Skip to main content
Log in

The elements of probabilistic time geography

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Time geography uses space–time volumes to represent the possible locations of a mobile agent over time in a xyt space. A volume is a qualitative representation of the fact that the agent is at a particular time t i inside of the volume’s base at t i . Space–time volumes enable qualitative analysis such as potential encounters between agents. In this paper the qualitative statements of time geography will be quantified. For this purpose an agent’s possible locations are modeled from a stochastic perspective. It is shown that probability is not equally distributed in a space–time volume, i.e., a quantitative analysis cannot be based simply on proportions of intersections. The actual probability distribution depends on the degree of a priori knowledge about the agent’s behavior. This paper starts with the standard assumption of time geography (no further knowledge), and develops the appropriate probability distribution by three equivalent approaches. With such a model any analysis of the location of an agent, or relations between the locations of two agents, can be improved in expressiveness as well as accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Andrews GE (1990) Euler’s “exemplum memorabile inductionis fallacis” and q-trinomial coefficients. J Am Math Soc 3(3):653–669

    Google Scholar 

  2. Axhausen KW, Frei A, Ohnmacht T (2006) Networks, biographies and travel: first empirical and methodological results. In: 11th international conference on travel behaviour research, Kyoto, Japan, p session 4.8

  3. Batty M (2003) Agent-based pedestrian modelling. In: Longley PA, Batty M (eds) Advanced spatial analysis. ESRI Press, Redlands, pp 81–106

  4. Bovy PHL, Stern E (1990) Route choice: wayfinding in transport networks. Kluwer, Dordrecht

    Google Scholar 

  5. Camp T, Boleng J, Davies V (2002) A survey of mobility models for ad hoc network research. Wirel Commun Mob Comput 2(5):483–502

    Article  Google Scholar 

  6. Clementini E, Di Felice P (1996) An algebraic model for spatial objects with indeterminate boundaries. In: Burrough PA, Frank AU (eds) Geographic objects with indeterminate boundaries, ESF GISDATA, vol 2. Taylor & Francis, pp 155–169

  7. Cohn AG, Gotts NM (1996) The ‘egg-yolk’ representation of regions with indeterminite boundaries. In: Burrough PA, Frank AU (eds) Geographic objects with indeterminate boundaries, vol 2. Taylor & Francis, London, pp 171–187

    Google Scholar 

  8. Egenhofer M (2003) Approximations of geospatial lifelines. In: Bertino E, Floriani Ld (eds) SpaDaGIS workshop on spatial data and geographic information systems, Milano, Italy

  9. Egenhofer MJ, Herring JR (1991) Categorizing binary topological relationships between regions, lines, and points in geographic databases. Technical report, Department of Surveying Engineering, University of Maine

  10. Forer P (1998) Geometric approaches to the nexus of time, space, and microprocess. In: Egenhofer M, Golledge RG (eds) Spatial and temporal reasoning in geographic information systems. Oxford University Press, New York, pp 171–190

    Google Scholar 

  11. Gaylord RJ, Nishidate K (1996) Modeling nature – cellular automata simulations with mathematica. Springer, New York

    Google Scholar 

  12. Gelb A (ed) (1974) Applied optimal estimation. MIT Press, Cambridge

    Google Scholar 

  13. Golledge RG, Stimson RJ (1997) Spatial behavior: a geographic perspective. The Guildford Press, New York

    Google Scholar 

  14. Güting RH, Schneider M (2005) Moving objects databases. Elsevier, Amsterdam

    Google Scholar 

  15. Hägerstrand T (1970) What about people in regional science? In: Papers of the regional science association, vol 24, pp 7–21

  16. Handley S, Langley P, Rauscher F (1998) Learning to predict the duration of an automobile trip. In: Proceedings of the fourth international conference on knowledge discovery and data mining. AAAI Press, New York, pp 219–22

    Google Scholar 

  17. Hendricks M, Egenhofer M, Hornsby K (2003) Structuring a Wayfinder’s dynamic space-time environment. In: Kuhn W, Worboys M, Timpf S (eds) Spatial information theory. Lecture notes in computer science, vol 2825. Springer, Berlin, pp 75–92

  18. Hornsby K, Egenhofer M (2002) Modeling moving objects over multiple granularities. Ann Math Artif Intell 36(1–2):177–194

    Article  Google Scholar 

  19. Huang YK, Chen CC, Lee C (2009) Continuous k-nearest neighbor query for moving objects with uncertain velocity. GeoInformatica 13(1):1–25

    Article  Google Scholar 

  20. Jeanson R, Blanco S, Fournier R, Deneubourg JL, Fourcassie V, Theraulaz G (2003) A model of animal movements in a bounded space. J Theor Biol 225(4):443–451

    Article  Google Scholar 

  21. Kriegel HP, Kunath P, Renz M (2007) Probabilistic nearest-neighbor query on uncertain objects. In: Kotagiri R, Krishna PR, Mohania M, Natajeewarawat E (eds) Advances in databases: concepts, systems and applications, vol 4443. Springer, Berlin, pp 337–348

