Skip to main content
Log in

Evolutionary search for understanding movement dynamics on mixed networks

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

This paper describes an approach to using evolutionary algorithms for reasoning about paths through network data. The paths investigated in the context of this research are functional paths wherein the characteristics (e.g., path length, morphology, location) of the path are integral to the objective purpose of the path. Using two datasets of combined surface and road networks, the research demonstrates how an evolutionary algorithm can be used to reason about functional paths. We present the algorithm approach, the parameters and fitness function that drive the functional aspects of the path, and an approach for using the algorithm to respond to dynamic changes in the search space. The results of the search process are presented in terms of the overall success based on the response of the search to variations in the environment and through the use of an occupancy grid characterizing the overall search process. The approach offers a great deal of flexibility over more conventional heuristic path finding approaches and offers additional perspective on dynamic network analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Listing 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64(4):233–247

    Article  Google Scholar 

  2. Beier P, Majka D, Newell S (2009) Uncertainty analysis of least-cost modeling for designing wildlife linkages. Ecol Appl 19(8):2067–2077

    Article  Google Scholar 

  3. Bellman R (1958) On a routing problem. Q Appl Math 16:87–90

    Google Scholar 

  4. Bennett DA, Tang W (2006) Modelling adaptive, spatially aware, and mobile agents: Elk migration in yellowstone. Int J Geogr Inf Sci 20(9):1039–1066

    Article  Google Scholar 

  5. Church RL, Loban SR, Lombard K (1992) An interface for exploring spatial alternatives for a corridor location problem. Comput Geosci 18(8):1095–1105

    Article  Google Scholar 

  6. Colizza V, Barrat A, Barthelemy M, Vespignani A (2006) The role of the airline transportation network in the prediction and predictability of global epidemics. Proc Natl Acad Sci 103(7):2015–2020

    Article  Google Scholar 

  7. Cova TJ, Johnson JP (2002) Microsimulation of neighborhood evacuations in the urban-wildland interface. Environ Plann A 34(12):2211–2230

    Article  Google Scholar 

  8. Cova TJ, Johnson JP (2003) A network flow model for lane-based evacuation routing. Transp Res Part A Policy Pract 37(7):579

    Article  Google Scholar 

  9. Pretolani D (2000) A directed hypergraph model for random time dependent shortest paths. Eur J Oper Res 123(2):315–324

    Article  Google Scholar 

  10. Davies C, Lingras P (2003) Genetic algorithms for rerouting shortest paths in dynamic and stochastic networks. Eur J Oper Res 144(1):27–38

    Article  Google Scholar 

  11. Demetrescu C (2006) DIMACS challenge benchmarks: Colorado, USA. http://www.dis.uniroma1.it/~challenge9/download.shtml

  12. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  Google Scholar 

  13. Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345

    Article  Google Scholar 

  14. Frank WC, Thill J-C, Batta R (2000) Spatial decision support system for hazardous material truck routing. Transp Res Part C Emerg Technol 8(1–6):337–359

    Article  Google Scholar 

  15. Gen M, Cheng R, Wang D (1997) Genetic algorithms for solving shortest path problems. In: IEEE international conference on evolutionary computation, pp 401–406

  16. Gen M, Lin L (2005) Multi-objective hybrid genetic algorithm for bicriteria network design problem. Complex Int 11:73–83

    Google Scholar 

  17. George B, Shekhar S (2008) Time-aggregated graphs for modeling spatio- temporal networks. In: Spaccapietra S, Pan J, Thiran P, Halpin T, Staab S, Svatek V, Shvaiko P, Roddick J (eds) Journal on Data Semantics XI. Lecture notes in computer science, vol 5383. Springer Berlin, Heidelberg, pp 191–212

  18. Goodchild M (1977) An evaluation of lattice solutions to the problem of corridor location. Environ Plann A 9(7):727–738

    Article  Google Scholar 

  19. Hägerstrand T (1970) What about people in regional science? Pap Reg Sci 24(1):6–21

    Article  Google Scholar 

  20. Haklay MM, Weber P (2008) Openstreetmap: user-generated street maps. IEEE Pervasive Computing 7:12–18

    Article  Google Scholar 

  21. Hargrove WW, Hoffman FM, Efroymson RA (2005) A practical map-analysis tool for detecting potential dispersal corridors. Landsc Ecol 20(4):361–373

