Skip to main content
Log in

A framework to model and manipulate constraints for over-constrained geographic applications

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Geographic applications are often over-constrained because of the stakeholders’ multiple requirements and the various spatial, alphanumeric and temporal constraints to be satisfied. In most cases, solving over-constrained problems is based on the relaxation of some constraints according to values of preferences. This article proposes the modelling and the management of constraints in order to provide a framework to integrate stakeholders in the expression and the relaxation of their constraints. Three families of constraints are defined: static vs. dynamic, intra-entity vs. inter-entities and intra-instance vs. inter-instances. Constraints are modelled from two points of view: system with the complexity in time of the different involved operators and user with stakeholders’ preferences. The methodology of constraints relaxation is based on primitive, complex and derived operations. These operations allow a modification of the constraints in order to provide a relevant solution to a simulation. The developed system was applied to reduce the streaming/floods risks in the territory of Pays de Caux (Seine Maritime, France).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Al-Kodmany K (2001) Online tools for public participation. Govern Inform Q 18(4):329–341

    Article  Google Scholar 

  2. Attonaty JM, Chatelin MH, Garcia F (1999) Interactive simulation modeling in farm decision making. Comput Electron Agric 22(2–3):157–170

    Article  Google Scholar 

  3. Barreteau O, Bousquet F (2000) SHADOC: a multi-agent model to tackle viability of irrigated systems. Ann Oper Res 94:139–162, Kluwer Academic Publishers

    Article  Google Scholar 

  4. Barreteau O (2003) “The joint use of role-playing games and models regarding negotiation processes: characterization of associations”. J Artif Soc Soc Simulat 6(2). http://jasss.soc.surrey.ac.uk/6/2/3.html.

  5. Birbil İ, Bouza G, Frenk JBG, Still G (2006) Equilibrium constrained optimization problems. Eur J Oper Res 169(3):1108–1127

    Article  Google Scholar 

  6. Bockmayr A, Hooker JN (2005) Constraint programming. Handb Oper Res Manag Sci 12:559–600

    Article  Google Scholar 

  7. Bousquet F, Barreteau O, D’aquino P, Etienne M, Boissau S, Aubert S, Le Page C, Babin D, Castella J-C (2002) “Multiagent systems and role games: an approach for ecosystem co-management”. In: Janssen M (Ed) Complexity and ecosystem management: the theory and practice of multi-agent approaches, pp. 248–285, Edward Elgar Publishers.

  8. Carter JG, White I, Richards J (2009) Sustainability appraisal and flood risk management. Env Impact Assess Rev 29(1):7–14

    Article  Google Scholar 

  9. Charman P (1994) “A constraint-based approach for the generation of floor plans”, in Proc. 6th IEEE International Conference Tools with Artificial Intelligence (ICTAI’94), pp. 555–561, New Orleans, USA.

  10. Charon I, Hudry O (2001) The noising methods: a generalization of some metaheuristics. Eur J Oper Res 135(1):86–101

    Article  Google Scholar 

  11. Chen F, Kanemasu ET, West LT, Rachidi F (1999) “Analysis of land use and simulation of soil erosion with GIS for the semi-arid region of Morocco”, Géo-observateur, 55–75.

  12. De Marchi B, Funtowicz S, Lo Cascio S, Munda G (2000) Combining participative and institutional approaches with multi-criteria evaluation: an empirical study for water issues in Troina, Sicily. Ecol Econ 34:267–282

    Article  Google Scholar 

  13. Dury A, Leber F, Chevrier V (1999) A reactive approach for solving constraint satisfaction problems: assigning land use to farming territories. Artif Intell, Intell Agent V 1555:397–412, Springer

    Google Scholar 

  14. Dymond JR, Betts HD, Schierlitz CS (2010) An erosion model for evaluating regional land-use scenarios. Environ Model Softw 25(3):289–298

    Article  Google Scholar 

  15. Effati S, Roohparvar H (2006) Iterative dynamic programming for solving linear and nonlinear differential equations. Appl Math Comput 175(1):247–257

    Article  Google Scholar 

  16. Faber R, Jockenhövel T, Tsatsaronis G (2005) Dynamic optimization with simulated annealing. Comput Chem Eng 29(2):273–290

    Article  Google Scholar 

  17. Faltings B, Torrens M, Pu P (2004) Solution generation with qualitative models of preferences. Comput Intell 246–263.

  18. Ferber J (1989) “Eco problem solving: how to solve a problem by interactions”, in Proc. 9th Workshop on Distributed Artificial Intelligence, p 113–128, USA.

