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Abstract In geographic information science and semantics, the computation
of semantic similarity is widely recognised as key to supporting a vast number
of tasks in information integration and retrieval. By contrast, the role of geo-
semantic relatedness has been largely ignored. In natural language processing,
semantic relatedness is often confused with the more specific semantic simi-
larity. In this article, we discuss a notion of geo-semantic relatedness based
on Lehrer’s semantic fields, and we compare it with geo-semantic similarity.
We then describe and validate the Geo Relatedness and Similarity Dataset
(GeReSiD), a new open dataset designed to evaluate computational measures
of geo-semantic relatedness and similarity. This dataset is larger than existing
datasets of this kind, and includes 97 geographic terms combined into 50 term
pairs rated by 203 human subjects. GeReSiD is available online and can be
used as an evaluation baseline to determine empirically to what degree a given
computational model approximates geo-semantic relatedness and similarity.

Keywords geo-semantic relatedness · geo-semantic similarity · gold
standards · geo-semantics · cognitive plausibility · GeReSiD

1 Introduction

Is lake related to river? Is road related to transportation? Are mountain and
hill more related than mountain and lake? While it may seem natural to an-
swer yes to all of these questions, the logical and computational formalisation
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of why this is the case has raised considerable interest in philosophy, psychol-
ogy, linguistics and, more recently, in computer science. The human ability to
detect semantic relatedness is essential to perform key operations in communi-
cation, such as word-sense disambiguation (e.g. interpreting bank as financial
institution or as the terrain alongside the bed of a river), reducing semantic
ambiguity and increasing efficiency in meaning-creation and sharing. The hu-
man cognitive apparatus possesses a remarkable ability to detect co-occurrence
patterns that are not due to chance, but that indicate the existence of some
semantic relation between the terms.

Semantic similarity has been identified as a particular subset of this general
notion of semantic relatedness. While semantically related terms are connected
by any kind of relation, semantically similar terms are related by synonymy,
hyponymy, and hypernymy, all of which involve an is a relation. In this sense,
train and bus are intuitively similar (they are both means of transport), whilst
bus and road are related but not similar (i.e. they often co-occur but with
different roles). Semantic similarity relies on the general cognitive ability to
detect similar patterns in stimuli, which attracts considerable attention in
cognitive science. Notably, Goldstone and Son [15] stated that “assessments of
similarity are fundamental to cognition because similarities in the world are
revealing. The world is an orderly enough place that similar objects and events
tend to behave similarly” (p. 13). Therefore, the vast applicability of semantic
similarity in computer and information science should come as no surprise.

In geographic information science (GIScience), the theoretical and practical
importance of geo-semantic similarity has been fully acknowledged, resulting
in a growing body of research [2, 4, 23]. By contrast, the importance of se-
mantic relatedness, which is widely studied in the non-geographic domain, has
been almost completely ignored, with the exception of the works by Hecht
and Raubal [16] and Hecht et al. [17]. Computational measures of semantic
relatedness play a pivotal role in natural language processing, information
retrieval (IR), and word sense disambiguation, providing access to deeper se-
mantic connections between words and sets of words. Despite the large number
of existing measures, their rigorous evaluation still constitutes an important
research challenge [12].

This article contributes to GIScience and semantics in the following ways.
First, we discuss in detail the notion of geo-semantic relatedness, drawing on
Lehrer’s theory of semantic fields, which consist of sets of terms covering a re-
stricted semantic domain. Geo-semantic relatedness is defined with respect to
specifiable geographic relations between terms, and is compared and contrasted
with the more widely studied geo-semantic similarity. Second, we have devel-
oped and validated the Geo Relatedness and Similarity Dataset (GeReSiD),
tackling the complex issue of the evaluation of computational measures of
geo-semantic relatedness and similarity. In this new dataset, we have collected
psychological judgements about 50 pairs of terms, covering 97 unique geo-
graphic terms, from 203 human subjects. The human judgements in GeReSiD
focus explicitly on geo-semantic relatedness and similarity between geographic
terms.
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The resulting dataset provides an evaluation test bed for geo-semantic re-
latedness and similarity. This is compared against the existing human-generated
gold standards used to assess computational measures of semantic relatedness
and similarity, highlighting the limitations of such datasets. Such an evalua-
tive baseline constitutes a valuable ground truth against which computational
measures can be assessed, providing empirical evidence about the cognitive
plausibility of the measures. GeReSiD can inform research in geo-semantics, in-
dicating to what degree computational approaches match human judgements.
More specifically the contribution of this evaluative baseline consists of the
following aspects:

