Retrieval of Spatial Join Pattern Instances from Sensor Net#orks

Man Lung Yiu Nikos Mamoulis

Department of Computer Science Department of Computer Science

Aalborg University University of Hong Kong
DK-9220 Aalborg, Denmark Pokfulam Road, Hong Kong
mly@cs.aau.dk nikos@cs.hku.hk

Spiridon Bakiras
Dept. of Math. and Comp. Science
John Jay College
City University of New York

sbakiras@jjay.cuny.edu

Abstract

We study the continuous evaluation of spatial join queries and extensions thereof, defined by
interesting combinations of sensor readings (events) that co-occur in a spatial neighborhood.
An example of such a pattern is “a high temperature reading in the vicinity of at least four high-
pressure readings”. We devise protocols for ‘in-network’ evaluation of this class of queries,
aiming at the minimization of power consumption. In addition, we develop cost models that
suggest the appropriateness of each protocol, based on various factors, including selectivity of
guery elements, energy requirements for sensing, and network topology. Finally, we experi-
mentally compare the effectiveness of the proposed solutions on an experimental platform that

emulates real sensor networks.

*Work supported by grant HKU 7155/06E from Hong Kong RGC.
A preliminary version of this work appeared in [25], availabldtp://www.cs.aau.dk/mly/ssdbmO0Zenpat.pdf

1

1 Introduction

Advances in computer hardware have brought to availability small and relatively cheap devices
forming a powerful network that interacts and collects information from the environment, where it

is deployed [27]. Sensor networks have several applications, including environmental monitoring
[15, 13], control/maintenance of industrial infrastructure [1], military applications [20], structural
monitoring [17], etc. Recently, the problem of evaluating queries over a sensor network has at-
tracted significant research interest from the database community, leading to the development of
two research DBMS prototypes [24, 14]. These systems provide to the user an interface, via which
gueries are expressed imaclarativeway; the user needs not deal witbwqueries are evaluated.
Suitable extensions of SQL were proposed with clauses that consider the special features of sen-
sor networks. These features include the transient, on-demand nature of sampled data, extended
lifetime of continuous (non-transient) queries, sampling rate or compression of sensor readings,

event-triggered queries, etc.

The main focus of existing work on sensor networks has been the minimization of power consump-
tion at sensor nodes, during query evaluation. Sensors are usually battery-operated and they are
often deployed in hostile environments or rough terrains, where the network runs unsupervised for
long time intervals. Thus, power is of utmost importance, since it is directly related to the longevity
of the network. Previously studied topics include the energy-efficient retrieval of aggregations or
data summaries [13, 5, 3, 7, 6, 19], the derivation and maintenance of data models that describe
the data distribution [8, 4], and the optimal in-network placement of operators or filter predicates
on the sensed values [14, 2, 1, 22]. To our knowledge, there is no prior work for in-network evalu-
ation of queries thatpatially correlatemeasurements fromiifferentsensors. An example of such

a query (taken from [3]) is “generate a notification whenever two sensors within 5 yards from each
other simultaneously measure an abnormal temperatureSpatial pattern queryetrieves sets

of sensors (pairs in this example), whose readings qualify some selection predicates (e.g., abnor-
mal temperatures) and their locations qualify some pairwise distance predicates (e.g., within five

yards). Data analysts may be interested in the on-line identification of pattern instances that occur

rarely in the environments where sensors are deployed and may indicate exceptional events. For
instance, an unusually high temperature detected in the vicinity of multiple low-humidity readings
may indicate high chance of a fire break in the local area, where the pattern is detected. An-
other application of spatial pattern queries is the prediction of weather phenomena based on spatial

combinations of sensor readings.

A straightforward way to evaluate spatial pattern queries is to program the sensors to transmit
their readings together with their locations to a central basestation (via a routing tree [10, 14]),
where their spatial associations are validated. Although this approach is easy to implement, it may
waste more energy than necessary, as sensor readings that are not part of query results may be
sent all the way up to the root. Motivated by the lack of effective evaluation protocols for spatial
pattern queries, in this paper, we study this problem in depth, focusing on (i) filtering techniques
for readings that do not participate in the result, (ii) in-network computation of query results. We
propose optimized evaluation protocols for binary spatial joins and more complex query patterns
and compare them for different problem parameters. Our solutions are orthogonal to snapshot-
based schemes (e.g., [11]), which apply query evaluation only to a small (self-maintained) sample
of the network and to techniques that summarize sensor readings over long time intervals before
applying query evaluation on them (e.g., [6]). The contributions of this paper can be summarized

as follows:

e We identify the interesting class spatial pattern queriesWe formally define them and

discuss how they can be expressed using the language extensions of [14].

e We propose energy-efficient protocols for in-network evaluation of spatial pattern queries.
In addition, we provide cost models which can be used by a query optimizer to determine a

suitable evaluation method based on query parameters and data statistics.

¢ We experimentally evaluate the effectiveness of the proposed techniques by tuning various
parameters, including query selectivity, network size, topology and density, sampling cost,

etc.

The remainder of the paper is organized as follows. Section 2 reviews related work. Section 3
formally defines spatial pattern queries. In Section 4, we describe in detail the proposed solutions,
and analyze their costs in Section 5. Section 6 discusses the evaluation of variants and extensions
of pattern queries, as well as advanced issues, like multiple query evaluation. Section 7 experimen-
tally demonstrates the applicability and efficiency of our techniques. Finally, Section 8 concludes

the paper.

2 Background and Related Work

The special characteristics of a sensor network compared to a generic wireless network are (i)
the limited resources of nodes (energy, communication range, network bandwidth and capacity),
(i) unreliable communication with high packet loss rates and frequent node failures, and (iii)
unsupervised nature with nodes placed at hostile environments (e.g., remote areas, war fields, etc.).
Thus, query evaluation techniques for sensor networks aim at minimizing the energy cost, subject
to the constraints of the network (e.g., communication range, maximum data volume that can be
sent by a node at a cycle, etc.). Besides, sensor networks are inherently redundant (i.e., dense),
in order to keep the network connected after node failures and increase the reliability of sensed

information.

Query evaluation in sensor networks is performed in two steps [10, 24, 14]. Suppose that the query
should collect the readings from all sensors. The query is registered at a basestation, which is
connected to ebot noder. In the first step, the query is disseminated to the sensors, and a spanning
tree of the network, rooted atis dynamically constructed. If a node receives the query for the
first time, it selects one of the senders as its parent in the tree and broadcasts the query. Otherwise,
the message is ignored. The resulto@mnmunicatior(or routing) tree is used to acquire sensor
readings related to the query, up to the basestation. Delivery of sensor readings (or query results) to
the root is performed in multiple phases. During a specific phase, a level of treetrdeand the

level above listens aneceivesnformation addressed for it. Finally, the root collects all readings

and sends them to the basestation.

