Skip to main content
Log in

Interpreting motion events of pairs of moving objects

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

When accumulating large quantities of positional data with ubiquitous positioning techniques, methods are required that can efficiently make use of these data. This work proposes a representation that approximates motion events of pairs of objects. It is shown how the employment of formal grammars enables the interpretation of such motion events. This is accomplished by composing motion patterns into specific qualitative features. In particular, the change of relative directions defines characteristic motion events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. A trajectory is the linear path an object takes between two time points.

References

  1. Abraham T, Roddick JF (1999) Survey of spatio-temporal databases. GeoInformatica 3(1):61–99

    Article  Google Scholar 

  2. Batty M, Desyllas J, Duxbury E (2003) The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades. Int J Geogr Inf Sci 17(7):673–697

    Article  Google Scholar 

  3. Chomsky N (1956) Three models for the description of language. IEEE Trans Inf Theory 2(3):113–124

    Article  Google Scholar 

  4. Dodge S, Weibel R, Lautenschütz AK (2008) Taking a systematic look at movement: developing a taxonomy of movement patterns. In: The AGILE workshop on GeoVisualization of dynamics, movement and change

  5. Frank A (1992) Qualitative spatial reasoning about distance and directions in geographic space. J Vis Lang Comput 3:343–373

    Article  Google Scholar 

  6. Frank A (1996) Qualitative spatial reasoning: cardinal directions as an example. Int J Geogr Inf Sci 10:269–290

    Article  Google Scholar 

  7. Freksa C (1992) Using orientation information for qualitative spatial reasoning. In: Frank AM, Campari I, Formentini U (eds) Theories and methods of spatio-temporal reasoning in geographic space. Springer, New York

    Google Scholar 

  8. Gonzalez RC, Woods RE (1993) Digital image processing. Addison-Wesley, Reading

    Google Scholar 

  9. Gottfried B (2004) Reasoning about intervals in two dimensions. In: Thissen W, Wieringa P, Pantic M, Ludema M (eds) Proceedings of the IEEE international conference on systems, man & cybernetics: the Hague, The Netherlands, 10–13 October 2004. IEEE, Piscataway, pp 5324–5332

  10. Gottfried B (2006) Characterising meanders qualitatively. In: Raubal M, Miller HJ, Frank AU, Goodchild MF (eds) The 4th international conference on GIScience, Muenster, Germany. LNCS, vol 4197, 20–23 September. Springer, New York, pp 112–127

  11. Gottfried B (2007) Characterising straightness qualitatively. In: Fabrikant S, Wachowicz M (eds) The European information society—leading the way with geoinformation, AGILE, Aalborg, Denmark. LNG&C, pp 419–433, 8–11 May 2007

  12. Gottfried B (2008) Global feature schemes in spatial and temporal reasoning. Spat Cogn Comput 8(1–2):27–46

    Article  Google Scholar 

  13. Gottfried B (2008) Representing short-term observations of moving objects by a simple visual language. J Vis Lang Comput 19(3):321–342

    Article  Google Scholar 

  14. Gottfried B, Witte J (2006) Representing spatial activities by spatially contextualised motion patterns. In: Lakemeyer G, et al (eds) RoboCup 2006, int. symp., Germany. LNAI, vol 4434. Springer, New York, pp 329–336

    Google Scholar 

  15. Gudmundsson J, van Kreveld M, Speckmann B (2007) Efficient detection of patterns in 2d trajectories of moving points. Geoinformatica 11(2):195–215

    Article  Google Scholar 

  16. Hernandez D, Jungert E (1999) Qualitative motion of point-like objects. J Vis Lang Comput 10:269–289

    Article  Google Scholar 

  17. Joshi AK (1985) Tree adjoining grammars: how much context-sensitivity is required to provide reasonable structural descriptions? In: Dowty DR, Karttunen L, Zwicky AM (eds) Natural language parsing: psychological, computational, and theoretical perspectives. Cambridge University Press, Cambridge, pp 206–250

    Google Scholar 

  18. Kiefer P, Schlieder C (2007) Exploring context-sensitivity in spatial intention recognition. In: Gottfried B (ed) 1st workshop on behaviour monitoring and interpretation (BMI’07). CEURS Proceedings, vol 296, pp 102–116

  19. Klippel A, Montello DR (2007) Linguistic and nonlinguistic turn direction concepts. In: Winter Sea (ed) Spatial information theory: a theoretical basis for GIS, COSIT 2007. Lecture Notes in Computer Science 716, vol 4736. Springer, New York, pp 354–372

    Google Scholar 

  20. Kurata Y, Egenhofer M (2007) The 9 + -intersection for topological relations between a directed line segment and a region. In: Gottfried B (ed) Proceedings of the 1st workshop on behaviour monitoring and interpretation, BMI’07, pp 62–76

  21. Laube P, Imfeld S, Weibel R (2005) Discovering relative motion patterns in groups of moving point objects. Int J Geogr Inf Sci 19(6):639–668

    Article  Google Scholar 

  22. Lühr S, West G, Venkatesh S (2007) Recognition of emergent human behaviour in a smart home: a data mining approach. Pervasive and Mobile Computing 3:95–116

    Article  Google Scholar 

  23. Moratz R (2006) Representing relative direction as binary relation of oriented points. In: Proceedings of the 17th European conference on artificial intelligence, ECAI 2008: Riva del Garda, Italy, 2008. IOS, Amsterdam

  24. Noyon V, Claramunt C, Devogele T (2007) A relative representation of trajectories in geographical spaces. Geoinformatica 11:479–496

    Article  Google Scholar 

  25. Raffaeta A, Ceccarelli T, Centeno D, Giannotti F, Massolo A, Parent C, Renso C, Spaccapietra S, Turini F (2008) An application of advanced spatio-temporal formalisms to behavioural ecology. Geoinformatica 12:37–72

    Article  Google Scholar 

  26. Rozenberg G, Salomaa A (1997) Handbook of formal languages: volume I-III. Springer, Heidelberg

    Google Scholar 

  27. Van de Weghe N, Cohn AG, Maeyer PD, Witlox F (2005) Representing moving objects in computer-based expert systems: the overtake event example. Expert Syst Appl 29(4):977–983

    Article  Google Scholar 

  28. Wood Z, Galton A (2008) Collectives and how they move: A tale of two classifications. In: Gottfried B, Aghajan H (eds) 2nd workshop on behaviour monitoring and interpretation (BMI’08). CEURS Proceedings, vol 396, pp 57–71

  29. Worboys MF, Clementini E (2001) Integration of imperfect spatial information. J Vis Lang Comput 12:61–80

    Article  Google Scholar 

  30. Zimmermann K, Freksa C (1996) Qualitative spatial reasoning using orientation, distance, and path knowledge. Appl Intell 6:49–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Gottfried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottfried, B. Interpreting motion events of pairs of moving objects. Geoinformatica 15, 247–271 (2011). https://doi.org/10.1007/s10707-009-0095-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-009-0095-2

Keywords

Navigation