Skip to main content
Log in

Using virtual reality and percolation theory to visualize fluid flow in porous media

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

The study of the fluid flow process through porous media can bring valuable contributions in areas like oil exploration and environmental research. In this work, we propose an interactive tool, named VRFluid, that allows visual interpretation of the three-dimensional data generated by the simulation of the fluid flow the porous media. VRFluid comprises a virtual reality engine that provides stereo visualization of the three-dimensional data, and a simulation engine based on a dynamic percolation method to model the fluid flow. VRFluid is composed of two independent main threads, the percolation simulator and the rendering server, that can operate in parallel as a pipeline. We tested our tool on a region of a mature field database, supervised by geophysicists, and obtained images of the interior of the percolation data, providing important results for the interpretation and cluster formation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adler J, Lev U (2003) Bootstrap percolation: visualizations and applications. Braz J Phys 33(3):641–644

    Article  Google Scholar 

  2. Avila R, Hong L, He T, Kaufman A, Pfister H, Silva C, Sobierajski L, Wang S (1994) Volvis: a diversified volume visualization system. In: Proc. of IEEE visualization’94, pp 31–38

  3. Berkowitz B, Ewing RP (1998) Percolation theory and network modeling applications in soil physics. Surv Geophys 19:23–72

    Article  Google Scholar 

  4. Boyles M, Fang S (2003) 3dive: an immersive environment for interactive volume data exploration. J Comput Sci Technol 18(1):41–47

    Article  Google Scholar 

  5. Brady R, Pixton J, Baxter G, Moran P, Potter C, Carragher B, Belmonts A (1995) Crumbs: a virtual environment tracking tool for biological imaging. In: IEEE symposium on frontiers in biomedical visualization, pp 18–25

  6. Bucha V (2001) Displaying 3-d seismic models through the vrml and gocad. SW3D 1(11):337–355

    Google Scholar 

  7. Chatzis I, Dullien FAL (1985) The modelling of mercury porosimetry and relative permeability of mercury in sandstones using percolation theory. Int Chem Eng 1(25):47–66

    Google Scholar 

  8. CMG (2005) Computer Modelling Group Ltd. http://www.cmgl.ca/

  9. de Freitas JE (2002) Estudo de algums sistemas complexos: percolacao dependente do tempo, aplicacao a problemas de petroleo, percolacao de longo alcance e modelo de reacao e difusao. PhD thesis, Universidade Federal do Rio Grande do Norte

  10. Dorn GA, Cole MJ, Tubman KM (1995) Visualization in 3-d seismic interpretation. Lead Edge 14(10):1045–1049

    Article  Google Scholar 

  11. Dorn et al (2001) Immersive 3-d visualization applied to drilling planning. Lead Edge (20):1389–1392

  12. Farias R, Mitchell J, Silva C (2000) Zsweep: an efficient and exact projection algorithm for unstructured volume rendering. In: 2000 volume visualization symposium, pp 91–99

  13. Ferrand LA, Celia MA (1992) The effects of heterogeneity on the drainage capillary pressure: saturation relations. Water Resour Res 3(28):859–870

    Article  Google Scholar 

  14. Friedman SP, Seaton NA (1998) Critical path analysis of the relation-ship between permeability and electrical conductivity of three dimensional pore networks. Water Resour Res 7(34):1703–1710

    Article  Google Scholar 

  15. Fuhrmann AL, Ozer B, Mroz L, Hauser H (2005) Vr2, interactive volume rendering using pc-based virtual reality. http://www.vrvis.at/vr/voxelstube

  16. George DS, Kovscek AR (2001) Visualization of solution gas drive in viscous oil. Technical report, Stanford University, CA, USA

  17. Gudukbay U, Yilmaz T (2002) Stereoscopic view-dependent visualization of terrain height fields. IEEE Trans Vis Comput Graph 8(4):330–345

    Article  Google Scholar 

  18. CAVE5D Users Guide (1998) www.ccpo.odu.edu/cave5d/homepage.html

  19. Hibbard W, Santek D (1990) The Vis5D system for easy interactive visualization. In: Proc. of the 2nd IEEE visualization conference (Vis1990), pp 28–35

  20. Hilpert M, Miller CT (2001) Pore-morphology-based simulation of drainage in totally water wetting porous media. Adv Water Resour 1(24):243–255