Queries over sensor networks are usuatiyntinuousi.e., they remain active for a lengthy time

interval (e.g., minutes, hours). Otherwise, the cost for disseminating the query may not be com-
pensated. Frequent instantaneous queries are best processed if the network operates in a push-basec
manner; sensors periodically and unconditionally collect measurements and route them to a bases-
tation, where queries are registered and evaluated as queries over streaming data. For example,
in the work of [9], efficient algorithms are developed for processing continuous constraint queries

at a centralized basestation, without considering communication cost in the underlying infrastruc-
ture (e.g., sensor network). In this paper, we exploit in-network evaluation techniques in order to
minimize power consumption of the sensor network for processing continuous queries. Next, we

review work on (continuous) query evaluation on sensor networks.
2.1 Aggregation and summarization

Madden et al. [13] proposed a simple, but powerful protocol for computing common aggregate
functions (e.g., count, sum, max, min). Each sensor combines the information received by its
children with its own measurement to derive and send data of constant size, capturing a partial
computation of the aggregate function. In [5], a multi-path algorithm for computing aggregates is
presented to reduce communication errors as multiple parents may hear and aggregate the infor-
mation broadcast by a single child. [16] proposes a hybrid method that combines the tree topology
of [13] with the ring network topology of [5]. Besides, [7] describes a method for pushing error
tolerance in network nodes, in order to avoid sending information if the aggregate is within some
error bound. The problem of redistributing the error tolerance among nodes in order to minimize
the overall error at dynamic environments is also studied. A similar approach was independently
proposed in [19]. To minimize network communication, [6] presents a methodology for in-network
compression of multiple (time-series) signals generated by sensors (e.g., one for temperature, one
for humidity, etc.). The rationale is that measurements observed at the same node are likely to
follow similar trends. Soheili et al. [21] focused on the processing of spatial aggregation query,
which derives the aggregate (e.g., average) of sensor values (e.g., temperatures) in a user-defined

spatial windowlV. They developed a distributed and hierarchical structure on the sensor network

such that each node maintains the enclosing rectangle of its descendants in the routing tree. Energy

consumption reduction is achieved by keeping irrelevant nodes (for query procesBin@skeep.
2.2 Data models, snapshots, and filters

An alternative to continuously collecting and processing sensor data (which drains the network
energy resources), is to define and maintain simple data models (e.g., mixtures of Gaussians) for
the data distribution [8, 4]. These models, potentially combined with exact readings, provide
guery answers with some approximation confidence. Besides, [11] describes a framework for
dynamically selecting and maintaining representatives in a redundant sensor network. The set of
representatives (snapshot) plays the role of a dynamic sample that can answer queries cheaply and

approximately.

Another class of problems is the distribution of filters or database operators in the routing tree of a
sensor network. [22] studies the optimal placement of query operators (e.g., selection predicates),
in order to minimize (i) the communication cost for information that does not end up in the query
result and (ii) the computational burden at lower tree levels (assuming that lower-level nodes have
reduced computational capabilities). [2] focuses on the assignment of operators that correlate mea-
surements from two (apriori defined) spatial regions. [26] examines a similar problem and applies
synopses of sensor values to eliminate unqualified readings that cannot lead to results. Assum-
ing that tuples originated from sensors in two different spatial regions, [18] develops solutions for
routing and joining those tuples in the sensor network. On the other hand, our problem searches

for rare spatial associations of (instantaneous) events, anywhere in the network map.

In another direction, [1] studies continuous joining a table of predicates (e.g., ‘humidit¢’)

with the sensed values. If the table is small enough to be stored at each node, it acts a filter that
prevents non-qualifying readings to be sent to the basestation. If the table cannot fit in a node’s
local memory, it is placed at neighboring nodes and the predicates are evaluated in a distributed
fashion. Yang et al. [23] examine continuous self-join processing on the tuples generated from the

sensor network; two tuples are joined together if they satisfy the join predicate and stay in the same

time window. In contrast to [1, 23], the queries we study do not simply consider sensor values;

they also have to satisfy a spatial pattern, which will be defined formally in the next section.

The closest work to ours is [12], which reports pairs of sensor events located within a given distance
range, and reduces communication cost by a distributed routing index. The sensors record past
events in their neighborhood which help to predict future occurrences of them at other locations of
the map. Messages are then routed based on these predictions. As the author suggests, the index is
appropriate for applications where events correspond to moving objects with well-estimated future
locations. Our focus, on the other hand is on arbitrary, instantaneous, ad-hoc events. In addition,
the methodology of [12] relies heavily on the regular grid networks and may not be applicable to

arbitrary network topologies.

3 Problem Formulation

Let SNV be a network ofV sensors. Each senserc SN is associated with a spatikicationt
s.loc, and can produce a sein of measurements (e.g., temperature, humidity, etc.) for the spatial

region around it (different sensors might produce different sets of readings, in general).

We adopt the framework described in Section 2, where users register continuous queries at a bases-
tation and a routing tree is created to acquire results (or readings that are processed at the base).
Each registered query is associated with: (ifetime (e.g., 2 hours), during which it is active and
continuously produces results from the sampled measurements, anddppah duratione.g.,

10 seconds), every which the network samples measurements. In other words, queries apply to

instances of the network at different timestamps (for every epoch).

A binary spatial patternquery identifies pairs of sensors, for which (i) the readings qualify some
particular selection predicates and (ii) the locations are no further than a particular distance from
each other. An example of such a query is “find pairs of sensers,), such that, .temperature 50°C,

so.humidity<40%, anddistance(sy, s2)<10m”. A generalized spatial pattern query (formally de-

We assume that the locations of sensors are known to them. They could be constant and apriori defined (for
stationary, manually placed sensors), or detected by GPS devices placed on the sensors.

vo.humidity<40% v3.humidity<40%

dist(v1.loc,v2.loc<10) dist(v1.loc,v3.loc<10)

vi.temperature>50

dist(v1.loc,v4.loc<10) dist(v1.loc,v5.loc<10)

Va.humidity<40% vs.humidity<40%

Figure 1: A spatial pattern query

fined below) returns sets of sensors, whose values and locations qualify some selection predicates

and binary distance predicates, respectively.

Definition 1 A spatial pattern queryy) consists of a se®).V of variables, a se).P of selection
predicates, and a s&p.5 of binary constraints. Each variable € V is associated to a selection
predicater;. A pair (v;, v;) of variablesv;, v; € V,i # j may be associated with a binary spatial
predicate B;;. A result of() is set of assignmentsvv; € V : v; «— s;, 8 € SN}, such that
(i) for all v;, P;(v;.m) is satisfied and (i) for all variable pairgv;, v;) with a binary predicate,

Bij(v;.loc, v;.loc) is satisfied.

Figure 1 shows an example of a spatial pattern quenpdeled by a graph. Each node in the graph
corresponds to a variable, whose values are constrained by a selection predicate. Edges correspond
to binary spatial predicates (i.e., distance constraints). In natural languagald be expressed

as “a high-temperature reading§0°C) in the vicinity of four low-humidity readings<(40%)”. A

local group of sensors whose readings satisfy this query could indicate an area that requires special

attention (e.g., high chances of fire, if a forest).

Spatial pattern queries can be easily expressed in the extended SQL of [14], assuming that the
language supports spatial functions (i.e., distance). The query variables (definedHR@\
clause) are instantiated by tuples of 8ensors table and the selection while join predicates (i.e.,
distance constraints) are connecteddNDin the WHERElause. Although Definition 1 is generic
enough to define queries of arbitrary graphs and constraints, we confine our attention mainly to

binary joins and to extended patterns that form “star” graphs (like the one in Figure 1), where

8

a centric feature (e.g., high temperature) is correlated to a number of other features (e.g., low
humidity) in its surrounding environment. Such patterns were shown important in spatial analysis
applications and are more intuitive than queries that combine variables in an arbitrary graph. The
centric feature models a point of interest (e.g., high fire risk area, expensive equipment) which
should trigger an alert whenever its local measurements and the conditions in the region around it

form an abnormal combination.

4 Proposed Methods

In this section, we explore the applicability of several methods for computing spatial pattern queries
in a sensor network. We divide the evaluating protocols in two classes. The clasguigitional
protocols collect sensor measurements via the communication tree and apply query evaluation at
the basestation. Filters are placed at nodes that generate or relay data to minimize the transferred
volume. The second class distributedprotocols apply in-network query evaluation and send the
results to the basestation (again using the tree). We start by discussing the simple case of a binary
spatial join with distance constraint smaller than the communication range of the nodes. Then, we

extend the suggested protocols for more complex queries and multi-hop distance constraints.
4.1 Single-hop binary joins

We first focus on binary join patterns that are sensor paits;), such thatP, (s;.m), Px(s;.m)

are satisfied, andistance(s;.loc, s;.loc) < ¢, wherec is smaller than the radio communication
rangé between two nodes. For the ease of exposition, we denote a binary join query in our context
by the triplet(P;, P, ¢).