– GeReSiD covers a sample of geographic terms larger than existing similar-
ity datasets, including 97 natural and man-made unique terms, grouped in
50 unique pairs. Psychological judgements of geo-semantic relatedness and
similarity were collected separately on the 50 pairs.

– GeReSiD includes a sample of evenly distributed relatedness/similarity
judgements, ranging from near-synonymity to no relationship between the
terms. Our methodology is described explicitly and precisely, in order to
provide practical guidelines to construct similar datasets.

– Unlike existing datasets, the semantic judgements on the term pairs con-
tained in GeReSiD are analysed with respect to interrater agreement (IRA)
and interrater reliability (IRR).

– The psychological judgements in GeReSiD can be observed as the mean of
relatedness/similarity of the pairs, using correlation coefficients of related-
ness/similarity rankings (such as Spearman’s ρ or Kendall’s τ). Alterna-
tively, the data can be interpreted as categorical, using Cohen’s kappa or
Fisher’s exact test [7] to evaluate the computational measure.

– GeReSiD is an open dataset freely available online.1 Both raw data and
the resulting dataset are available.

The remainder of this article is organised as follows. Section 2 discusses in
depth the two key notions of geo-semantic relatedness and similarity, propos-
ing a synthetic definition. Section 3 summarises existing datasets for semantic
relatedness and similarity, with particular attention to those restricted to the
geographic domain. The new evaluative baseline, GeReSiD, is outlined, anal-
ysed and discussed in Section 4. Conclusions and directions for future research
are indicated in Section 5.

2 Geo-semantic relatedness and similarity

This section introduces the notion of geo-semantic relatedness, comparing it
and contrasting it with geo-semantic similarity. In the natural language pro-
cessing literature, several terms are used inconsistently, including semantic
relatedness, relational similarity, taxonomical similarity, semantic association,

1 http://github.com/ucd-spatial/Datasets (acc. Apr 10, 2013)

http://github.com/ucd-spatial/Datasets
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analogy, and attributional similarity [53]. These terms are often used inter-
changeably [9]. A striking example of this tendency is the article title ‘Word-
Net::Similarity: Measuring the relatedness of terms’ [39].

In natural language, terms are connected by an open set of semantic
relations. Common semantic relations are synonymy (A coincides with B),
antonymy (A is the opposite of B), hyponymy (A is a B), hypernymy (B is
a A), holonymy (A is whole of B), meronymy (A is part of B), causality (A
causes B), temporal contiguity (A occurs at the same time as B), and function
(A is used to perform B). Khoo and Na [28] have surveyed these semantic rela-
tions, whilst Morris and Hirst [36] have explored other non-classical semantic
relations. As Khoo and Na [28] remarked, semantic relations are characterised
by productivity (new relations can be easily created), uncountability (semantic
relations are an open class and cannot be counted), and predictability (they
follow general, recurring patterns). In the geographic domain, spatial relations
such as proximity (A is near B), and containment (A is within B) have an
impact on semantics [49].

Before providing our definition of geo-semantic relatedness and similarity,
it is beneficial to review the semantics of these terms in the literature. In the
context of semantic networks, Rada et al. [40] suggested that semantic related-
ness is “based on an aggregate of the interconnections between the terms” (p.
18). To obtain semantic similarity, the observation must be restricted to tax-
onomic is a relationships between terms. Resnik [41] followed this approach,
and defined semantic similarity and relatedness as follows: “Semantic simi-
larity represents a special case of semantic relatedness: for example, cars and
gasoline would seem to be more closely related than, say, cars and bicycles,
but the latter pair are certainly more similar” (p. 448).

