Skip to main content
Log in

Urban granularities—a data structure for cognitively ergonomic route directions

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

This paper addresses a data structure specification for route directions that incorporates essential aspects of cognitive information processing. Specifically, we characterize levels of granularity in route directions as the result of the hierarchical organization of urban spatial knowledge. We discuss changes of granularity in route directions that result from combining elementary route information into higher-order elements (so called spatial chunking). We provide a framework that captures the pertinent aspects of spatial chunking. The framework is based on established principles used—from a cognitive perspective—for changing the granularity in route directions. The data structure we specify based on this framework allows us to bridge the gap between results from behavioral cognitive science studies and requirements of information systems. We discuss the theoretical underpinning of the core elements of the data structure and provide examples for its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This distinction is reflected by differentiating on-line—route directions given while an agent is traveling—and in advance route directions—route directions given prior to the actual travel [16], [44]. A classification of different route direction styles is provided by [27].

  2. The complete specification of this data structure is available as a technical report [18].

  3. http://www.sfbtr8.uni-bremen.de/papers/SFB_TR_8_Rep_012-10_2006.pdf

  4. This observation holds for most intersections. Special cases such as highway exits or roundabouts where directions can be given in form or ordering information, e.g., third exit require an extension.

References

  1. Agrawala M, Stolte C (2001) Rendering effective route maps: improving usability through generalization. In: SIGGRAPH 2001, Los Angeles, California, USA

  2. Allen GL (2000) Principles and practices for communicating route knowledge. Appl Cogn Psychol 14(4):333–359

    Article  Google Scholar 

  3. Brunet R (1987) La carte, mode d’emploi. Fayard–Reclus, Paris

    Google Scholar 

  4. Bychowski T (2003) OpenGIS location services (OpenLS): part 6 – navigation service. Technical report, Open GIS Consortium Inc. OGC Implementation Specification 03-007r1 (Version 0.5.0)

  5. Caduff D, Timpf S (2005) The landmark spider: representing landmark knowledge for wayfinding tasks. In: Barkowsky T, Freksa C, Hegarty M, Lowe R (eds) Reasoning with mental and external diagrams: computational modeling and spatial assistance. Papers from the 2005 AAAI spring symposium, Menlo Park, CA, pp 30–35

  6. Clark A (1989) Microcognition: philosophy, cognitive science, and parallel distributed processing. MIT Press, Cambridge, MA

    Google Scholar 

  7. Cornell EH, Heth CD, Alberts DM (1994) Place recognition and wayfinding by children and adults. Mem & Cog 22:633–643

    Google Scholar 

  8. Dale R, Geldof S, Prost J-P (2003) Coral: using natural language generation for navigational assistance. In: Oudshoorn M (ed) Proceedings of the 26th Australasian computer science conference (ACSC2003), Adelaide, Australia

  9. Dale R, Geldof S, Prost J-P (2005) Using natural language generation in automatic route description. Journal of Research and Practice in Information Technology 37(1):89–105

    Google Scholar 

  10. Daniel MP, Denis M (1998) Spatial descriptions as navigational aids: a cognitive analysis of route directions. Kognitionswissenschaft 7(1):45–52

    Article  Google Scholar 

  11. Denis M (1997) The description of routes: a cognitive approach to the production of spatial discourse. Cah Psychol Cogn 16:409–458

    Google Scholar 

  12. Dershowitz N (1993) A taste of rewrite systems. In: Layer PE (ed) Functional programming, concurrency, simulation and automated reasoning: international lecture series 1991–1992. Springer, Berlin, pp 199–228

    Google Scholar 

  13. Duckham M, Kulik L (2003) Simplest paths: automated route selection for navigation. In: Kuhn W, Worboys M, Timpf S (eds) Spatial information theory. LNCS 2825. Springer, Berlin, pp 169–185

    Google Scholar 

  14. Freksa C, Barkowsky T (1996) On the relation between spatial concepts and geographic objects. In: Burrough P, Frank AU (eds) Geographic objects with indeterminate boundaries. Taylor & Francis, London, pp 109–121

    Google Scholar 

  15. Furlan A, Baldwin T, Klippel A (2007) Landmark classification for route description generation. In: Proceedings of the fourth ACL-SIGSEM workshop on prepositions. Prague, Czech Republic, pp 9–16

  16. Habel C (2003) Incremental generation of multimodal route instructions. In: Natural language generation in spoken and written dialogue, Palo Alto, CA, 2003. AAAI Spring Symposium

  17. Halford GS, Wilson WH, Phillips S (1998) Processing capacity defined by relational complexity: implications for comparative, developmental, and cognitive psychology. Behav Brain Sci 21(6):803–865