4.1.1 Brute-force acquisitional protocol

The straightforward way to evaluate the query is to program all sensors to sense the measurements

relative to selection predicaté3 and P, at every epoch, and send this information to the bases-

2Without loss of generality, we assume that all sensors have the same communication range. Our protocols and
filtering techniques can be easily adjusted for the generic case.

tation, which evaluates the spatial join locally. A simple optimization that reduces the number of
unnecessary values transmitted to the base is to “push-down” the selection predicates at the nodes
(as suggested in [14, 1]). In our example, temperature and humidity are sensed by all sensors but
only high temperature and low humidity values (i.e., those that qualify the selection predicates)
are sent to the base. In order to minimize the transferred data, we only transmit the location of
a qualifying node (or its identifier, if nodes have fixed locations) and two bits that indicate which
predicate(s) the node qualifies (e.to, implies thatP; is qualified, butP, is not). Sensors are
synchronized such that only two consecutive levels of the tree are active at the same phase (while
the remaining nodes are sleeping), as discussed in Section 2. When a lower-level node senses and
transmits data (if not filtered by, or /) to its parent, its parent listens, reads and combines its
readings with those of its children; the combined readings are then sent to the upper level during
the next phase. We denote this simple, but generic protocol by AQB (i.e., the first ‘acquisitional’

protocol).

As an example, consider the sensor network depicted in Figure 2. Nodes within communication
range from each other are connected by edges. Solid edges denote the structure of the commu-
nication tree (rooted at nodg). The values next to the nodes denote the (current) local tem-
perature (T) and humidity (H) conditions. L&="T >50", P,='H<40’, and c equals the sensor
communication range (one hop). Nodgsand s, qualify P, whereasss ands; qualify P,. The

only join result is(s,, sg). In the first phase of the cycle,, s4, ands; (level-3 nodes) sense

their values, apply the predicates andsends(s;.loc, 10) (i.e., only P is satisfied) to its parent

(i.e., s5). Similarly, (s7.loc,01) is sent tosg. In the second phaséss.loc, 10), (s;.loc, 10), and
{(s7.loc,01), (s¢.loc,01)} are sent to the root, by, s5, andsg, respectively. Finallys; forwards

all these tuples to the base, where the join result is computed.
4.1.2 Pruner-based acquisitional protocol

Protocol AQB may send more information than necessary to the base, as many tuplés (&g.10)
in Figure 2) are likely not to participate in the spatial join. In this section, we propose AQP, a pro-

tocol that improves upon AQB, by adding more sophisticated filters in the intermediate nodes of

10

Figure 2: Join evaluation example

the tree. AQP is based on the observation that a sensed valuer(eaj.a nodes; which satisfies

a selection predicate (e.g?;) can be pruned by an ancestd;) of s;, if (i) a(s;) collects all
information about the spatial neighborhoodspand (ii) no matching tuple (e.g., one that qualifies
P,) for the measurement has been collected py). For example(s;.loc, 10) in Figure 2 can be
pruned byss, since any measurements that qualifywithin one hop froms; should have been

collected or generated by.

Formally, let(Py, P, c) be a join query registered over a sensor netw&. For each sensor
s € SN, we define itsmeighborhood sensor sét(s) asL(s) = {s' € SN|dist(s,s’) < ¢}, and
its descendant sensor sBt s) as the set of sensors in its subtree (of the routing tree). The pruning

technique applied in AQP is based on the Lemma 1 (with trivial proof):

Lemma 1 Lets; be a sensor satisfying, (s;.m). Leta(s;) be an ancestor of;, such thatl.(s;) C
B(a(s;)). If there is nos; € B(a(s;)) satisfyingP(s;.m), thens,.m cannot participate in an

output tuple of P, P, c). A symmetric argument holds for the measurements which qualify

For any senso#, there is at least one ancestor (the root) for whig¢k) C B(a(s)), thus we can

apply this idea to prune measurements acquired from the network that do not participate in query
results. The goal is to find the closest ancestos wf apply the filter, since, in this way, filtering
effectiveness is maximized. For each naedtheprunerof s (with respect to a query) is the nearest

ancestor ok, whose subtree contairdgs). In Figure 2,s; is the pruner ok; ands,.

11

We design the following technique for determining pruners efficiently. Itis applied only once while
the query is disseminated and the routing tree is constructed. When a sensorbrodecasts

the query, at the same time it collects ids/locations of its neighbors and determhiags(the
cardinality of L(s)), which is then broadcasted to all nodedlifs). Starting from the leaf nodes,
each sensa¢ sends up the communication tree a table consisting;0fL(s;)|, 1) tuples for all

s; € L(s) plus a(s, | L(s)|, 1) tuple for itself. Intermediate tree nodes merge the tables they receive
from their children by summing their counters (the last field of the tuples). The first node which,
after the aggregation, haga |L(s)|, |L(s)|) tuple becomes the pruner feand does not forward

the tuple to its parent node.

After this process, each nodekeeps a list of itgruneeq(i.e., nodes for whichs is the pruner).

The difference between our improved acquisitional protocol AQP and the baseline AQB is that, in
AQP, wheneves retrieves information from its subtree regarding the join query, for each prunee
that transmits a tuple qualifying P, (), s checks whether there is a matching tuple For(P;)

in its acquired table, which also qualifies the distance predicatemwiththere is no such tuple,
thenr is pruned from the data sent to the parentsofAQP manages to filter early some node

readings (e.g{si.loc, 10)) that do not qualify the join predicate.
4.1.3 Distributed evaluation

The class ofdistributedprotocols aim at computing query results locally around network nodes
and sending them to the basestation. Such a technique is expected to pay-off for low-sélectivity
joins, where many measurements that satisfy predidates P, do not qualify the join condition.

During the first stage of distributed evaluation, nodes that qu&tfyand P, communicate and
determine the join results. During the second stage, the routing tree is used to send the join results

to the base.

Initially, all nodes sense the measurements relatdd end P,. If a nodes; qualifiesP;, it broad-

casts its location to its neighborhood. If a nodequalifies P, it listens for potential messages

3Low-selectivity joins output few results while high-selectivity joins produce many results.

12

from nodes that qualify?,. For each received message,produces a join result. Nodes that
qualify neitherP; nor P, remain asleep until the first stage terminates (they may have to wake and
forward join results, during the second stage). Note that the rolé3 ahd P, could be inter-
changed; we denote by DS1 (DS2) the distributed protocol, where nodes quakfy{g) send
messages and those qualifyily (P;) receive them and compute join results. Intuitively, DS1
should be preferred to DS2 when nodes that quahfyare fewer than those qualifying,, since

transmission is more expensive than listening and receiving [15].

As an example, consider again the network of Figure 2. In the first stage of the distributed protocol,
measurements are collected, and (i) nogdeands, (qualifying P;) broadcast their locations, (ii)
nodessg ands; (qualifying P,) listen for potential messages, (iii) nodess,, ands; stay asleep.
After nodesg reads the transmission ef, the join result(ss, s¢) is formulated. This is the only

tuple that will be forwarded to the root at the second stage (result acquisition).

So far we have ignored the cost for sensing measurements at nodes, which is usually small com-
pared to communication costs. For some measurements, however, this cost may be significant [14].
For cases where sensing fB5 is significantly expensive, it might be beneficial to defer sensing
and instruct all nodes to listen fd?, messages. Only if a listener receives a message fréin a

node, it performs expensive sensing fgrmeasurements. We denote this protocol by DS1
4.2 Complex join queries

We now consider more complex pattern queries, as described in Section 3. Queries correspond
to star graphs, where the center sensor node should satisfy selection prédicatd there are

k border nodes that should qualifys within distancec from the center. A star pattern query is
simply denoted by a quadrup{€c, Pg, ¢, k). As in Section 4.1, we assume thds at most equal

to the radio range of the sensors.