  19. Gajdos T, Tallon J-M, Vergnaud J-C (2008) Representation and aggregation of preferences under uncertainty. J Econ Theory 141(1):68–99

    Article  Google Scholar 

  20. Ghallab M, Nau D, Traverso P (2004) Constraint satisfaction techniques, automated planning 167–191.

  21. Ha JS, Seong PH (2009) A human–machine interface evaluation method: a difficulty evaluation method in information searching (DEMIS). Reliab Eng Syst Saf 94(10):1557–1567

    Article  Google Scholar 

  22. Hammouche K, Diaf M, Siarry P (2009) A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Eng Appl Artif Intell.

  23. Hasançebi O (2008) Adaptive evolution strategies in structural optimization: enhancing their computational performance with applications to large-scale structures. Comput Struct 86(1–2):119–132

    Article  Google Scholar 

  24. Jaziri W, Paquet T (2006) A multi-agent model and Tabu search optimization to manage agricultural territories. GeoInformatica- An Intern J Adv Comput Sci GIS 10(3):337–357, Springer, Kluwer Academic Publishers, USA

    Google Scholar 

  25. Jaziri W (2007) Multi-scale optimization for the management of run-off risks in agricultural watersheds. IEEE Trans Syst Man Cybern C Appl Rev 37(4):573–582

    Article  Google Scholar 

  26. Jetten V, Boiffin J, De Roo A (1996) Defining monitoring strategies for runoff and erosion studies in agricultural catchments: a simulation approach. Soil Sci 47:579–592, Lippincott Williams & Wilkins

    Article  Google Scholar 

  27. Kingston R, Carver S, Evans A, Turton I (2000) Web-based public participation geographical information systems: an aid to local environmental decision-making. Comput Environ Urban Syst 24(2):109–125

    Article  Google Scholar 

  28. Le Ber F, Chevrier V, Dury A (1998) “A multi-agent system for the simulation of land use organization”, in Proc. 3rd IFAC/CIGR Workshop on Artificial Intelligence in Agriculture, pp. 182–187, Japan.

  29. Le Ber F, Benoît M (1998) Modelling the spatial organization of land use in a farming territory, example of a village in the plateau Lorrain. Agron: Agric Env 18:101–113, EDP Sciences

    Google Scholar 

  30. Leenen L, Meyer T, Ghose A (2007) Relaxations of semiring constraint satisfaction problems. Inf Process Lett 103(5):177–182

    Article  Google Scholar 

  31. Liang LY, Chao WC (2008) The strategies of tabu search technique for facility layout optimization. Autom Constr 17(6):657–669

    Article  Google Scholar 

  32. Lind N, Pandey M, Nathwani J (2009) Assessing and affording the control of flood risk. Struct Saf 31(2):143–147

    Article  Google Scholar 

  33. Linden G, Hanks S, Lesh N (1997) Interactive assessment of user preference models: the automated travel assistant, Proceedings of the Sixth International Conference on User Modeling (UM97), 67–78, New York.

  34. Luhandjula MK (2006) Fuzzy stochastic linear programming: survey and future research directions. Eur J Oper Res 174(3):1353–1367

    Article  Google Scholar 

  35. MacFarlane A, Tuson A (2009) Local search: a guide for the information retrieval practitioner. Inf Process Manag 45(1):159–174

    Article  Google Scholar 

  36. Marinescu R, Dechter R (2009) AND/OR branch-and-bound search for combinatorial optimization in graphical models. Artif Intell 173(16–17):1457–1491

    Article  Google Scholar 

  37. Martin P (1999) Reducing flood risk from sediment-laden agricultural runoff using intercrop management techniques in northern France. Soil Tillage Res 52:233–245, Elsevier

    Article  Google Scholar 

  38. Martin P, Papy F, Capillon A (2001) “Agricultural field state and runoff risk: proposal of a simple relation for the silty-loam-soil context of the Pays de Caux (France)”, Proceedings of the 10th International Soil Conservation Organization Meeting, pp. 293–299, USA.

  39. Mussa-Ivaldi FA, Danziger Z (2009) The remapping of space in motor learning and human–machine interfaces. J Physiology-Paris 103(3–5):263–275

    Article  Google Scholar 

  40. Posthumus H, Hewett CJM, Morris J, Quinn PF (2008) Agricultural land use and flood risk management: engaging with stakeholders in North Yorkshire. Agric Water Manag 95(7):787–798

    Article  Google Scholar 

  41. Roy B (1996) Multicriteria methodology for decision aiding. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  42. T. Schiex (1992) “Possibilistic constraint satisfaction problems or how to handle soft constraints?”, in Proc. 8th Int. Conf. on Uncertainty in Artificial Intelligence (UAI-92), pp. 268–275, Stanford, CA, USA.

  43. Soland RM (1979) Multicriteria optimization: a general characterization of efficient solutions. Decis Sci 10(1):26–38, Blackwell Publishing

    Article  Google Scholar 

  44. Tsoukiàs A (2008) From decision theory to decision aiding methodology. Eur J Oper Res 187(1):138–161

    Article  Google Scholar 

  45. Van Beek P (2006) Backtracking search algorithms. Found Artif Intell 2:85–134

    Article  Google Scholar 

  46. Viappiani P, Faltings B, Pu P (2006) Preference-based search using example-critiquing with suggestions. J Artif Intell Res 27:465–503

    Google Scholar 

  47. Viappiani P, Pu P, Faltings B (2008) Preference-based search with adaptive recommendations. AI Commun 21(2):155–175

    Google Scholar 

  48. Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative coevolution. Inf Sci 178(15):2985–2999

    Article  Google Scholar 

  49. Zhou P, Luukkanen O, Tokola T, Nieminen J (2008) Effect of vegetation cover on soil erosion in a mountainous watershed. Catena 75(3):319–325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wassim Jaziri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaziri, W., Mainguenaud, M. A framework to model and manipulate constraints for over-constrained geographic applications. Geoinformatica 17, 257–284 (2013). https://doi.org/10.1007/s10707-012-0151-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-012-0151-1

Keywords

Navigation