Skip to main content
Log in

Crime analysis through spatial areal aggregated density patterns

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Intelligent crime analysis allows for a greater understanding of the dynamics of unlawful activities, providing possible answers to where, when and why certain crimes are likely to happen. We propose to model density change among spatial regions using a density tracing based approach that enables reasoning about large areal aggregated crime datasets. We discover patterns among datasets by finding those crime and spatial features that exhibit similar spatial distributions by measuring the dissimilarity of their density traces. The proposed system incorporates both localized clusters (through the use of context sensitive weighting and clustering) and the global distribution trend. Experimental results validate and demonstrate the robustness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Agrawal R, Imielinski T, Swami AN (1993) Mining association rules between sets of items in large databases. In: Buneman P, Jajodia S (eds) Proceedings of the ACM SIGMOD’93 international conference on management of data. ACM Press, Washington, DC, pp 207–216

    Google Scholar 

  2. Bailey TC, Gatrell AC (1995) Interactive spatial analysis. Longman Scientific & Technical, Harlow, UK

    Google Scholar 

  3. Boba R (2005) Crime analysis and crime mapping. Sage Publications, Thousand Oaks, California

    Google Scholar 

  4. Chen H, Chung W, Xu JJ, Wang G, Qin Y, Chau M (2004) Crime data mining: a general framework and some examples. Computer 37(4):50–56

    Article  Google Scholar 

  5. Craglia M, Haining R, Wiles P (2000) A comparative evaluation of approaches to urban crime pattern analysis. Urban Stud 37(4):711–729

    Article  Google Scholar 

  6. Cressie NAC (1991) Statistics for spatial data. Wiley Series in Probability and Statistics, New York

  7. Cristofor L (2002) ARtool: association rule mining algorithms and tools. http://www.cs.umb.edu/~laur/ARtool/

  8. Dent BD (1999) Cartography: thematic map design. WCB McGraw Hill, Boston

    Google Scholar 

  9. Estivill-Castro V, Lee I (2001) Data mining techniques for autonomous exploration of large volumes of geo-referenced crime data. In: Pullar DV (ed) Proceedings of the 6th international conference on geocomputation, Brisbane, Australia. GeoComputation CD-ROM

  10. Estivill-Castro V, Lee I (2002) Argument free clustering via boundary extraction for massive point-data sets. Comput Environ Urban Syst 26(4):315–334

    Article  Google Scholar 

  11. Han J, Kamber M, Tung KH (2001) Spatial clustering methods in data mining. In: Miller HJ, Han J (eds) Geographic data mining and knowledge discovery. Cambridge University Press, Cambridge, UK, pp 188–217

    Chapter  Google Scholar 

  12. Hirschfield A, Brown P, Todd P (1995) Gis and the analysis of spatially-referenced crime data: experiences in Merseyside UK. J Geogr Inf Syst 9(2):191–210

    Article  Google Scholar 

  13. Huang Y, Pei J, Xiong H (2006) Mining co-location patterns with rare events from spatial data sets. Geoinformatica 10(3):239–260. doi:10.1007/s10707-006-9827-8

    Article  Google Scholar 

  14. Huang Y, Shekhar S, Xiong H (2004) Discovering co-location patterns from spatial datasets: a general approach. IEEE Trans Knowl Data Eng 16(12):1472–1485

    Article  Google Scholar 

  15. Koperski K, Han J (1995) Discovery of spatial association rules in geographic information databases. In: Proceedings of the 4th international symposium on large spatial databases. LNCS. Springer, Portland, Maine, pp 47–66

    Google Scholar 

  16. Lee I, Phillips P (2008) Urban crime analysis through areal categorized multivariate associations mining. Appl Artif Intell 22(5):483–499

    Article  Google Scholar 

  17. Lee S (2001) Developing a bivariate spatial association measure: an integration of Pearson’s r and Moran’s I. J Geogr Syst 3(4):369–385

    Article  Google Scholar 

  18. Mennis J, Liu JW (2005) Mining association rules in spatio-temporal data: an analysis of urban socioeconomic and land cover change. Trans GIS 9(1):5–17. doi:10.1111/j.1467-9671.2005.00202.x. URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9671.2005.00202.x

    Article  Google Scholar 

  19. Miller HJ, Han J (2001) Geographic data mining and knowledge discovery. Taylor and Francis, London

    Book  Google Scholar 

  20. Murray AT, McGuffog I, Western JS, Mullins, P (2001) Exploratory spatial data analysis techniques for examining urban crime. Br J Criminol 41:309–329

    Article  Google Scholar 

  21. Oatley G, Ewart B, Zeleznikow J (2006) Decision support systems for police: lessons from the application of data mining techniques to soft forensic evidence. Artif Intell Law 14(1):35–100. doi:10.1007/s10506-006-9023-z

    Article  Google Scholar 

  22. Okabe A, Boots BN, Sugihara K, Chiu SN (2000) Spatial tessellations: concepts and applications of voronoi diagrams, 2nd edn. Wiley, West Sussex

    Google Scholar 

  23. Pelekis N, Kopanakis I, Marketos G, Ntoutsi I, Andrienko G, Theodoridis Y (2007) Similarity search in trajectory databases. In: TIME ’07: proceedings of the 14th international symposium on temporal representation and reasoning. IEEE Computer Society, Washington, DC, USA, pp 129–140. doi:10.1109/TIME.2007.59

    Chapter  Google Scholar 

  24. Ratcliffe J (2004) The hotspot matrix: a framework for the spatio-temporal targeting of crime reduction. In: Police practice and research, vol 5, pp 5–23

  25. Ratcliffe J, McCullagh M (1998) Identifying repeat victimization with Gis. Br J Criminol 38(4):651–662

    Article  Google Scholar 

  26. Rigaux P, Scholl M, Voisard A (2001) Spatial databases: with application to GIS. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  27. Samet H (2005) Foundations of multidimensional and metric data structures (the Morgan Kaufmann series in computer graphics and geometric modeling). Morgan Kaufmann, San Francisco, CA, USA

    Google Scholar 

  28. Shalabi LA, Shaaban Z, Kasasbeh B (2006) Data mining: a preprocessing engine. J Comput Sci 2:735–739

    Article  Google Scholar 

  29. Shekhar S, Huang Y (2001) Discovering spatial co-location patterns: a summary of results. In: Jensen CS, Schneider M, Seeger VJ, Tsotras B (eds) Proceedings of the 7th international symposium on the advances in spatial and temporal databases. Lecture notes in computer science, vol 2121. Springer, Redondo Beach, CA, pp 236–256

    Chapter  Google Scholar 

  30. Tobler W (1979) Cellular geography. Philos Geogr, pp 379–386

  31. Voudouris C (1997) Guided local search for combinatorial optimisation problems. PhD thesis, Department of Computer Science, University of Essex, Colchester, UK

  32. Voudouris C, Tsang E (2003) Handbook of metaheuristics, chap Guided Local Search. Springer, pp 185–218

  33. Wortley R, Mazerolle L (2008) Environmental criminology and crime analysis. Willan Publishing

  34. Yoo JS, Shekhar S (2006) A joinless approach for mining spatial colocation patterns. IEEE Trans Knowl Data Eng 18(10):1323–1337. doi:10.1109/TKDE.2006.150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, P., Lee, I. Crime analysis through spatial areal aggregated density patterns. Geoinformatica 15, 49–74 (2011). https://doi.org/10.1007/s10707-010-0116-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-010-0116-1

Keywords

Navigation