    Article  Google Scholar 

  21. Hodges LF (1991) Basic principles of stereographic software development. Stereoscopic and Applications II, Proc SPIE 1457 12(2):9–17

    Article  Google Scholar 

  22. Hodges LF (1992) Tutorial: time-multiplexed stereoscopic computer graphics. IEEE Comput Graph Appl 12(2):20–30

    Article  Google Scholar 

  23. Hudson R, Malagoli A (1996) Networked virtual reality for real-time 4d navigation of astrophysical turbulence data simulation. In: Multiconference of the Society for Computer Simulation

  24. Hunt AG (2005) Percolation theory for flow in porous media. Springer, Berlin

    Google Scholar 

  25. Jerauld GR, Latter SJ (1990) The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modelling. Transp Porous Media 1(5):103–151

    Article  Google Scholar 

  26. King PR, Andrade JS, Buldyrev SV, Dokholyan NV, Lee Y, Havlin S, Stanley HE (1999) Predicting oil recovery using percolation. Physica A 1(266):107–114

    Article  Google Scholar 

  27. Lascara C, Wheless G, Cox D, Patterson R, Levy S, Johnson AE, Leigh J (1999) Teleimmersive virtual environments for collaborative knowledge discovery. In: Proceedings of advanced simulation technologies conference, pp 11–15

  28. Lima CM, Gonalves LM, Bentes C, Farias R (2005) Visfluid: an analysis tool for fluid flow in porous media. In: Proceedings of the VII Brazilian symposium on GeoInformatics, pp 88–95

  29. Lowry MI, Miller CT (1995) Pore-scale modeling of nonwetting-phase residual in porous media. Water Resour Res 1(31):455–473

    Article  Google Scholar 

  30. McPherson A, Maltrud M (1998) Poptex: interactive ocean model visualization using texture mapping hardware. In: Proc. of the 9th IEEE visualization conference (Vis1998), pp 471–474

  31. Mroz L, Hauser H (2001) Rtvr—a flexible java library for interactive volume rendering. In: Proceedings IEEE visualization 2001, pp 279–286

  32. OpenGL Architecture Review Board/Editor: Shreiner D (2004) OpenGL reference manual: the official reference document to OpenGL, Version 1.4, 4/E. Addison-Wesley

  33. Or D, Tuller M (2003) Hydraulic conductivity of partially saturated fractured porous media: flow in a cross-section. Adv Water Resour 1(26):883–898

    Article  Google Scholar 

  34. Peggy P, Whitman S, Mendonza R, Tsiao J (1997) ParVox—a parallel splatting volume rendering system for distributed visualization. In: Painter J, Stoll G, Ma K-L (eds) IEEE parallel rendering symposium, pp 7–14

  35. Pfister H, Hardenbergh J, Knittel J, Lauer H, Seiler L (1999) The volumepro real-time ray-casting system. In: SIGGRAPH’99

  36. Rosslerova R, Kodes V (1996) The use of gis in percolation study of soil porous system. In: Proc. HydroGIS 96, application of geographic information systems in hydrology and water resources management, pp 259–265

  37. Sagar NS, Castanier LMD (1997) Oil-foam interactions in a micromodel. Technical report, Dept. of Petroleum Engineering, Stanford University, CA, USA

  38. Schulze JP, Wossner U, Walz SP, Lang U (2001) Volume rendering in a virtual environment. In: Proc. of 5th IPTW and Eurographics virtual environments, pp 187–198

  39. Stauffer D (1979) Scaling theory of percolation clusters. Phys Rep 54(1):1–74

    Article  Google Scholar 

  40. Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  41. Tomov S, McGuigan M, Bennett R, Smith J, Spiletic G (2005) Benchmarking and implementation of probability-based simulations on programmable graphics cards. Comput Graph 29(1):71–80

    Article  Google Scholar 

  42. Wilkinson D, Willemsen JF (1983) Invasion percolation: a new form of percolation theory. J Phys A 1:3365–3376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Bentes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lima, C.M., Gonçalves, L.M.G., Bentes, C. et al. Using virtual reality and percolation theory to visualize fluid flow in porous media. Geoinformatica 17, 521–541 (2013). https://doi.org/10.1007/s10707-012-0168-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-012-0168-5

Keywords

Navigation