More recently, Turney [53] added a further distinction between ‘attribu-
tional’ and ‘relational similarity.’ Following the approach outlined by Medin
et al. [32], ‘attributes’ are statements about a term that take only one pa-
rameter, e.g. X is red, X is long. Therefore, attributional similarity mea-
sures the correspondence between the attributes of the two terms. ‘Relations,’
on the other hand, are statements that take two or more parameters, e.g.
X is a Y,X is longer than Y . Hence, relational similarity is based on the
common relations between two pairs of terms [53]. On these assumptions,
synonymy is seen as a high degree of attributional similarity between two
terms, e.g. <river,stream>. Analogy, by contrast, is characterised as a high
degree of relational similarity between two pairs of terms, e.g. <boat,river>
and <car,road>. The next sections discuss geo-semantic relatedness and sim-
ilarity in detail.

2.1 Geo-semantic relatedness

A general notion of relatedness in the geographic context was stated in Tobler’s
first law, which asserts that everything is related to everything else, but near
things are more related than distant things [51]. While this law was formulated
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to express intuitively the high spatial autocorrelation of many geographic phe-
nomena, it has generated several responses in GIScience. For example, in the
context of information visualisation, Montello et al. [35] have proposed the
first law of cognitive geography, which states that “people believe closer things
to be more similar than distant things” (p. 317). Applying the same intuition
to the domain of geo-semantics, we assert that two terms are geo-semantically
related to the degree to which they refer to entities or phenomena connected
via specifiable relations grounded in the geographic dimension.

To define a notion of geo-semantic relatedness, we rely on the notion of
semantic field. According to Lehrer [31], a semantic field is “a set of lexemes
which cover a certain conceptual domain and which bear certain specifiable
relation to one another” (p. 283). While a ‘domain’ is an epistemological notion
referring to a subset of human knowledge and experience (e.g. geography,
politics, medicine, etc.), a semantic field is a more specific linguistic notion
that refers to a set of lexemes utilised to describe a domain. For example, a
semantic field might be formed by terms train, bus, trip, fare, delay, accident,
etc., which are all connected to the underlying term of transportation, and
commonly used to generate observations on the domain of mobility.

Terms appear to be semantically related to the degree to which they be-
long to the same semantic field, and can indeed belong to different semantic
fields. Semantic fields are neither static nor well-defined sets, but rather fuzzy
configurations that shift over time, and across different agents and informa-
tion communities. The condition of specifiability of relations emphasises the
fact that random co-occurrence has no impact on semantic relatedness. If a
relation is not specifiable, the co-occurrence of the two terms must be random.
A term has a certain degree of centrality in a semantic field, i.e. the density of
connectedness with other terms. For example, in the aforementioned semantic
field on transportation, car is more central than delay. Similarly, in a semantic
field on social life, car is likely to be less central than restaurant or pub.

Geo-semantic relatedness can therefore be defined as a specific sub-domain
of semantic relatedness, focusing on relations grounded in the geographic di-
mension, i.e. relations in which at least one of the terms has a spatial dimen-
sion. Examples of geo-semantically related terms are judge, trial, and tribunal,
where tribunal has a strong geographic component that grounds the other
terms geographically. A computational measure of geo-semantic relatedness
has to aggregate and quantify the intensity of such relations between two
terms, providing a useful tool for several complex tasks. For example, terms
river and flood should be more geo-semantically related than vehicle and car,
which possess a less prominent geographic component. Acknowledging the fact
that most terms in natural language have some degree of geographic ground,
we express this approach to geo-semantic relatedness following Tobler’s first
law of geography:

Every term is geo-semantically related to all other terms, but terms that
co-occur with specifiable geographic relations are more related than other
terms.
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In other words, every term can in principle have some degree of geo-semantic
relatedness to any other term, but terms that co-occur in observations bearing
specifiable relations tend to be more geo-semantically related than those that
do not. This formulation puts terms in relation to human spatial experience
from which terms arise, suggesting indistinct, gradual, and shifting boundaries
between geo-related and unrelated terms.

