Skip to main content
Log in

Comparison of GIS-based methodologies for the landslide susceptibility assessment

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

In this paper, two simple GIS-based methodologies have been used to assess the landslide susceptibility in a basin located in Southern Italy. The methodologies at issue, based on the spatial distribution of landslides and/or of causal factors, are bivariate statistics-based and expert-based, respectively. The spatial distribution of both the landslides and the causal factors has been investigated by integrating pre-existing and original data, which have been processed using ArcView GIS 3.2 software. The obtained results, consisting of landslide susceptibility maps have been compared and discussed. The bivariate statistics-based method has provided the most satisfying results. On the contrary, the expert-based method has provided a classification of the study area in terms of landslide susceptibility which does not completely fit with the surveyed spatial distribution of the landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abu-zeid N, Mazzini E, Semenza P, Turrini MC (1994) Applicazione di un metodo cartografico-numerico al bacino dell’Alpago (BL) per la zonazione della pericolosità potenziale da frana. Geologia Tecnica ed Ambientale 3:45–55

    Google Scholar 

  2. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary, review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  3. Amadesi E, Vianello G (1978) Nuova guida alla realizzazione di una carta di stabilità dei versanti. Mem Soc Geol Ital 19:53–60

    Google Scholar 

  4. Amadesi E, Vianello G, Bonfatti G, Pignone R, Preti D (1977) Guida alla realizzazione di una carta della stabilità dei versanti. Pitagora Editrice, Bologna, Italy, 72 pp

    Google Scholar 

  5. Anbalagan R (1992) Terrain evaluation and landslide hazard zonation for environmental regeneration and land use planning in mountainous terrain. Proceedings of VI International Symposium on Landslides, Christchurch, New Zealand 2:861–868

  6. Anbalagan R, Sing B (1996) Landslide hazard and risk assessment mapping of mountainous terrains—a case study from Kumaun Himalaya, India. Eng Geol 43:237–246

    Article  Google Scholar 

  7. Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparison of results from two methods and verifications. Eng Geol 81:432–445

    Article  Google Scholar 

  8. Balboni A (1968) Note Illustrative della Carta Geologica d’Italia alla scala 1:100,000 – Foglio 154 – Larino. Servizio Geologico d’Italia, Roma, Italy, pp 1–41

    Google Scholar 

  9. Cestari A, Malferrari N, Manfredini M, Zattini N (1975) Note Illustrative della Carta Geologica d’Italia alla scala 1:100,000 – Foglio 162 – Campobasso. Servizio Geologico d’Italia, Roma, Italy, pp 1–78

    Google Scholar 

  10. Çevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962

    Article  Google Scholar 

  11. Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40:381–391

    Article  Google Scholar 

  12. Gupta P, Anbalagan R (1997) Slope stability of Teri Dam Reservoir Area, India, using landslide hazard zonation (LHZ) mapping. Q J Eng Geol 30:27–36

    Article  Google Scholar 

  13. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  14. Komac M (2006) A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology 74:17–28

    Article  Google Scholar 

  15. Leroi E (1996) Landslide hazard-risk maps at different scales: objectives, tools and developments. In Proceedings of VII International Symposium on Landslides, Vol. 1. Trondheim, Norway, pp 35–52

  16. Nagarajan R, Roy A, Vinod Kumar R, Mukherjee A, Khire MV (2000) Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull Eng Geol Environ 58:275–287

    Article  Google Scholar 

  17. Pachauri AK, Pant M (1992) Landslide hazard mapping based on geological attributes. Eng Geol 32:81–100

    Article  Google Scholar 

  18. Rautela P, Lakhera RC (2000) Landslide risk analysis between Giri and Ton Rivers in Himalaya (India). International Journal of Applied Earth Observation and Geoinformation 2:153–160

    Article  Google Scholar 

  19. Stevenson PC (1977) An empirical method for the evaluation of relative landslide risk. Bull Int Assoc Eng Geol 16:69–72

    Article  Google Scholar 

  20. Süzen ML, Doyuran V (2003) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  21. Süzen ML, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321

    Article  Google Scholar 

  22. Uromeihy A, Mahdavifar MR (2000) Landslide hazard zonation of the Khorshostam area, Iran. Bull Eng Geol Environ 58:207–213

    Article  Google Scholar 

  23. van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. ITC publication No. 15, International Institute for Aerospace and Earth Resources Survey, Enschede, The Netherlands, p 245

  24. van Westen CJ (1997) Statistical landslide hazard analysis. ILWIS 2.1 for Windows application guide. ITC publication, Enschede, The Netherlands, pp 73–84

  25. Visintainer P, Turrini MC (1995) Carta della pericolosità di eventi naturali della Val Duron (Trentino Alto Adige). Geologia Tecnica ed Ambientale 2:17–33

    Google Scholar 

  26. Wieczorek GF, Mandrone G, De Colla L (1997) The influence of hill-slope shape on debris-flow initiation. In: Chen CL (ed) Debris flow hazard mitigation: mechanics, prediction, and assessment. American Society of Civil Engineers, New York, pp 21–31

    Google Scholar 

  27. Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparison of results and confirmations. Catena 72:1–12

    Article  Google Scholar 

  28. Yin KJ, Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. Proceedings of the V International Symposium on Landslides, Lausanne, Switzerland 2:1269–1272

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Magliulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magliulo, P., Di Lisio, A. & Russo, F. Comparison of GIS-based methodologies for the landslide susceptibility assessment. Geoinformatica 13, 253–265 (2009). https://doi.org/10.1007/s10707-008-0063-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-008-0063-2

Keywords

Navigation