    Google Scholar 

  18. Hansen S, Klippel A, Richter K-F (2006) Cognitive OpenLS specification. Technical report 012-10/2006, SFB/TR 8 spatial cognition. Universität Bremen

  19. Hansen S, Richter K-F, Klippel A (2006) Landmarks in OpenLS — a data structure for cognitive ergonomic route directions. In: Raubal M, Miller H, Frank AU, Goodchild MF (eds) Geographic information science - fourth international conference, GIScience 2006. LNCS 4197. Springer, Berlin, pp 128–144

    Google Scholar 

  20. Haque S, Kulik L, Klippel A (2007) Algorithms for reliable navigation and wayfinding. In: Barkowsky T, Knauff M, Ligozat G, Montello DR (eds) Proceedings of spatial cognition 2006. LNCS 4387. Springer, Berlin, pp 308–326

    Google Scholar 

  21. Hobbs JR (1985) Granularity. In: Joshi AK (ed) Proceedings of 9th international joint conference on artificial intelligence. Morgan Kaufmann, San Francisco, pp 432–435

    Google Scholar 

  22. Höök K (1991) An approach to a route guidance interface. Licentiate thesis, Dept. of computer and system sciences, Stockholm University

  23. Johnson-Laird PN (1983) Mental models. Harvard University Press, Cambridge, MA

    Google Scholar 

  24. Klein W (1979) Wegauskünfte. Zeitschrift für Literaturwissenschaft und Linguistik 33:9–57

    Google Scholar 

  25. Klippel A, Montello DR (2007) Linguistic and nonlinguistic turn direction concepts. In: Winter S, Kuipers B, Duckham M, Kulik L (eds) Spatial information theory. LNCS 4736. Springer, Berlin, pp 354–372

    Chapter  Google Scholar 

  26. Klippel A, Richter K-F, Hansen S Cognitively ergonomic route directions. In: Karimi HA (ed) Encyclopedia of geoinformatics. Idea Group Reference (to appear)

  27. Klippel A, Tappe H, Habel C (2003) Pictorial representations of routes: chunking route segments during comprehension. In: Freksa C, Brauer W, Habel C, Wender KF (eds) Spatial Cognition III. LNAI 12685. Springer, Berlin, pp 11–33

    Chapter  Google Scholar 

  28. Klippel A, Tappe H, Kulik L, Lee PU (2005) Wayfinding choremes - a language for modeling conceptual route knowledge. J Vis Lang Comput 16(4):311–329

    Article  Google Scholar 

  29. Kuipers B (2000) The spatial semantic hierarchy. Artif Intel 119(1–2):191–233

    Article  Google Scholar 

  30. Kuipers B, Levitt TS (1988) Navigation and mapping in large scale space. AI Magazine 9(2): 25–43

    Google Scholar 

  31. Leiser D, Zilbershatz A (1989) The traveller: a computational model of spatial network learning. Environ Behav 21(4):435–463

    Article  Google Scholar 

  32. Lovelace KL, Hegarty M, Montello DR (1999) Elements of good route directions in familiar and unfamiliar environments. In: Freksa C, Mark DM (eds) Spatial information theory. LNCS 1661. Springer, Berlin, pp 65–82 (August)

    Google Scholar 

  33. Lynch K (1960) The image of the city. MIT Press, Cambridge

    Google Scholar 

  34. Mabrouk M (2005) OpenGIS location services (OpenLS): core services. Technical report, Open GIS Consortium Inc., OGC implementation specification 05-016 version 1.1

  35. MacMahon M, Stankiewicz BJ, Kuipers B (2006) Walk the talk: connecting language, knowledge, and action in route instructions. In: Proceedings of the 21st national conf. on artificial intelligence (AAAI ’06), Boston, MA, 16–20 July 2006

  36. Mark DM (1986) Automated route selection for navigation. IEEE Aerosp Electron Syst Mag 1:2–5

    Article  Google Scholar 

  37. Michon P-E, Denis M (2001) When and why are visual landmarks used in giving directions? In: Montello DR (ed) Spatial information theory. LNCS 2205. Springer, Berlin, pp 400–414

    Chapter  Google Scholar 

  38. Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97

    Article  Google Scholar 

  39. Montello DR, Goodchild MF, Gottsegen J, Fohl P (2003) Where’s downtown?: behavioral methods for determining referents of vague spatial queries. Spatial Cogn Comput 3(2&3): 185–204

    Article  Google Scholar 

  40. Newman EL, Caplan JB, Kirschen MP, Koroley IO, Sekuler R, Kahana MJ (2007) Learning your way around town: how virtual taxicab drivers learn to use both layout and landmark information. Cognition 104:231–253