Acquisitional protocols We can directly apply the brute-force acquisitional protocol AQB. Sen-
sor readings that qualiff- or Py are unconditionally sent to the basestation, where the pattern is

evaluated. In addition, we can adapt protocol AQP as follows. A tuple qualififingvhich has

13

been generated by a nodgis filtered at noder(s;) (pruner ofs;) if there are less thah tuples
that qualify Pz and reachr(s;) (otherwise, we know that there may be a query result that contains
the tuple). A tuple qualifyingPs, which has been generated by a nedés filtered atpr(s;) if

there is no tuple satisfying. that reachegr(s;) (i.e., similar to binary join queries).

Distributed protocols A simple way to extend the distributed protocols for complex queries is

to ask ‘border’ nodes (those qualifyings) broadcast their locations. At the same time ‘centric’
nodes (those qualifying) listen for potential messages. If a centric nogereceives at least

k messages, we know that there is a query result centered athe query result is sent to the

base station through the routing tree, at the second stage of the protocol. We denote this protocol
by DSB. An alternative protocol aims at minimizing the messages broadcast from border nodes;
presumably more sensors qualis than P for the pattern query to have small selectivity and
correspond to an interesting, exceptional event. Protocol DSC asks nodes that Budtinter

nodes) to send a message and nodes that qualiffborder nodes) to listen. If a border node
receives a message it sends a response with its location to its neighbors. Finally, center nodes

listen for messages and those that hear from at leasties send the query result to the base.
4.3 Multi-hop queries

Distance constraints longer than the radio rahgenpose difficulties for distributed evaluation
protocols. Given a node, there is no bound for the number of hops required to find the nodes
within distance: (>h) from s. Nonetheless, for a relatively dense and uniform network, we could
set an approximate upper bouidor this number. Letoveragéc,)\) be the probability that two
sensor nodes within distaneeare reachable withith hops. Figure 3 plots the coverage as a
function of A on a typical random network (with the default parameter values discussed in Section
7). For instance, for the curve of:“= 3h”, c is set to 3 times of the radio range Observe

that the coverage increases rapidly wheincreases. In order to balance the coverage and energy

consumption, we suggest to set [%ﬂ for multi-hop communication. We now discuss in more

4In fact, if s; receivesn > k messages, we have multiple query results, one for é’@h:ombination of border
nodes. Nonetheless all these results can be compressed to a single tuple containéhgll qualifying border nodes.

14

detail the protocols that can be applied for queries that involve multi-hop distances.
100 : : :

80 f

60 |

40 |

Accumulative percentile (%)

Hops

Figure 3: Coverage in multi-hop communication

Acquisitional protocols Since AQB does not apply any filtering or in-network evaluation, there

is no difference than the method described in Section 4.1 for multi-hop queries. For AQP, the only
difference is in the initialization of the query, at the stage when pruners are defined. Each node
needs to determine the number ofithop neighbors before sending it up the communication tree.
This process requires flooding a large number of messages and it is more expensive than the simple
1-hop communication. However, it is performed only once, during the initialization of the routing

tree and it is expected to pay off if the query has long lifetime.

Distributed protocols The distributed protocols described so far can be easily adapted for multi-
hop queries, at the expense of higher communication cost, since the whole network may need to
stay up in order to listen and relay potential messages, during the first stage (computation of query
results). IfA is large, the cost of flooding may be too high for distributed evaluation to pay-off. In

such cases, the acquisitional protocols are expected to dominate.

A bi-directional distributed protocol For queries that are simple binary joins, we can apply
a bi-directional distributed protocol (BD) in order to reduce message flooding during the first
(computation) stage. Instead of asking nodes that qualifio flood their locations up ta hops

(which are then received by listeners that qualfyand converted to query results), we ask all

15

nodes that qualify eitheP; or P, to send their locations and a pair of bits indicating the qualified
predicates (i.e., the information sent by nodes to the base according to AQB/AQP). However, the
flooding range is now reduced. Nodes that qualfysend their messages uptdiops ¢ < A)

and nodes that qualify?, up to\ — = hops® During this process all nodes of the network are up

in order to listen and relay messages. If a node receives a message frommatbde and &

node, it formulates and caches the join result. In the second stage of the algorithm, nodes send
the computed results up the tree to the basestation. Note that duplicate results could be computed,
since the same pair of messages may be received by the same node. For instance, consider a
guery that seeks for high-temperature/low-humidity readings within2 hops in the network of

Figure 2. When BD is applied, all nodes that sense either high temperatiedr low humidity

(<40) transmit their readings up to 1 hop (i.e.= 1, A — = = 1). Both s5 andss then identify

(s2, s7)) as a result. Duplicate results are eliminated by merging operations at the second stage of

the protocol, when all results are sent up the communication tree.

An interesting problem is to pick a value ofsuch that the communication cost is minimized. In
general; can take\ + 1 values (the extreme cases= 0, x = A correspond to the uni-directional
distributed protocols DS1 and DS2). Intuitively,should be chosen to minimize the expected
expansion area(Sel(P;) - 2%+ Sel(P,) - (A — x)?), whereSel(P;) corresponds to the probability
that a node qualifie®; (for i = {1,2}). In other words, ifP, has low selectivity (few nodes
qualify it) compared toP,, nodes that qualify it should transmit far and nodes that quatify

should transmit close in order to minimize network traffic.

5 Cost Analysis

In this section, we analyze the costs of the proposed protocols. We assume that the basestation
maintains statistics about the sensed measurements. These statistics can be used to estimate the
selectivity of selection and/or join predicates. They could either be collected by sampling readings

from the whole network regularly, or by asking the sensors to compute and maintain local sum-

5A node that qualifies both predicates sends its messagerap:tfr, A — x} hops.

16

@ ®&—<
® o C—0O
random grid ladder

Figure 4. Three network topologies

maries, which are consolidated and sent to the base periodically (as in [6]). To provide examples
throughout the analysis, we consider three network topologies, which simulate cases of randomly

or manually placed sensors.

Figure 4 shows graphically the RANDOM, GRID, and LADDER networks. RANDOM represents

the most common case with randomly deployed sensors, GRID network models the situation where
sensors are distributed regularly, and LADDER corresponds to the scenario where sensors are
placed along a road/track. In each network, the lines connect node pairs within 1-hop distance,
assuming that the radio range equals the distance between two consecutive nodes in a row of the
grid. The solid lines show potential routing trees, assuming that the root nodes are central to each
network.The GRID and LADDER topologies are also shown in Figure 4. Due to space constraints,

we confine our discussion to single-hop binary join queries.

Protocol AQB We start by analyzing the cost of protocol AQB, which is the simplest. Recall
that each node generates a tuple if it qualifies either 6f and P,. Let Sel(P;) and Sel(P,)

be the selectivities of the two predicates (i.e., the probabilities to be satisfied)F bet the
probability that a node generates a message. Assuming that the two predicates are independent,
E=1—(1-Sel(P,))(1—Sel(P)). Every node forwards tuples from itself and all its descendants

to its parent in the routing tree. LeB(s)| be the number of nodes in the subti®@és) rooted at

nodes. Then,s hasl — (1 — E)B®)! probability to transmit and when it does, it senéss)| - £

messages to its parent. LEtbe the maximum number of tuples that can fit in a packet. The total

17

number of transmitted packets is expected to be:

Tags = Z (1—(1— E)IB(S)\) {Ww (1)

sESN ¢

The number of received packets by sensor nodegaiss = Taqs — (%} since the root’s
packets are received by the base. After adding the costs for sampling two measurements per node,

we derive the following formula:
COSt(AQB) = CTTAQB + CRRAQB + N(Cgl + CSQ) (2)

In Eq. 2,Cr (Cg) andCy; (Cso) are the costs for transmitting (receiving) a packet and sensing
for P, (P). Note that we ignore the processing cost, which is insignificant (only few calculations

are performed at each node). We assume|tBéat)|, for eachs is known by the optimizer. For

random networks, this information can be forwarded to the base after query dissemination.