In this sense, geo-semantic relatedness is intrinsically fuzzy, admitting a
continuous spectrum of relatedness rather than a binary classification (i.e. re-
lated or unrelated). Highly related terms belong to the same semantic field.
The same terms can belong to several overlapping semantic fields. Relatedness
involves all semantic relations, including synonymy, antonymy, hyponymy, hy-
pernymy, holonymy, meronymy, causality, temporal contiguity, function, prox-
imity, and containment. This law applies both to natural language, where
geographic terms can be highly imprecise and vague, and to scientific concep-
tualisations, which generally aim at stricter semantics.

Surprisingly, in GIScience semantic relatedness has been almost completely
ignored, with two notable exceptions [16, 17]. In order to explore semantically
and spatially related entities in Wikipedia, Hecht and Raubal [16] developed
ExploSR, a graph-based relatedness measure. ExploSR computes a semantic
relatedness score of two articles by assigning weights to spatially-referenced
articles in the Wikipedia Article Graph. More recently, the Atlasify system
generates human-readable explanations of the relationship between terms to
support exploratory search [17].

Geo-semantic relatedness can be informed by ideas developed in the area
of text mining. The latent Dirichlet allocation (LDA) adopts a probabilistic
approach to cluster highly semantically-related terms in a text corpus [8]. LDA
was extended to include a geographic dimension into the Location Aware Topic
Model (LATM) [55]. LATM quantifies the geo-semantic relatedness between
keywords, topics, and geographic locations, adopting a fully distributional ap-
proach.

2.2 Geo-semantic similarity

While geo-semantic relatedness of terms can be based on co-occurrence in
observations, geo-semantic similarity of terms can only be determined through
the analysis of the terms’ attributes and relations. Geo-semantic similarity is
a subset of geo-semantic relatedness: all similar terms are also related, but
related terms are not necessarily similar. The relations considered for geo-
semantic similarity include only synonymy, hyponymy, and hypernymy. Unlike
geo-semantic relatedness, geo-semantic similarity has been deeply explored by
the GIScience community, and is recognised as one of the key concepts of
geo-semantics [29].

Several theories of similarity have been used to conceptualise and measure
geo-semantic similarity, including featural, transformational, geometric, and
alignment models [47, 22, 23, 48]. Specific techniques have been devised for
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specific knowledge-representation formalisms [20, 44]. More recently, graph-
based [5] and lexical techniques [3, 4] have been investigated in the emerging
area of volunteered geographic information (VGI). These works tend to fo-
cus on the conceptual level, computing the similarity of abstract geographic
terms (e.g. city and river), rather than the instance level (e.g. New York and
Danube).

Beyond the specificities of such approaches, we can state that terms A and
B are semantically similar with respect to C, where C is a set of attributes
and relations, also known as context [26]. The context C focuses on the typical
spatial organisation and appearance of the entity identified by the term (e.g.
shape, size, material composition). Alternatively, the similarity of A and B
can be measured with respect to their affordances, i.e. the possibilities that an
entity offers to humans [19].

As observed in relation to geo-semantic relatedness, all terms can be geo-
semantically similar to some limited extent, and geo-semantic similarity is
therefore best modelled as a continuous spectrum, rather than a binary classi-
fication. For example, terms restaurant and continent are similar with respect
to the fact that they both refer to geographically-grounded entities. To capture
this idea at the linguistic level that is relevant to this discussion, we adopt the
approach outlined in [4]. Considering the terms used in lexical definitions of
terms, we state recursively that:

All terms are geo-semantically similar, but geographic terms described
using the same terms are more similar than other terms.

A geo-semantic similarity measure has to quantify the similarity of two terms
into a score, enabling a number of semantic tasks in IR and information in-
tegration. For example, terms restaurant and pub are very similar because
they share similar spatial organisation and affordances. Houses and schools
are geo-semantically similar with respect to their spatial organisation of parts
and can be described as having walls, windows, doors, a roof, etc. Roads and
rivers show similar affordances – they can be used for transportation.