  22. Laube P, Dennis T, Forer P, Walker M (2007) Movement beyond the snapshot: dynamic analysis of geospatial lifelines. Comput Environ Urban Syst 31(5):481–501

    Article  Google Scholar 

  23. Lenntorp B (1976) Paths in space–time environments. A time-geographic study of movement possibilities of individuals. Lund studies in geography, vol 44. Institutionen för Kulturgeografi och Ekonomisk Geografi, Lund University, Lund, Sweden

  24. Miller HJ (1991) Modeling accessibility using space–time prism concepts within geographical information systems. Int J Geogr Inf Sci 5(3):287–301

    Article  Google Scholar 

  25. Miller HJ (2005) A measurement theory for time geography. Geogr Anal 37(1):17–45

    Article  Google Scholar 

  26. Miller HJ (2005) Necessary space-time conditions for human interaction. Environ Plan B 32(3):381–401

    Article  Google Scholar 

  27. Miller HJ, Bridwell SA (2009) A field-based theory for time geography. Ann Assoc Am Geogr 99(1):49–75

    Article  Google Scholar 

  28. Nagel K (2003) Multi-agent transportation simulations. Draft of a book. Institute for Scientific Computing, Department of Computer Science, ETHZ

  29. von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  30. Neutens T, Witlox F, Demaeyer P (2007) Individual accessibility and travel possibilities: a literature review on time geography. European Journal of Transport and Infrastructure Research 7(4):335–352

    Google Scholar 

  31. Neutens T, Witlox F, Van de Weghe N, De Maeyer P (2007) Human interaction spaces under uncertainty. Transp Res Rec 2021:28–35

    Article  Google Scholar 

  32. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356

    Article  Google Scholar 

  33. Pearson K (1905) The problem of the random walk. Nature 72(1866):342

    Article  Google Scholar 

  34. Pfoser D, Jensen CS (1999) Capturing the uncertainty of moving-object representations. In: Güting RH, Papadias D, Lochovsky F (eds) Advances in spatial databases. Lecture notes in computer science, vol 1651. Springer, Berlin, pp 111–131

    Chapter  Google Scholar 

  35. Polya G (1921) Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math Ann 84:149–160

    Article  Google Scholar 

  36. Randell DA, Cui Z, Cohn A (1992) A spatial logic based on regions and connection. In: Brachmann R, Levesque H, Reiter R (eds) Third international conference on the principles of knowledge representation and reasoning. Morgan-Kaufmann, Los Altos, CA, pp 165–176

    Google Scholar 

  37. Raubal M, Winter S, Tessmann S, Gaisbauer C (2007) Time geography for ad hoc shared-ride trip planning in mobile geosensor networks. ISPRS J Photogramm Remote Sens 62(5):366–381

    Article  Google Scholar 

  38. Seamon D (1979) A geography of the lifeworld. Thesis, St. Martin’s Press, New York

    Google Scholar 

  39. Shlesinger MF (1992) New paths for random walkers. Nature 355:396–397

    Article  Google Scholar 

  40. Sistla AP, Wolfson O, Chamberlain S, Dao S (1998) Querying the uncertain position of moving objects. In: Etzion O, Jajodia S, Sripada S (eds) Temporal databases: research and practice. Lecture notes in computer science, vol 1399. Springer, Berlin, pp 310–337

    Chapter  Google Scholar 

  41. Thrift N (1977) An introduction to time-geography, concepts and techniques in modern geography, vol 13. Geo Abstracts Ltd., Norwich

  42. Tobler W (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46(2):234–240

    Article  Google Scholar 

  43. Tomlin CD (1989) Geographic information systems and cartographic modeling. Prentice Hall, New York

    Google Scholar 

  44. Torrens PM, Benenson I (2005) Geographic automata systems. Int J Geogr Inf Sci 19(4):385–412

    Article  Google Scholar 

  45. Trajcevski G, Tamassia R, Ding H, Scheuermann P, Cruz IF (2009) Moving convolutions and continuous probabilistic nearest-neighbor queries for uncertain trajectories. In: Kersten M, Novikov B, Teubner J, Polutin V, Manegold S (eds) Proceedings of the 12th international conference on extending database technology. ACM Press, St Petersburg, Russia, pp 874–885

    Chapter  Google Scholar 

  46. Wang MZ, Kulik L, Kotagiri R (2009) Robust traffic merging strategies for sensor-enabled cars using time geography. In: Wolfson O, Agrawal D, Lu CT (eds) Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM Press, Seattle, WA, pp 362–371

    Google Scholar 

  47. Winter S, Bittner T (2002) Hierarchical topological reasoning with vague regions. In: Shi W, Fisher P, Goodchild MF (eds) Spatial data quality. Taylor & Francis, London, pp 35–49

    Google Scholar 

  48. Wolfson O, Sistla AP, Chamberlain S, Yesha Y (1999) Updating and querying databases that track mobile units. Distributed and Parallel Databases 7(3):257–387

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants of the Australian Academy of Science and the Australian Research Council (DP0878119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Winter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, S., Yin, ZC. The elements of probabilistic time geography. Geoinformatica 15, 417–434 (2011). https://doi.org/10.1007/s10707-010-0108-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-010-0108-1

Keywords

Navigation