Skip to main content
Log in

Efficient viewshed computation on terrain in external memory

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

The recent availability of detailed geographic data permits terrain applications to process large areas at high resolution. However the required massive data processing presents significant challenges, demanding algorithms optimized for both data movement and computation. One such application is viewshed computation, that is, to determine all the points visible from a given point p. In this paper, we present an efficient algorithm to compute viewsheds on terrain stored in external memory. In the usual case where the observer’s radius of interest is smaller than the terrain size, the algorithm complexity is θ(scan(n 2)) where n 2 is the number of points in an n × n DEM and scan(n 2) is the minimum number of I/O operations required to read n 2 contiguous items from external memory. This is much faster than existing published algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. θ(f(n)) grows proportionally to f(n) as n → ∞. Formally, \(g(n)=\theta(f(n))\Rightarrow\exists n_0>0, c_1>c_2>0\) such that \(n>n_0\Rightarrow c_1f(n)>g(n)>c_2f(n)\). Hein [23, page 334].

  2. For 45° < α ≤ 90°, interchange x and y and use a similar idea.

  3. If the observer is close to the terrain border, the square might not be completely contained in the terrain.

  4. To compare the efficiency of our algorithm and the Haverkort et al. algorithm, we used terrain of size similar to those used by them.

References

  1. Aggarwal A, Vitter JS (1988) The input/output complexity of sorting and related problems. Commun ACM 31(9):1116–1127

    Article  Google Scholar 

  2. Andrade MVA (2007) EMViewshed project. http://www.dpi.ufv.br/~marcus/projects/EMViewshed.htm

  3. Arge L, Chase JS, Halpin P, Toma L, Vitter JS, Urban D, Wickremesinghe R (2003) Efficient flow computation on massive grid terrains. GeoInformatica 7:283–313

    Article  Google Scholar 

  4. Arge L, Vengroff DE, Vitter JS (2007) External-memory algorithms for processing line segments in geographic information systems. Algorithmica 47(1):1–25

    Article  Google Scholar 

  5. Ben-Moshe B, Ben-Shimol Y, Segal M, Ben-Yehezkel Y, Dvir A (2007) Automated antenna positioning algorithms for wireless fixed-access networks. Journal of Heuristics 13(3):243–263

    Article  Google Scholar 

  6. Ben-Moshe B, Carmi P, Katz MJ (2004) Approximating the visible region of a point on a terrain. In: Proc. algorithm engineering and experiments (ALENEX’04), pp 120–128

  7. Ben-Moshe B, Katz MJ, Mitchell JSB (2007) A constant-factor approximation algorithm for optimal 1.5d terrain guarding. SIAM J Comput 36(6):1631–1647

    Article  Google Scholar 

  8. Ben-Moshe B, Katz MJ, Mitchell JSB, Nir Y (2004) Visibility preserving terrain simplification—an experimental study. Comp Geom Theor App 28(2–3):175–190

    Google Scholar 

  9. Bespamyatnikh S, Chen Z, Wang K, Zhu B (2001) On the planar two-watchtower problem. In: In 7th international computing and combinatorics conference. Springer, London, pp 121–130

    Google Scholar 

  10. Bresenham J (1965) An incremental algorithm for digital plotting. IBM Syst J 4:25–30

    Article  Google Scholar 

  11. Camp RJ, Sinton DT, Knight RL (1997) Viewsheds: A complementary management approach to buffer zones. Wildl Soc Bull 25:612–615

    Google Scholar 

  12. Creative Commons (2007) http://creativecommons.org/license/cc-gpl. Accessed Feb 2008

  13. Dementiev R, Kettner L, Sanders P (2005) Stxxl: standard template library for xxl data sets. Technical report, Fakultat fur Informatik, Universitat Karlsruhe. http://stxxl.sourceforge.net/. Accessed July 2007

  14. Eidenbenz S (2002) Approximation algorithms for terrain guarding. Inf Process Lett 82(2):99–105

    Article  Google Scholar 

  15. De Floriani L, Magillo P (2003) Algorithms for visibility computation on terrains: a survey. Environ Plann, B Plann Des 30:709–728