    Article  Google Scholar 

  22. Hart P, Nilsson N, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

    Article  Google Scholar 

  23. Huang B, Cheu RL, Liew YS (2004) GIS and genetic algorithms for HAZMAT route planning with security considerations. Int J Geogr Inf Sci 18(8):769–787

    Article  Google Scholar 

  24. Lin S, Kernighan B (1973) An effective heuristic algorithm for the traveling-salesman problem. Oper Res 21(2):498–516

    Article  Google Scholar 

  25. Loui RP (1983) Optimal paths in graphs with stochastic or multidimensional weights. Commun ACM 26:670–676

    Article  Google Scholar 

  26. Lup L, Srinivasan D (2007) A hybrid evolutionary algorithm for dynamic route planning. In: IEEE Congress on Evolutionary Computation, 2007. CEC 2007, pp 4743–4749

  27. McDonald DB (2007) Predicting fate from early connectivity in a social network. Proc Natl Acad Sci 104(26):10910–10914

    Article  Google Scholar 

  28. Miller HJ, Wu Y-H (2000) Gis software for measuring space-time accessibility in transportation planning and analysis. Geoinformatica 4(2):141–159

    Article  Google Scholar 

  29. Mooney P, Winstanley A (2006) An evolutionary algorithm for multicriteria path optimization problems. Int J Geogr Inf Sci 20(4):401–423

    Article  Google Scholar 

  30. Okabe A, Okunuki K (2001) A computational method for estimating the demand of retail stores on a street network and its implementation in GIS. Trans GIS 5(3):209

    Article  Google Scholar 

  31. Orda A, Rom R (1990) Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. J ACM 37:607–625

    Article  Google Scholar 

  32. Osborn FV, Parker GE (2003) Linking two elephant refuges with a corridor in the communal lands of Zimbabwe. Afr J Ecol 41(1):68–74

    Article  Google Scholar 

  33. O’Sullivan D, Morrison A, Shearer J (2000) Using desktop GIS for the investigation of accessibility by public transport: an isochrone approach. Int J Geogr Inf Sci 14(1):85–104

    Article  Google Scholar 

  34. Pfoser D, Jensen C (2003) Indexing of network constrained moving objects. In: Proceedings of the 11th ACM international symposium on advances in geographic information systems. ACM, p 32

  35. Prager SD, Spears WM (2009) A hybrid evolutionary-graph approach for finding functional network paths. In: GIS ’09: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, New York, pp 306–315

    Google Scholar 

  36. Shaw L, Spears WM, Billings L, Maxim P (2010) Effective vaccination policies. Inf Sci 180(19):3728–3744

    Article  Google Scholar 

  37. Spears WM (2000) Evolutionary algorithms: the role of mutation and recombination. Natural computing series. Springer

  38. Trajcevski G, Wolfson O, Hinrichs K, Chamberlain S (2004) Managing uncertainty in moving objects databases. ACM Trans Database Syst 29(3):463–507

    Article  Google Scholar 

  39. Xie Z, Yan J (2008) Kernel density estimation of traffic accidents in a network space. Comput Environ Urban Syst 32(5):396–406

    Article  Google Scholar 

  40. Yamada I, Thill J (2004) Comparison of planar and network K-functions in traffic accident analysis. J Transp Geogr 12(2):149–158

    Article  Google Scholar 

  41. Yuan M, Hornsby K (eds) (2007) Computation and visualization for understanding dynamics in geographic domains: a research agenda. CRC

  42. Zhan F, Noon C (1998) Shortest path algorithms: an evaluation using real road networks. Transp Sci 32(1):65–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Prager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spears, W.M., Prager, S.D. Evolutionary search for understanding movement dynamics on mixed networks. Geoinformatica 17, 353–385 (2013). https://doi.org/10.1007/s10707-012-0155-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-012-0155-x

Keywords

Navigation