3 Semantic relatedness and similarity gold standards

Semantic similarity and relatedness measures can be evaluated against a human-
generated set of psychological judgements. This section gives an overview of
published similarity and relatedness gold standards, mostly from psychology
and computational linguistics. The term ‘gold standard’ is described by the
Oxford Dictionary of English as “a thing of superior quality which serves as a
point of reference against which other things of its type may be compared.”2 In
computer science, the term is used to describe high-quality, human-generated
datasets, capturing human behaviour in relation to a well-defined task. Such
datasets can then be used to assess the performance of automatic approaches,

2 http://oxforddictionaries.com/definition/gold+standard (acc. Apr 10, 2013)

http://oxforddictionaries.com/definition/gold+standard
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by quantifying the correlation between the machine and the human-generated
data.

3.1 Cognitive plausibility

In a seminal discussion on expert systems, Strube [50] argued that knowledge
engineering should strive towards increasing the cognitive adequacy of compu-
tational systems, defined as their ‘degree of nearness to human cognition’ (p.
165). In the context of GIScience, geo-relatedness or geo-similarity measures
need not replicate the workings of human mind in their entirety (defined as
absolutely strong adequacy), but should aim at what Strube called relatively
strong adequacy, i.e. the ability of the system to function like a human ex-
pert in a circumscribed domain. Following this approach, we adopt the notion
of cognitive plausibility to assess to what degree a measure mimics human
behaviour [27].

In order to quantify the cognitive plausibility of a computational seman-
tic relatedness or similarity measure, two complementary approaches can be
adopted: (1) psychological evaluations, and (2) task-based evaluations. In psy-
chological evaluations, human subjects are asked to rank or rate term pairs.
These rankings or ratings are then compared with computer-generated rank-
ings, usually using correlation as an indicator of performance. Alternatively,
human subjects can perform a task based on the assessment of relatedness or
similarity, such as word sense disambiguation, and the cognitive plausibility of
the measure is observed indirectly in the results of the task, using for example
precision and recall measures. Such human-generated datasets are used as gold
standards.

The usage of gold standards is common in natural language processing
tasks, such as part-of-speech tagging, entity resolution, and word sense dis-
ambiguation [46, 52, 10, 38]. Adopting this approach, a technique or a model
can be deemed to be more or less plausible by observing its correlation with
human-generated results. Such datasets are created by combining the results
from a number of human subjects who perform a given task, either under
controlled conditions, or through online forms. To be considered valid by a
research community, a gold standard needs to meet certain criteria, such as
coverage, quality, precision, and inter-subject agreement. Disagreements about
the validity of a gold standard are quite common and, when weaknesses are
uncovered, a gold standard can be demoted to a golden calf [e.g. 24].

The intrinsic high subjectivity of relatedness and similarity rankings makes
the collection and validation of gold standards complex and challenging. Al-
though task-based evaluations might appear more ‘objective,’ they are equally
affected by subjectivity: ultimately, relatedness-based or similarity-based tasks
are generated, interpreted, and validated by human subjects. Acknowledg-
ing the unlikelihood of total agreement, the reliability of a similarity evalu-
ation should be grounded in stability over time, consistency across different
datasets, and reproducibility of psychological results. Ideally, both evaluation
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approaches should show convergent, cross-validating results: a strong correla-
tion is expected between the cognitive plausibility of a measure and its per-
formance in similarity-based tasks.

3.2 Comparison of relatedness and similarity gold standards

Over the past 50 years, several authors investigating semantic issues in psy-
chology, linguistics, and computer science created datasets focused on semantic
similarity and, more recently, semantic relatedness. The first similarity gold
standard was published in 1965, in a article in which Rubenstein and Goode-
nough [45] collected a set of 65 word pairs ranked by their synonymy. Following
a similar line of research, Miller and Charles [33] published a similar dataset
with 30 word pairs in 1991. More recently, Finkelstein et al. [13] created the
WordSimilarity-353 dataset, which contains 353 word pairs actually ranked by
semantic relatedness.3 The dataset was subsequently extended to distinguish
between similarity and relatedness [1].4 In a study of the retrieval mechanism
of memories, Nelson et al. [37] collected associative similarity ratings for 1,016
word pairs.