    Article  Google Scholar 

  41. Patel K, Chen MY, Smith I, Landay JA (2006) Personalizing routes. In: UIST ’06: proceedings of the 19th annual ACM symposium on user interface software and technology, ACM Press, New York, NY, USA, pp 187–190

    Chapter  Google Scholar 

  42. Richter K-F (2007) From turn-by-turn directions to overview information on the way to take. In: Gartner G, Cartwright W, Peterson MP (eds) Location based services and teleCartography. Springer, Berlin, pp 205–214

    Chapter  Google Scholar 

  43. Richter K-F (2007) A uniform handling of different landmark types in route directions. In: Winter S, Duckham M, Kulik L, Kuipers B (eds) Spatial information theory. LNCS 4736. Springer, Berlin, pp 373–389

    Chapter  Google Scholar 

  44. Richter K-F, Klippel A (2005) A model for context-specific route directions. In: Freksa C, Knauff M, Krieg-Brückner B, Nebel B, Barkowsky T (eds) Spatial cognition IV. LNAI 3343. Springer, Berlin, pp 58–78

    Google Scholar 

  45. Richter K-F, Klippel A (2007) Before or after: prepositions in spatially constrained systems. In: Barkowsky T, Knauff M, Ligozat G, Montello DR (eds) Spatial cognition V. LNAI 4387. Springer, Berlin, pp 453–469

    Chapter  Google Scholar 

  46. Richter K-F, Tomko M, Winter S A dialog-driven process of generating route directions. Computers Environ Urban Syst (to appear)

  47. Schmid F, Richter K-F (2006) Extracting places from location data streams. In: UbiGIS 2006 - Second international workshop on ubiquitous geographical information services, 2006. Workshop at GIScience

  48. Schmidtke HR, Tschander L, Eschenbach C, Habel C (2003) Change of orientation. In: van der Zee E, Slack J (eds) Representing direction in language and space. Oxford University Press, Oxford, pp 166–190

    Google Scholar 

  49. Srinivas S, Hirtle SC (2007) Knowledge based schematization of routes. In: Barkowsky T, Knauff M, Ligozat G, Montello DR (eds) Spatial cognition V. LNAI 4387. Springer, Berlin, pp 346–364

    Chapter  Google Scholar 

  50. Taylor HA, Tversky B (1992) Spatial mental models derived from survey and route descriptions. J Memory Lang 31:261–292

    Article  Google Scholar 

  51. Thorndyke PW, Hayes-Roth B (1982) Differences in spatial knowledge acquired from maps and navigation. Cogn Psychol 14:560–589

    Article  Google Scholar 

  52. Timpf S, Kuhn W (2003) Granularity transformations for routes. In: Freksa C, Brauer W, Habel C, Wender KF (eds) Spatial cognition III. LNAI 2685. Springer, Berlin, pp 77–88

    Chapter  Google Scholar 

  53. Tomko M, Winter S (2006) Identification of the initial entity in granular route directions. In: Riedl A, Kainz W, Elmes GA (eds) Progress in spatial data handling. 12th International symposium on spatial data handling. Springer, Berlin, pp 43–60

    Google Scholar 

  54. Tomko M, Winter S (2006) Recursive construction of granular route directions. J Spatial Sci 51(1):101–115

    Google Scholar 

  55. Tversky B, Lee PU (1998) How space structures language. In: Freksa C, Habel C, Wender KF (eds) Spatial cognition. Springer, Berlin, pp 157–175

    Chapter  Google Scholar 

  56. Tversky B, Lee PU (1999) Pictorial and verbal tools for conveying routes. In: Freksa C, Mark DM (eds) Spatial information theory. Springer, Berlin, pp 51–64

    Google Scholar 

  57. Wunderlich D, Reinelt R (1982) How to get there from here. In: Jarvella RJ, Klein W (eds) Speech, place, and action: studies and related topics. Wiley, Chichester, UK, pp 183–201

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Transregional Collaborative Research Center SFB/TR 8 Spatial Cognition, which is funded by the Deutsche Forschungsgemeinschaft (DFG), by the Cooperative Research Centre for Spatial Information, whose activities are funded by the Australian Commonwealth’s Cooperative Research Centres Programme, and by Lisasoft, Australia. OpenLS is a trademark of the Open Geospatial Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Klippel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klippel, A., Hansen, S., Richter, KF. et al. Urban granularities—a data structure for cognitively ergonomic route directions. Geoinformatica 13, 223–247 (2009). https://doi.org/10.1007/s10707-008-0051-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-008-0051-6

Keywords

Navigation