Protocol AQP Protocol AQP is similar to AQB, except that tuples may be filtered out at pruner
nodes. LetF; be the probability that a node satisfi®s and no node within distancefrom it
satisfiesP,. We can computé’; if we know the average size of a neighborhood. bt the join
distance. In a random network, the expected number of nodes within distdraza@ a random
node (excluding itself) is given by = N - wc?/A, where N is the number of nodes, andl is

the area of the workspace. Thel; = Sel(P;) - (1 — Sel(P,))**!. Similarly, we can derive

Ey = Sel(P,) - (1 — Sel(Py))P*. The probability that a node satisfying eith@r or P, does not
participate in a join result i&; + E», since the two events are mutually exclusive (a node is within
distance: from itself). Thus, the probability that a generated tuple will be prun@éii.g2 and this

will happen once it reaches the corresponding pruner node.

In order to estimate the cost of AQP, we need to know, for each ndtle numbem(s) of nodess’
for which the prunergr(s’) appear in the subtree rootedsdi.e., pr(s’) € B(s)). The basestation

can derived(s) (similarly to the derivation of B(s)|). For random topologies, during the process

18

of determining the prunees (see Section 4.1.2), nodes compute and forward this number to the
base. The expected number of nodes in a suld®(@é rooted ats not pruned by a pruner which is

also inB(s) is:
. E) + By
E

K(s) = |B(s)] — ®(s) 3)

The numberlyqp of transmitted packets during AQP can be estimated after replabifig| by
K(s) in Eq. 1. Finally, the cost of AQP becomes:

Cost(AQP) = CrTaqp + CrRaqp + N(Cs1 + Cs2) 4)

Distributed protocols Consider the distributed protocol DS1. In the first stage, nodes that qual-
ify P, broadcast messages and nodes that quBlifisten, potentially receive them, and formulate
query results. Thug}s, = N - Sel(P;) packets are sent. In addition, there is a listening cost for
Lis, = N - Sel(P,) packets and a reading cost fB},q, = (IV - Sel(P)) - (p - Sel(Py)) packets.

Thus the total cost of DS1 in the first stage (including sampling) is:
Cost'(DS1) = CrThg; + CrLbg; + CrRbg + N(Csy + Css) (5)

The corresponding cost of DS2 can be derived by swappirand P, in Eg. 5. Observe that the
reading costs of DS1 and DS2 are identical. Since transmitting a message is much more expensive
than listening (i.e., Cr > Cp), DS1 should be preferred to DS2 $fel(P,) < Sel(P,) (and

vice-versa).

The second stage of all distributed protocols is similar to AQB; join results are sent up the routing
tree and no filtering is performed. Therefore, to compute the packet transmiggigrduring the
second stage of DS1, it suffices to adjust Eq. 1, substitufifoy £’; the expected query results
generated by a nodel’ equalsSel(P,) - (p - Sel(P;)) (i.e., component of?{,q,). In addition,

C becomeg’’, since the capacity of packets now changes (join results are transmitted instead of

5We employ low-power idle listening [15], where a node listens only for a short time interval for potential messages.
See Table 1 for some typical operation costs.

19

single node locations, as in AQB/AQP). The reading d&&t;, during the second stage is derived

by removing fromZ?, the root’s transmissions. Overall, the cost of DS1 is given below:
Cost(DS1) = Cost' (DS1) + CrTis, + CrRYg, (6)

We conclude the analysis by considering the cost of the protocol, Dich is described at the

end of Section 4.1.3. This protocol asks nodes that quélifio transmit messages aatl nodes

in the network to listen and receive messages unconditionally. Only nodes that receive messages
sense and verify’. In this casel}y,, = Tpg;, but L, = N andRpg,, = N - (p - Sel(P));

i.e., the listening and reading costs increase. On the other hand, the sampling cost is reduced to
SApg = N(Cs1 + (p - Sel(Py))Cs2) and the overall cost of the first stage is:

COStl(D81/) = CTT]%Sl/ + CLLll)Sl/ + CRR]l)Sl/ + SA]I)Sl/ (7)

By comparing the first-stage costs of DS1,DS2,D&hd DS2 (i.e., the symmetric of DS}, the
optimizer can determine the most appropriate distributed protocol based on the selectivities of the

predicates and the sampling costs.

6 Extensibility

In this section, we discuss extensions of spatial pattern queries and the issue of multiple query

processing.
6.1 Queries with temporal predicates

The queries that we have seen so far apply to a particular time-snapshot of the network (i.e., a single
epoch), looking for sensor combinations that qualify unary selections and binary spatial predicates.
Analysts may also be interested in patterns that inctedgoralpredicates between sensor read-
ings. For example, consider tispatio-temporajoin pattern query: “report cases, where a high

temperature is sensed at most 5 seconds after a nearby low-humidity reading”. In addition to the

20

spatial constraint (nearby), qualifying pairs of readings should also satisfy a temporal constraint.
Formally, Definition 1 of Section 3 can be enriched to include constrdiptbetween pairs of
variables(v;, v;). The temporal constraint can be in the form of an interval (e0g3]) of the
allowed time difference;.t — v;.t, wherev.t denotes the time instant the sensor value that instan-
tiates variable was sampled. Note that the spatial-only queries we have seen so far in fact hide a
temporal constraint; in a qualifying combination of sensor readings, all readings should be taken

within the same epoch.

The acquisitional and distributed protocols discussed in Section 4 can easily be extended for han-
dling queries with temporal constraints. For AQB, we only need to maintain (at the basestation)
a window of recent readings (defined by the longest time difference between query variables). In
AQP, pruner nodes should keep track, for every prunéee last time a value that qualifigy

or P, was last seen in their neighborhood. Based on this information, a readingsfoam be
pruned, if we know that there is no tuple that can potentially join with it. Finally, in the distributed
protocols, the sensor nodes must keep in their memory a window of last sensed values qualifying
the ‘oldest’ predicate (e.g., low humidity in the example query above). Readings that qualify the
‘most recent’ predicate (e.g., high temperature) are broadcast and joined with the buffers of their

neighbors, where query results are computed and sent to the base.
6.2 Monitoring the validity of query results

There are cases, where query results remain valid for long time. For instance, once a high-
temperature/low-humidity combination is being detected, it could stay valid for a long period.
For such cases, continuously reporting the same result wastes resources. The only interesting in-
formation for long-lasting patterns is when they cease to be valid. Thus, an interesting problem
is to monitor the validity of query results, while minimizing energy consumption. The distributed
protocols are especially suitable for this purpose. As soon as a query result is identified by a node
s, all other participant nodes are notified (by a simple broadcast #onAt the same times
becomes responsible of notifying the basestation for the invalidation of the pattern at some future

time instant. While the values of the participant nodes satisfy the corresponding selections, the

21

result remains valid. If a node violates its local selectio®;, it sends a message 0 which

notifies the base.
6.3 Multiple query optimization

Multiple query optimization is an important issue for sensor networks, due to the high evaluation
cost. For simplicity, assume that queries have a common routing tree. For extending protocol
AQB, we can apply the techniques of [1] that push down tables with all selection predicates that
appear in the patterns. A simple adaptation of AQP is to compute and use at every node a set
of prunees for each distance value which is a multiple of the radio range (i.e., one-hop prunees,
two-hop prunees, etc.). Tuples that qualify selections are enriched with a bitmap indicating the
set of queries for the selections of which they are valid. A pruner keeps track of the queries that
apply in each prunee list and uses it to potentially filter tuples, relevant to these queries. The
distributed protocols can be effective only when multiple queries share common predicates. On
the other hand, (as suggested in [14]), in-network distributed evaluation of multiple queries may
not be appropriate if their types and predicates vary greatly. A promising idea is to adopt a hybrid
approach, where common selection predicates and low-selectivity joins are pushed in the network
and expensive queries are left for evaluation at the basestation. In the future, we plan to study the

optimization of multiple spatial pattern queries extensively.