A smaller number of geo-semantic similarity datasets have been generated
in the areas of GIScience and geographic information retrieval (GIR). In this
area, Janowicz et al. [21] conducted a study on the cognitive plausibility of
their Sim-DL similarity measure. However, the study was conducted in Ger-
man on a very small set of terms, and for this reason it is difficult to reuse
in different contexts. In order to evaluate their Matching-Distance Similarity
Measure (MDSM), Rodŕıguez and Egenhofer [44] collected similarity judge-
ments about geographic terms, including large natural entities (e.g. mountain
and forest), and man-made features (e.g. bridge and house). Before GeReSiD,
the MDSM evaluation dataset was the largest similarity gold standard for
geographic terms. For this reason, this dataset was utilised to carry out the
evaluation of network-based similarity measures [5]. In contrast, geo-semantic
relatedness has been largely ignored in the geospatial domain.

The salient characteristics of these gold standards are summarised in Table
1, detailing their human subjects, the terms and term pairs. For each dataset,
the table shows whether they focus on semantic relatedness (rel), semantic
similarity (sim), and exclusively on the geographic domain (geo). The existing
datasets are compared with GeReSiD, the gold standard described in Section
4, and have several limitations. First, the procedure followed to construct the
datasets is usually only sketched and not described in detail. Second, the size
of the datasets tends to be rather small.

The size of such datasets can be observed along three dimensions: num-
ber of human subjects, number of terms, and number of term pairs. A clear
trade-off exists between number of human subjects and number of term pairs.

3 http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353 (acc. Apr 10,
2013)

4 http://alfonseca.org/eng/research/wordsim353.html (acc. Apr 10, 2013)

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353
http://alfonseca.org/eng/research/wordsim353.html
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Furthermore, most datasets do not capture the distinction between semantic
similarity and relatedness, and do not analyse the IRA and IRR. It is impor-
tant to note that most authors did not have the explicit intention to construct
gold standards, but rather to analyse specific aspects of semantic similarity or
relatedness. However, in some cases, these datasets have been treated as gold
standards in the subsequent literature [45, 33]. To the best of our knowledge,
only WordSimilarity-353 was explicitly designed to be a generic gold standard.

Some of these gold standards have been extensively utilised to assess gen-
eral term-to-term similarity measures [45, 33, 13]. In the geographic context,
only the MDSM evaluation dataset is suitable to evaluate semantic similarity
of geographic terms [44]. However, no existing dataset focusing on geographic
terms accounts explicitly for the difference between semantic relatedness and
semantic similarity.

4 Geo Relatedness and Similarity Dataset (GeReSiD)

This section presents the Geo Relatedness and Similarity Dataset (GeReSiD),
a dataset of human judgements that we have developed to provide a ground
truth for the assessment of computational relatedness and similarity mea-
surements. GeReSiD captures explicitly the difference between geo-semantic
relatedness and similarity on a sample of geographic terms larger than ex-
isting similarity datasets surveyed in Section 3, including both natural and
man-made terms. In order to ensure its validity as a gold standard, it focuses
on a sample of evenly distributed relatedness/similarity judgements, ranging
from very high to very low. Section 4.1 describes our methodology precisely, in
order to provide guidelines on constructing datasets to ground the evaluation
of measures of geo-semantic relatedness and similarity. Subsequently, Section
4.2 outlines the results obtained from the online survey.

4.1 Survey design

The psychological judgements about geo-semantic relatedness and similarity
were collected via an online survey, through an interactive Web interface specif-
ically designed for this purpose. Online surveys constitute a powerful research
tool, with well-known advantages and disadvantages [57]. Given the focus of
this study on generic terms found in web maps, subjects involved in projects
such as OpenStreetMap represent an ideal virtual community of map users
and producers to conduct a psychological evaluation. An online survey is an
inexpensive and effective way to reach these online communities.

A cross-disciplinary consensus exists on the fact that semantic judgements
are affected by the context in which the terms are considered [44, 22]. Rodŕıguez
and Egenhofer [44] asked their subjects to rank geographic terms in the follow-
ing contexts: ‘null context,’ ‘play a sport,’ ‘compare constructions,’ and ‘com-
pare transportation systems.’ The subjects’ attention was therefore focused on
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specific aspects of the terms being analysed, rather than on the terms in an
unspecified setting.

