’s specific selection of formulas [23]. A similar observation is also true for the
rLTL monitors: None had more than eight states.

To determine which formulas are monitorable and which are not, we used a different,
though equivalent definition, which is easy to check on the monitor itself: an LTL formula
(rLTL formula) is monitorable if and only if the unique minimized LTL monitor (rLTL
monitor) does not contain a sink-state with universal self-loop that outputs “?” (that outputs
“????”). In other words, even if a finite word does not allow us to infer anything about
the satisfaction of the LTL (rLTL) formula by infinite words extending it, it can always be

7 https://github.com/logic-and-learning/rltl-monitoring.
8 Note that the tools disagreed on onemonitor where LTL3 tools constructed a monitor with 1 state whereas
rLTL-mon constructed an LTL monitor with 8 states. The respective formula was removed from the reported
results.
9 Detailed results can be found in Tables 3 and 4 in the appendix.
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Fig. 5 Comparison of rLTL-mon and LTL3 tools on Bauer et al.’s benchmarks [14]

extended into another finite word that does. Bauer et al. report that 44.3% of the LTLmonitors
(43 out of 97) have this property (in fact, exactly the 43 LTL monitors with a single state),
which means that 44.3% of all formulas in their benchmark suite are not LTL-monitorable.
By contrast, all these formulas are rLTL-monitorable. Moreover, in 78.4% of the cases (76
out of 97), the rLTL monitor has more distinct outputs than the LTL monitor, indicating that
the rLTLmonitor provides more fine-grained information of the property beingmonitored; in
the remaining 21.6%, both monitors have the same number of distinct outputs. These results
answer our first research question strongly in favor of rLTL monitoring: rLTL monitoring
did in fact provide more information than its classical LTL counterpart. In particular, only
55.7% of the benchmarks are LTL-monitorable, whereas 100% are rLTL-monitorable.

Let us now turn to our second research question and compare both monitoring approaches
on the 54 formulas that are both LTL-monitorable and rLTL-monitorable. For these formulas,
Fig. 5b further provides statistical analysis of the generated monitors in terms of their size
(left diagram) as well as the time required to generate them (right diagram). Each box in
the diagrams shows the lower and upper quartile (left and right border of the box, respec-
tively), the median (line within the box), and minimum andmaximum (left and right whisker,
respectively).

Let us first consider the size of the monitors (left diagram of Fig. 5b). The majority of LTL
monitors (52) has between two and four states, while the majority of rLTL monitors (45) has
between two and five states. For 21 benchmarks, the LTL and rLTL monitors are of equal
size, while the rLTL monitor is larger for the remaining 33 benchmarks. On average, rLTL
monitors are about 1.5 times larger than the corresponding LTL monitors.

Let us now discuss the time taken to construct the monitors. As the diagram on the
right-hand-side of Fig. 5b shows, LTL3 tools was considerably faster than rLTL-mon
on a majority of benchmarks (around 0.1 s and 2.6 s per benchmark, respectively). For all
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54 benchmarks, the rLTL monitor construction took longer than the construction of the
correspondingLTLmonitor (although there are twonon-LTL-monitorable formulas forwhich
the construction of the rLTL monitor was faster). However, we attribute this large runtime
gap partly to the overhead caused by repeatedly starting the Java virtual machine, which is
not required in the case of LTL3 tools. Note that this is not a concern in practice as a
monitor is only constructed once before it is deployed.

Finally, our analysis answers our second question: rLTL monitors are only slightly larger
than the corresponding LTL monitors and although they require considerably more time to
construct, the overall construction time was negligible for almost all benchmarks.

6 Conclusion

We adapted the three-valued LTL monitoring semantics of Bauer et al. to rLTL, proved that
the construction of monitors is asymptotically no more expensive than the one for LTL, and
validated our approach on the benchmark of Bauer et al.: All formulas are rLTL-monitorable
and the rLTL monitor is strictly more informative than its LTL counterpart for 77% of their
formulas.

Recall Theorem 1, which states that the truth values 0011 and 0001 are not realizable. This
points to a drawback regarding the two middle bits: When considering the formula a, the
second bit represents a and the third bit a. A prefix cannot possibly provide
enough information to distinguish these two formulas. On the other hand, the truth value
??11 is realizable, which shows that the middle bits can be relevant. In further work, we will
investigate the role of the middle bits in rLTL monitoring.

Moreover, the informedness of a monitor can be increased further when attributing a
special role to the last position(s) of a prefix. Even though a prefix of the form ∅+{a}+ does
not fully satisfy a, neither does it fully violate it. If the system just now reached a
state in which {a} always holds, an infinite continuation of the execution would satisfy the
specification. So rather than reporting an undetermined result, the monitor could indicate
that an infinite repetition of the last position of the prefix would satisfy the specification.
Similarly, for a prefix {a}+∅, the specification a is undetermined. While an infinite
repetition of the last position ({a}+∅ω) does not satisfy the specification, an infinite repetition
of the last two positions ({a}+(∅{a})ω) would. We plan to investigate an extension of rLTL
which takes this observation into account.

Bauer et al. [12] proposed an orthogonal approach with the logic RV-LTL. Here, the
specification can contain the strong (weak) next-operator whose operand is consider violated
(satisfied) at the last position of the trace. A formula that is undetermined under the strong
semantics and satisfied (violated) under the weak semantics is considered potentially true
(potentially false). Incorporating one of these approaches into rLTL monitoring could refine
its output and thus increase its level of informedness.