7 Experimental Evaluation

In this section, we evaluate the efficiency of the proposed protocols on an experimental platform
that simulates real sensor networks. Table 1 shows the components we consider when measuring
guery cost (taken from [15]). In all (but one) experiments, the selection predicates are applied
on the cheapest to sense measurements, thus the sensing cost is negligible compared to commu-
nication/listening costs. We do not count the computational cost, since the operations involved

in our protocols are cheap filters or distance checks. The packet size (excluding the header) was
set to 30 bytes (typical for MICA motes [13]). Our protocols pack multiple events/messages in

one packet, before transmitting them. The acquisitional protocols use 18-bit messages (node-id

22

or coordinates plus 2 bits for indicating qualified predicates). The distributed protocols use 32-bit
messages for sending pairs of node ids/coordinates to the root. As in REED [1], we assume long-
running queries and do not count the one-time cost of initializing the query in the sensor network.

In each experiment, we run a protocol for 100 epochs and record the average cost per epoch.

Operation Cost (nAh)
Transmitting a packet 20
Receiving a packet 8
Idle listening (for 1 ms) 1.25
Thermistor sample 0.35
Barometric pressure sample 1.39
Photoresistor sample 3.43
Infrared sample 9.44
I*CTemperature sample 20.83

Table 1: Costs of MICA operations
We experimented with the three network types described in Section 5, denoted by RANDOM,
GRID, and LADDER. The default network size i = 1024 nodes. For all topologies, the root
node of the routing/aggregation tree is chosen as the center of the network [13, 5]. To generate the
RANDOM network, we randomly placed nodes inside a square area of/SMand set the radio
range tol.5. These settings result in a network that is fully connected and not extremely dense, as
shown in Figure 5. The average degree of a sensor node is 6.8, 4, and 3 in RANDOM, GRID, and
LADDER topologies, respectively. The corresponding routing trees have heights 24, 33, and 258,
respectively. Unless otherwise stated, the selectivities of unary predicate®(i.B,) are set to
0.05. For a single-hop binary join, these settings rell+20 join results on average (depending

on the network topology).
7.1 Single-hop binary joins

We first study the performance of the proposed protocols for low-selectivity single-hop binary
join queries (with two selection predicatés and /). Protocols AQB, AQP, and the distributed
protocol (described in Section 4.1) are compared. By default, the selectivitiésaid P, are

equal, so DS1 is equivalent to DS2; we simply denote either of them by DS.

23

¥ X .
))
N Y / &
A)) ‘ \"(
_ ‘ -
\ ‘ s S 2 N < \
| % ANYA

(b) routing tree

Figure 5: RANDOM topology

Figures 6a to 6¢ show the averaged costs (with error bars) of the three protocols as a function
of the join selectivity. The join output size was controlled by tund(P,) (=Sel(F,)). For

joins with few results, Protocol DS is more efficient than AQB and AQP because pruner nodes (in
AQP) are located several levels above their prunees and measurements that qualify the selections
participate in very few or no join results. In GRID, the effectiveness of AQP is low because pruner
nodes appear at high levels of the tree. On the other hand, in LADDER, pruning effectiveness is
maximized, since each node has its pruner only 1-2 hops away. As the join output size increases,
the energy consumption increases for all protocols, as more tuples are transferred to the base, but
the relative performance of DS compared to AQB/AQP decreases, as the number of join results
compared to the tuples that qualify eithBr or P, increases. Eventually, DS becomes worse

than the acquisitional protocols, since all readings that qualify the selections participate join result
and the join output size well exceeds number of tuples that qualify either selection. Figure 6d
validates the accuracy of the cost models, presented in Section 5. We applied equations in Section
5 to estimate the costs of the protocols for each gagon the RANDOM network and averaged

the error‘“t(ffc)t_—““(@)‘ for all queries having the same join selectivitg((Q)) andact(()) are the

(@)
estimated and actual costs, respectively). Observe that the error is quite low (less than 10%) and

decreases with the output size, since queries with more result have less randomness. We note that

24

error for GRID and LADDER (not shown) is even smaller.

120000 ‘ ‘ AQE 100000 AQB —o—
s e "t
100000 | 4]] 50000 | %]
80000 e
z < 60000 |
c / c /
=60000 |
7] / 7] /
3 / S 40000 |
40000 § ' .
20000 | 20000 | o o
B “/’:EE/‘E&//EH
0 0 — ‘
1 1 10 100 1000
Result cardinality Result cardinality
(a) RANDOM topology (b) GRID topology
500000 ‘ : 10 |
AQB —6— Gk
AE
DS =~ DS &=
400000] 8t . B
. / k\tr\ \
£300000 | / T 6 TR — —_—
< / :/ N
@ / <} \\ ‘*‘E
G 200000 | O o4 N
¥\\
T
100000 | 2t
> _#,4 ____,_m-E"‘{‘i:—/
0 [St &3 & 0
1 10 100 1000 1 10 100 1000
Result cardinality Result cardinality
(c) LADDER topology (d) estimation accuracy

Figure 6: Effect of join output size

Table 2 provides statistics about the effectiveness of pruner nodes in AQP and sheds some light
to the unstable performance of the protocol at different network topologies. The table distributes
the 1024 nodes of each network into classes based on the percentage of hops saved if their tuples
are pruned by AQP. For instance, if a nodéalls into the80% — 100% class, then the quantity

hops betweepr(s) and the basey: . . .
hops between and the base qi.e., the path ratio saved if a tuple fronwas pruned byr(s)) is between

0.8 andl. As explained, pruner nodes are close to their prunees in the LADDER network, resulting
in large cost savings. On the other hand, in the GRID network, the chances that a message is not

pruned until it travels a long way are high. Nodes in GRID are not clustered thus there is a high

25

probability that a neighborhood is split into different subtrees. The effectiveness of pruners in

RANDOM is in-between the two other topologies.

Ratio(%) | RANDOM | GRID | LADDER

80-100 414 179 994
60-80 250 280 16
40-60 165 243 9
20-40 105 190 5
0-20 90 132 0

Table 2: Number of nodes for each hops-saving class (protocol AQP)
Next, we verify the assertion that AQP and DS achieve better cost balancing than AQB among
different nodes. Figure 7 shows the average cost per node as a function of node’s level in the
routing tree, in the RANDOM and GRID topologies (the plot for the LADDER network is similar).
In general, sensor nodes at higher levels receive and forward more data so they have larger burden.
DS and AQP have better balancing, since they manage to eliminate tuples that do not participate
in join results early, either by computation of the exact join results (DS) or by filtering tuples at

pruner nodes (AQP).
100 ‘ ‘

80

70 +
80
60 |
60 50t

40
40

Cost per node (nAh)
Cost per node (nAh)

20

1 4 7 10 13 16 19 22 25 28 31 34
Sensor node level Sensor node level

(a) RANDOM topology (b) GRID topology
Figure 7: Cost balancing of sensor nodes

We also tested the effect of the network density to the relative performance of the protocols. We
gradually increased the communication range in the GRID and LADDER networks and measured
the costs of the three protocols. Figure 8 plots the average energy consumption as a function of

the average node degree in the two networks. In this experiment, wefkeseq P, constant and

26

setc to the increasing communication range, thus the join results increase with the density. As
the network density increases, the height of the routing tree decreases and AQB becomes more
efficient. The cost of AQP follows a similar trend in GRID networks, since the effectiveness of
pruners is low. In LADDER networks, on the other hand, the cost of AQP increases initially with

the density, as the effectiveness of pruners drops (due to the increase of neighborhood sizes and join
results), and then drops (due to the high impact of the tree’s height decrease) With the increase of
density, protocol DS spends more energy in the distributed stage as more nodes receive messages
from their neighbors. In addition, it generates and forwards more join results in the second stage.