    Article  Google Scholar 

  16. De Floriani L, Puppo E, Magillo P (1999) Applications of computational geometry to geographic information systems. In: Urrutia J, Sack JR, (eds) Handbook of computational geometry. Elsevier Science, Amsterdam, pp 333–388

    Google Scholar 

  17. Franklin WR (1973) Triangulated irregular network program. http://www.ecse.rpi.edu/~wrf/wiki/Research/tin73.tgz. Accessed 30 Oct 2008

  18. Franklin WR (2002) Siting observers on terrain. In: Springer-Verlag (ed) In: Richardson D, van Oosterom P (eds) Advances in spatial data handling: 10th international symposium on spatial data handling, pp 109–120

  19. Franklin WR, Ray C (1994) Higher isn’t necessarily better—visibility algorithms and experiments. In: 6th symposium on spatial data handling. Taylor & Francis, Edinburgh, pp 751–770

    Google Scholar 

  20. Franklin WR, Vogt C (2006) Tradeoffs when multiple observer siting on large terrain cells. In: 12th international symposium on spatial data handling. Springer, New York, pp 845–861

    Chapter  Google Scholar 

  21. Goodrich MT, Tsay JJ, Vangroff DE, Vitter JS (1993) External-memory computational geometry. In: IEEE symp. on foundations of computer science, vol 714, pp 714–723

  22. Haverkort H, Toma L, Zhuang Y (2007) Computing visibility on terrains in external memory. In: Proceedings of the ninth workshop on algorithm engineering and experiments / workshop on analytic algorithms and combinatorics (ALENEX/ANALCO)

  23. Hein JL (2002) Discrete mathematics. Jones & Bartlett, Boston. ISBN 0763722103, 9780763722104.

    Google Scholar 

  24. Kumler MP (1994) An intensive comparison of triangulated irregular network (tins) and digital elevation models (dems). Cartographica 31(2)

  25. Lake IR, Lovett AA, Bateman IJ, Langford IH (1998) Modelling environmental influences on property prices in an urban environment. Comput Environ Urban Syst 22:121–136

    Article  Google Scholar 

  26. Lee J, Stucky D (1998) On applying viewshed analysis for determining least-cost paths on digital elevation models. Int J Geogr Inf Sci 12:891–905

    Article  Google Scholar 

  27. Li Z, Zhu Q, Gold C (2005) Digital terrain modeling—principles and methodology. CRC, Boca Raton

    Google Scholar 

  28. Line-of-Sight Technical Working Group (LOS TWG) (2004) Line-of-sight (LOS) compendium. Technical report, U.S. Army Corps of Engineers, Engineer Research and Development Center/ Topographic Engineering Center (ERDC/TEC). http://www.tec.army.mil/operations/programs/LOS/LOS. Accessed 30 Oct 2008

  29. The Shuttle Radar Topography Mission (SRTM) (2007) http://www2.jpl.nasa.gov/srtm/. Accessed Feb 2008

  30. Stewart AJ (1998) Fast horizon computation at all points of a terrain with visibility and shading applications. In: IEEE Trans. visualization computer graphics, vol 4. IEEE Educational Activities Department, Piscataway, pp 82–93

  31. US Geological Survey (2007) The USGS center for LIDAR information coordination and knowledge. http://lidar.cr.usgs.gov/. Accessed Feb 2008

  32. van Kreveld M (1996) Variations on sweep algorithms: efficient computation of extended viewsheds and class intervals. In: Symposium on spatial data handling, pp 15–27

  33. Young-Hoon K, Rana S, Wise S (2004) Exploring multiple viewshed analysis using terrain features and optimization techniques. Comput Geotech 30:1019–10323

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by CNPq—the Brazilian Council of Technological and Scientific Development, FAPEMIG—the Research Support Foundation of the State of Minas Gerais (Brazil) and by NSF grants CCR-0306502 and DMS-0327634 and by DARPA/DSO/GeoStar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus V. A. Andrade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, M.V.A., Magalhães, S.V.G., Magalhães, M.A. et al. Efficient viewshed computation on terrain in external memory. Geoinformatica 15, 381–397 (2011). https://doi.org/10.1007/s10707-009-0100-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-009-0100-9

Keywords

Navigation