Moreover, desired properties for cyber-physical systems often include real-time compo-
nents such as “touch the ground at most 15 s after receiving a landing command”. Monitors
for logics taking real-time into account [15], such as STL [43, 44], induce high computational
overhead at runtime when compared to LTL and rLTL monitors. Thus, a real-time extension
for rLTL retaining its low runtime cost would greatly increase its viability as specification
language.
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Experimental results

The following two tables provide detailed results of our experimental evaluation.
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Table 3 Summary of the result when comparing the monitor construction of rLTL against LTL; continued in
Table 4

Property # States # Outputs Monitorable Time in s

rLTL LTL rLTL LTL rLTL LTL rLTL LTL

Constrained response-chain 2-1 3 1 2 1 � × 2.06 0.07

Constrained 3-2 response chain 3 1 2 1 � × 1.79 0.03

Constrained 3-2 response chain 4 1 2 1 � × 24.21 284.53

Constrained 2-1 response chain 3 1 2 1 � × 1.94 0.03

Existence 6 3 4 2 � � 1.71 0.02

2 Bounded Existence 8 1 2 1 � × 3.44 0.02

Response 2 1 2 1 � × 2.17 0.02

Existence 6 3 4 2 � � 1.59 0.02

Existence 3 3 3 3 � � 1.23 0.01

Existence 2 1 2 1 � × 1.11 0.02

Existence 2 1 2 1 � × 1.12 0.01

Existence 2 1 2 1 � × 1.12 0.02

Response 2 1 2 1 � × 2.15 0.01

Response 2 1 2 1 � × 2.15 0.02

Existence 5 3 3 2 � � 1.14 0.01

Absence 4 4 3 3 � � 2.34 0.02

Absence 4 4 2 2 � � 3.10 0.02

Absence 5 3 4 2 � � 5.07 0.02

Absence 4 4 2 2 � � 2.08 0.02

Response 2 1 2 1 � × 1.64 0.01

Response 2 1 2 1 � × 1.61 0.01

GlobalResponse 2 1 2 1 � × 6.67 0.04

Precedence 5 3 5 3 � � 1.35 0.01
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Table 3 continued

Property # States # Outputs Monitorable Time in s

rLTL LTL rLTL LTL rLTL LTL rLTL LTL

Absence 4 2 4 2 � � 1.53 0.03

Response 2 1 2 1 � × 1.34 0.02

Universal 4 2 4 2 � � 1.67 0.02

Absence 4 4 2 2 � � 2.12 0.03

Absence 4 4 2 2 � � 2.10 0.03

Absence 4 4 3 3 � � 2.67 0.86

Absence 3 3 2 2 � � 1.74 0.01

Absence 3 3 2 2 � � 3.20 0.42

Universal 4 2 4 2 � � 1.44 0.01

Response 5 5 2 2 � � 8.33 0.34

Precedence 5 3 5 3 � � 1.50 0.01

Absence 5 3 4 2 � � 6.30 0.02

Absence 5 3 4 2 � � 6.59 0.02

Absence 4 4 3 3 � � 1.44 0.02

Absence 5 3 4 2 � � 4.17 0.02

Constrained Response-Chain 3-1 3 1 2 1 � × 35.40 319.74

Absence 7 4 4 2 � � 35.57 2.11

Absence 4 4 3 3 � � 1.42 0.01

Absence 5 3 4 2 � � 4.04 0.02

Universal 4 2 4 2 � � 1.38 0.02

Response 4 4 3 3 � � 1.81 0.02

Response 2 1 2 1 � × 1.45 0.02

Response 2 1 2 1 � × 1.59 0.02

Response 2 1 2 1 � × 1.46 0.01

Response 2 1 2 1 � × 1.79 0.02
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Table 4 Summary of the result when comparing the monitor construction of rLTL against LTL; continuation
of Table 3

Property # States # Outputs Monitorable Time in s

rLTL LTL rLTL LTL rLTL LTL rLTL LTL

Constrained response 6 3 4 2 � � 1.52 0.02

Absence 4 2 4 2 � � 1.26 0.01

Response 2 1 2 1 � × 1.35 0.02

Response 2 1 2 1 � × 1.35 0.01

Unknown 8 3 4 2 � � 2.54 0.02

Existence 2 2 2 2 � � 0.95 0.01

Unknown 2 1 2 1 � × 1.34 0.02

Unknown 2 1 2 1 � × 1.31 0.01

Response 2 1 2 1 � × 550.84 2.63

Unknown 6 6 3 3 � � 0.88 0.02
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Existence 2 1 2 1 � × 0.88 0.02
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Absence 6 3 4 2 � � 1.50 0.01

Universal 4 2 4 2 � � 1.01 0.01
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Table 4 continued

Property # States # Outputs Monitorable Time in s

rLTL LTL rLTL LTL rLTL LTL rLTL LTL

Absence 4 4 2 2 � � 1.63 0.02

Response 2 1 2 1 � × 1.30 0.01

Universal 4 2 4 2 � � 1.11 0.01

Response 2 1 2 1 � × 1.17 0.01

Response 2 1 2 1 � × 1.27 0.02

Response 2 1 2 1 � × 1.17 0.01

Existence 6 3 4 2 � � 1.32 0.01

Response 2 1 2 1 � × 1.18 0.01

Response 2 1 2 1 � × 1.17 0.01

Response 2 1 2 1 � × 1.17 0.01
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