The additional costs are compensated by the tree height decrease, thus, the performance of DS

stabilizes.
16000 40000 AQE o=
AQP ——

14000 35000 f DS &
12000 {1 =30000 {
< <
< <
£10000 1 £25000 ¢
[0 (0]
g 8000 1 220000 ¢ T —
o) [] - = -t
= 6000 5 2150001 o g T B o
(e} > O
© 4000t 1 ©10000

2000 {1 5000}

0 ‘ : ‘ ‘ ‘ 0 ‘ : ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 2 4 6 8 10 12 14 16 18 20
Node degree Node degree
(a) GRID topology (b) LADDER topology

Figure 8: Effect of network density

In the next set of experiments, we test the performance of the protocols on the RANDOM topology.
Figure 9a shows the cost of the protocols as a function of number of nodes, while keeping the
network density fixed. Note that the cost difference between the protocols is not greatly affected
by the network size. So far, we have assumedthand P, have the same selectivity. We now test

the effect of unbalanced selectivities at the selection predicates (Figure 9b). For this experiment,
we kept the product of the two selectivities fixed and varied the ratio Sel(P,)/Sel(Py). For
various values of we plot the energy consumption by the different protocols. StweéPr;) #

Sel(P,), we split protocol DS to DS1 and DS2. DS1 is more efficient than DS2 for 1 and

27

its cost decreases with As r increases, the number of sensors that quahfglecreases, and so

do the transmitted messages by DS1. Although the number of listeners (i.e., nodes that qualify
P,) increases, the listening (and reading) cost is significantly lower than the transmission cost
(see Table 1), thus the overall cost of DS1 drops. On the other hand, the cost of DS2 (slightly)

increases withr, due to the increased number of transmissions. Acquisitional protocols become

more expensive with, since the number of sensors that qualify eitReor P, increases.

35000 ‘ ‘ ‘ 25000
30000 | 20000 |
25000 |
= 55000 |
20000 ¢ ES
= %
é‘l 5000 | 810000
10000 |
5000 |
5000 |
0 . . . 0 . . .
0 500 1000 1500 2000 2500 0 4 8 12 16
Number of nodes Ratio of predicate selectivity
HH 6l(P2)
(a) scalability (b) effect of;el(—Pl)

Figure 9: Net. size / predicate skew (RANDOM)

A natural question for advanced sensor network protocols is whether any additional operations
performed by them affect the data loss rate, due to communication errors. We first evaluate the
effect the packet loss rate has on the performance of the algorithms (Figure 10a). As the plot
shows, the relative performance of the methods is not affected by this factor. Figure 10b shows
the join output size as a function of packet loss rate. Observe that similar number of results are
detected by different protocols. Thus, the functionality of the protocols does not affect the result

loss rate in lossy networks. On the other hand, even with relatively low packet loss rates (10%) a
large percentage of results is not detected. This is expected, as the probability of a join result (or a
component tuple in a join result) to reach the basestation decreases exponentially with the number
of hops the message needs to travel. The reliability of the network can be increased if during

the acquisition phase nodes request an acknowledgment from their parents when they sent data to

’For a fixed productSel(P) - Sel(Py), the probability for a sensor to qualify eithéh or P, (i.e., 1 — (1 —
Sel(Py))(1 — Sel(Pz))) is minimized wherSel(P,) = Sel(P;) and increases with.

28

them. Alternatively, multi-path routing techniques paired with duplicate elimination mechanisms
(e.q., [5, 16]) could be applied. Intuitively, protocol DS is more appropriate for multi-path routing
than AQB (or AQP), since (i) the amount of transferred data is low as only (rare) join results are
routed and (ii) the pruner nodes of AQP will be less effective, since tuples from prunees may
find other paths to the root. A natural technique for improving network reliability is to introduce

redundancy in message transmission.
12000

10000

Result Cardinality

0 5 10 15 20 0 5 10 15 20
Packet loss rate (%) Packet loss rate (%)
(a) cost (b) result cardinality
Figure 10: Effect of packet loss rate (RANDOM)

We now examine a case where sampling data is significantly expensive. We consider a query,
where P, applies on barometric pressuig, applies on/>C temperatures and the selectivity of
each predicate is 0.05. We compare the original protocol DS, with the variant of it, described in
Section 4.1, which asks all nodes to unconditionally listen to messages from nodes that qualify
P,. Only nodes that receive messages apply sampling to verify the selection conditin of

We denote this protocol by DSTable 3 displays the cost-breakdown of the join for DS and DS
Observe that protocol D&as higher packet receiving cost and idle listening cost, but it has a much

lower cost on sensing the expensive measurement. In total, prototoliferforms protocol DS.

In general, DSshould be preferred to DS when (i) sampling for eitigor P, is very expensive

8Let p be the packet loss rate of each sensor node. Consider a fixed retransmission scheme, where each sensor node
repeats: times its transmitting/receiving/idle listening operation. Thus, the probability of successfully transmitting a
packet (between neighbors) increases rapidly ftbrp) to (1—p*). For example, suppose that the original packet loss
rate isp=0.2 (i.e., successful transmission probability of 0.8)zA2 (>=3), we double (triple) the energy consumption
of sensors and the successful transmission probability (between neighbors) rises to 0.96 (0.992). Thus, we are able to
achieve a very high successful transmission probability, with only a small faghoenergy consumption.

29

and should not be performed unconditionally or (i) eitl¥efé(P;) or Sel(F2) is close to 100%;

the majority of nodes qualify the predicate, so sensing should follow listening.

Average nodes / epoch

Operation Protocol DS \ Protocol DS
Transmitting a packet 162.8 162.8
Receiving a packet 126.6 461.9
Idle listening 49.9 1024
Sensing barom. pressure 1024 1024
Sensing/*C temp. 1024 16.2
| Totalcost (nAh) | 27084.5| 9992.0]

Table 3: Cost breakdown for a query with expensive predicates (RANDOM)

7.2 Complex joins

In this section, we evaluate the effectiveness of the protocols described in Section 4.2 for spatial
pattern queries with variables forming a star graph topology. Figure 11 shows the cost of the
protocols as a function of number of border nodes, after fixing the selectivities of both predicates
Pz and P to 0.1. When the number of border nodes increases, only DSB and DSC achieve
significant cost reduction. For queries with many border nodes, very few results are generated and
the level-off costs of DSB and DSC indicate the cost of the distributed phase. DSB is slightly

cheaper than DSC, because DSC requires more nodes to transmit packets in the distributed phase.

The next experiment evaluates the protocols by varying the selectiviti€% a@ind Pz. Figure
12a shows the cost of the protocols as a functiorPgk selectivity, with 3 border nodes and
Sel(Pg) = 0.05. DSC has the best performance at very small valueSedfF-). DSB starts
outperforming the other protocols &sl(P-) increases. Figure 12b shows the cost of the protocols
as a function ofSel(Pg), for queries with 3 border nodes asd/(P-) = 0.05. The situation is
reversed in this case. DSB has the best performance at low valde§ éf;), while DSC becomes

the best protocol as the number of border nodes increases.

30

20000

AQB ——
AQP ——
DSB -
DSC -<-
15000
g T L A]
10000 |
[%2]
o
() Fee
M- T
5000 | R e — {
.
R = S 0
. | ‘
2 3 4 °

Number of border nodes

Figure 11: Cost as a function of number of border nodes, RANDOM topology

30000 AQB —o— | 30000 AQB ——
DS 8B
25000 ¢ DSC -%- 25000 DSC --
20000 | 1 20000
< ey
g . T
—15000 t - —15000 o
%) A 7] _
] — [e] —
(&) o (&) o it
10000 A ___.-x 10000 o
- T A = e)
5000 e - 1 5000 ; + T
O ST [P el IV
0 S i E . . . 0 %é
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3
Center predicate selectivity Border predicate selectivity
(a) varyingSel(P¢) (b) varyingSel(Pg)

Figure 12: Effect of selectivity (RANDOM)

7.3 Multi-hop queries

We now study the performance of the protocols for multi-hop binary join queries. In protocol

BD, z is set toA/2. Figure 13 plots the costs as a function of join distance, on all three network

topologies. In the RANDOM network, acquisitional protocols outperform distributed protocols for

join distances greater than one hop. The result for GRID topology is similar except that acquisi-

tional protocols start outperforming the distributed ones at a longer join distance. In the LADDER

network, although the distributed protocols perform better than AQB, protocol AQP maintains

the good performance it has at single-hop joins for multi-hop queries and greatly outperforms the

31

distributed methods. The effectiveness of pruners remains high due to the linearity of the topol-

ogy. Note that the bidirectional protocol (BD) does not have large performance difference than the

purely distributed protocol. It turns out that BD has high packet reading cost, since intermediate

nodes collect messages unconditionally.