Although context affects the assessment of semantic similarity, in this sur-
vey we aim at capturing the overall difference between semantic relatedness
and similarity of terms, without focusing on specific aspects of the concep-
tualisation. This comparison is an important research topic, frequently men-
tioned but rarely addressed directly through empirical evaluation. Introducing
specific contexts into our survey would increase the complexity of the study
by introducing new biases, making the direct comparison between similar-
ity and relatedness problematic. For example, adding a specific context does
not increase the inter-subject agreement: in their evaluation, Rodŕıguez and
Egenhofer [44] report a considerably lower association between subjects in
the case of context-specific questions (mean Kendall’s W being .5), than with
a-contextual questions (mean W = .68). Moreover, specific contexts would in-
troduce specific biases, which are beyond the scope of Geo Relatedness and
Similarity Dataset (GeReSiD).

As a solution to these issues, we frame the evaluation in the general con-
text of popular web maps, in which geographic terms are most frequently vi-
sualised and utilised by users. This way, the subjects are induced to use their
own conceptualisation of the geographic entities. As happens with semantic
judgements, subjectivity inevitably affects the subjects’ choices. In this study,
subjects are free to choose what properties they consider most relevant to
the comparison, and the mean of their ratings quantifies the perceived inter-
subject similarity and relatedness of the terms. While the study of the context
is beyond the scope of this survey, it certainly represents an important direc-
tion for future work.

The geographic terms included in this survey are taken from the Open-
StreetMap project. In our previous work, we extracted the lexicon utilised in
OpenStreetMap into a machine-readable vocabulary, the OSM Semantic Net-
work [6]. To date, the OSM Semantic Network contains a total of about 4,300
distinct terms, called ‘tags’ in the project’s terminology. From this large set
of geographic terms, a suitable sample had to be selected. To be included, a
term had to be clearly intelligible, well defined on the OSM Semantic Network,
as culturally-unspecific as possible, and present in the actual OpenStreetMap
vector map. Following these criteria, we manually selected a set C of 400 terms,
including a wide range of natural and man-made entities, such as ‘sea,’ ‘light-
house,’ ‘landfill,’ ‘valley,’ and ‘glacier.’ Using the terms in C, we defined a set
P containing all possible pairs of geographic terms 〈a, b〉 where a, b ∈ C, for a
total of 160,000 pairs. We subsequently removed from P symmetric pairs (e.g.
removing 〈b, a〉 when 〈a, b〉 is defined) and identities (e.g. 〈a, a〉), resulting in
76,000 valid pairs.

In order to detect issues in the survey, a pilot study was then conducted
with 12 graduate students at University College Dublin. A set Prand was con-
structed by selecting 100 pairs randomly from P . Each pair was associated
with a 5-point Likert scale, ranging from low to high relatedness/similarity.
The subjects were asked to rate each pair both for semantic relatedness and
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similarity, and were then interviewed informally, to obtain direct feedback
about the survey. Several useful observations were obtained from this pilot
survey. First, most subjects found the test too long. A smaller sample size had
to be selected, considering a trade-off between number of pairs and the com-
pletion time, in order to ensure that enough subjects would complete the task
without losing concentration. Based on the opinion of subjects, we identified
50 pairs as the maximum size of the task, with a completion time of around
five minutes, suitable for an unpaid online questionnaire.

In the OpenStreetMap semantic model, tags are made of a key and a value
(e.g. amenity=school). In the pilot survey, this formalism had to be explained
to the subjects, who generally found it confusing. For example, the psychologi-
cal comparison between amenity=school and amenity=community centre was
influenced by the shared word ‘amenity,’ which is highly generic and ambigu-
ous. To make the dataset independent from the peculiar OpenStreetMap tag
structure, we extracted short labels for all the 400 terms from the terms’
definitions. For example, amenity=food court was labelled as ‘food court,’
shop=music as ‘music shop.’ In order to increase their semantic clarity, the
terms were manually mapped to the corresponding terms in WordNet (see
Table 2).