In addition, BD generates many duplicate join results

which increase the cost of transmitting them to the basestation. In summary, acquisitional proto-

cols are favorable for multi-hop queries, due to the extreme cost of flooding the selection results at

long ranges.
o e
DS 5~ | 60000t DS &~
80000 ¢ BD - A BD - |
50000
£60000 | =7 Z40000 e
= £ -
B "z q I L
840000 830000 P
20000 |
20000 t e —
R N 10000
| e T K |
1 2 3 4 1 2 3 4
Join distance (hops) Join distance (hops)
(a) RANDOM topology (b) GRID topology
60000 AQB ——
ABE &
50000 BD -
40000 P T
=30000 | L
20000 | R e
T
o
10000 |
0 L
1 2 3 4

Join distance (hops)

(c) LADDER topology
Figure 13: Cost as a function of join distance

Finally, we verify the trade-off of disseminating continuous queries in a sensor network and apply-

ing in-network filtering or evaluation, as opposed to continuously and unconditionally acquiring

measurements, and evaluating queries at the basestation. Table 4 shows the costs of the various

32

protocols for disseminating queries, creating the routing tree, and determining non-trivial filters
(i.e., prunee information by AQP). Observe that the base dissemination cost of the protocols (ex-
cluding prunee computation by AQP) is relatively low and can be compensated if the query runs
for a long enough period (e.g; 10 epochs), especially whe$el(P;) andSel(P,) are small. On

the other hand, the cost for computing the pruner/prunee information by AQP can be very high
(especially for multi-hop queries). LADDER is the only type of network that especially favors
AQP, not only in terms of query performance, but also due to its low initialization cost. Although
GRID has a smaller fanout (i.e. smaller neighbors), pruners have larger distance from prunees

(when compared to RANDOM). Thus, the one-time dissemination cost of GRID is not low.

Extra cost by AQP
Base cost by AQB/AQP/DS # hops| RANDOM GRID | LADDER
1 181uAh | 165uAh | 27 uAh
RANDOM | GRID | LADDER
76 AR 53;Ah | 45,Ah 2 673uAh | 612uAh | 116uAh
a 3 1508uAh | 1429uAh | 270uAh
4 2767 Ah | 2690uAh | 503 ,Ah

Table 4: Cost for query dissemination

8 Conclusions

In this paper, we studied the evaluation of spatial pattern queries, which output combinations of
sensor readings qualifying unary selection predicates and pairwise distance constraints. We pro-
posed protocols that can achieve significant performance savings compared to a simple acquisi-
tional approach that performs filtering based only on the unary selections. An improved acqui-
sitional protocol places join filters in the routing tree that eliminate sensor readings that do not
qualify the distance constraints. A distributed protocol (with variants for multi-way or multi-hop
gueries) performs in-network computation of the results, before sending them to the user. We
presented cost models that accurately estimate the costs of all evaluation protocols. Experimen-
tal studies suggest that the distributed techniques perform best for low-selectivity queries with
single-hop distance predicates, whereas acquisitional protocols should be preferred for multi-hop
or high-selectivity queries. In the future, we plan to study alternative spatial pattern queries that

capture advanced characteristics such as the shape and distribution of sensor values. Regarding

33

continuous query evaluation, we will continue to explore the approach in Section 6.2 for reducing

energy consumption by saving notifications of identical spatial patterns in consecutive epochs.

References

[1] D. J. Abadi, S. Madden, and W. Lindner. REED: Robust, Efficient Filtering and Event De-
tection in Sensor Networks. Froc. of VLDB 2005.

[2] B.J. Bonfils and P. Bonnet. Adaptive and Decentralized Operator Placement for In-Network
Query Processing. IRroc. of IPSN2003.

[3] P.Bonnet, J. Gehrke, and P. Seshadri. Towards Sensor Database Systeros. & MDM,
2001.

[4] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Approximate Data Collection in Sensor
Networks using Probabilistic Models. Proc. of ICDE 2006.

[5] J. Considine, F. Li, G. Kollios, and J. W. Byers. Approximate Aggregation Techniques for
Sensor Databases. Broc. of ICDE 2004.

[6] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing Historical Information in

Sensor Networks. IRroc. of ACM SIGMOD2004.

[7] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical In-Network Data Aggrega-

tion with Quality Guarantees. IRroc. of EDBT 2004.

[8] A.Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-Driven Data
Acquisition in Sensor Networks. IRroc. of VLDB 2004.

[9] M. Hadjieleftheriou, N. Mamoulis, and Y. Tao. Continuous Constraint Query Evaluation for

Spatiotemporal Streams. Rroc. of SSTD2007.

[10] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A Scalable and Robust

Communication Paradigm for Sensor NetworksPhc. of MOBICOM 2000.

34

[11] Y. Kotidis. Snapshot Queries: Towards Data-Centric Sensor NetworkBroim of ICDE
2005.

[12] Y. Kotidis. Processing Proximity Queries in Sensor Networkdntarnational Workshop on

Data Management for Sensor NetwqrkR806.

[13] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny AGgregation
Service for Ad-Hoc Sensor Networks. Rroc. of OSD) 2002.

[14] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: An Acquisitional Query
Processing System for Sensor NetworkR&M TODS 30(1):122-173, 2005.

[15] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless Sensor Net-
works for Habitat Monitoring. IrProc. of WSNA2002.

[16] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and Deltas: Efficient and Robust Aggre-
gation in Sensor Network Streams. Rnoc. of ACM SIGMOD2005.

[17] J. Paek, K. Chintalapudi, J. Cafferey, R. Govindan, and S. Masri. A Wireless Sensor Network
for Structural Health Monitoring: Performance and ExperienceProc. of the 2nd IEEE
Workshop on Embedded Networked Sens2065.

[18] A. Pandit and H. Gupta. Communication-Efficient Implementation of Range-Joins in Sensor

Networks. InProc. of DASFAA2006.

[19] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis. Balancing Energy Efficiency
and Quality of Aggregate Data in Sensor Networ DB J, 13(4):384-403, 2004.

[20] G. Simon, M. Mabti, A. Lédeczi, G. Balogh, B. Kusy, A. &tlas, G. Pap, J. Sallai, and

K. Frampton. Sensor network-based countersniper systeRroln of SenSy2004.

[21] A. Soheili, V. Kalogeraki, and D. Gunopulos. Spatial Queries in Sensor Networkarom
of ACM GIS 2005.

35

[22] U. Srivastava, K. Munagala, and J. Widom. Operator Placement for In-Network Stream

Query Processing. IRroc. of ACM PODS$2005.

[23] Xiaoyan Yang and Hock-Beng Lim and M. Tan@esu and Kian-Lee Tan. In-network Exe-

cution of Monitoring Queries in Sensor Networks.Rroc. of ACM SIGMOD2007.

[24] Y. Yao and J. Gehrke. The Cougar Approach to In-network Query Processing in Sensor
Networks.SIGMOD Record31(3):9-18, 2002.

[25] M. L. Yiu, N. Mamoulis, and S. Bakiras. Retrieval of Spatial Join Pattern Instances from
Sensor Networks. IRroc. of SSDBM2007.

[26] H. Yu, E.-P. Lim, and J. Zhang. On In-network Synopsis Join Processing for Sensor Net-
works. InMDM, 2006.

[27] F. Zhao and L. GuibasWireless Sensor Networks: An Information Processing Approach

Elsevier/Morgan Kaufmann, 2004.

36