The fully random set of 100 pairs Prand used in the pilot survey obtained
a distribution heavily skewed towards low similarity and relatedness. To reach
a more uniform distribution, we introduced a partial manual selection in the
process. In order to obtain an even distribution in the resulting relatedness and
similarity scores, we manually extracted from the pilot survey a set of 50 pairs
rated by the 12 subjects as highly related/similar pairs (Phigh), and 50 middle
relatedness/similarity pairs (Pmed). It is worth noting that while the selection
of highly related/similar pairs is intuitive, middle-relatedness/similarity pairs
is more challenging, and requires dealing with highly subjective conceptual-
isations. This aspect is reflected in the survey results (see Section 4.2). The
final set of 50 pairs for the questionnaire Pq was assembled from the following
elements:

– 16 high-relatedness/similarity pairs (random sample from Phigh)
– 18 middle-relatedness/similarity pairs (random sample from Pmed)
– 16 low-relatedness/similarity pairs (random sample from P )

The pilot survey also showed clearly that assigning both the relatedness and
the similarity tasks to the same subject was impractical, and was deemed con-
fusing by all subjects who did not possess specific expertise in linguistics. For
this reason, we opted to assign randomly only one task to each subject, either
on relatedness or similarity, without trying to explain to them the technicalities
of this distinction. Instead, we relied on the subjects’ inductive understanding
of the task through correct examples. Thus, in order to collect reliable judge-
ments on similarity and relatedness, we defined two separate questionnaires,
one on relatedness (QREL), and one on similarity (QSIM ). The two question-
naires were identical, with the exception of the description of the task, and
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Term OpenStreetMap tag WordNet synset
bay natural=bay bay#n#1
sea place=sea sea#n#1
basketball court sport=basketball basketball court#n#1
beauty parlor shop=beauty beauty parlor#n#1
floodplain natural=floodplain floodplain#n#1
greengrocer shop=greengrocer greengrocer#n#1
historic castle historic=castle castle#n#2
motel tourism=motel motel#n#1
political boundary boundary=political boundary#n#1
school amenity=school school#n#1
stadium building=stadium stadium#n#1
. . . . . . . . .

Table 2 Sample of terms in GeReSiD. The dataset contains 97 geographic terms.

the labels on the Likert scale (one with a ‘dissimilar-similar’ scale, the other
with ‘unrelated-related’).

To avoid terminological confusion, the survey was named ‘Survey on com-
parison of geographic terms,’ without mentioning either ‘similarity’ or ‘relat-
edness’ in the introductory text. The examples used to illustrate semantic
relatedness (apples - bananas, doctor - hospital, tree - shade) and similarity
(apples - bananas, doctor - surgeon, car - motorcycle) were based on those by
Mohammad and Hirst [34]. A random redirection to either QREL or QSIM was
then implemented to ensure the random sampling of subjects into two groups,
one for similarity and one for relatedness. As the similarity judgement was
reported as more difficult than relatedness, we set the probability of a random
redirection to QSIM at p = .65, to obtain more responders for similarity. Each
subject was only exposed to one of the two questionnaires.

Six general demographic questions about the subject were included: age
group, mother tongue, gender, and continent of origin. A textbox was available
to type feedback and comments about the survey. The core of each question-
naire was the seventh question, i.e. the relatedness or similarity rating task.
The subject had to rate 50 pairs of geographic terms based on their relatedness
or similarity, on a 1 to 5 Likert scale. Although the impact of size of the Likert
scale, typical options being 5, 7 or 10, is debated in the social sciences, it has
little impact on the rating means [11]. If the terms were not clear to the user,
a ‘no answer’ option had to be selected.

Another aspect discussed in the similarity psychological literature is the
counterintuitive fact that similarity judgements tend to be asymmetric (e.g.
sim(building, hospital) 6= sim(hospital, building)) [54]. As this aspect is out-
side the scope of this study, the order in each pair 〈a, b〉 was randomised to
limit the symmetric bias, i.e. the potential difference between sim(a, b) and
sim(b, a) from the subject’s perspective. Moreover, a fixed presentation order
of pairs can trigger specific semantic associations between terms, and would
reduce the quality of the last pairs, rated when the subjects are more likely
to be tired. To reduce this sequential-ordering bias, the presentation order of
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the pairs was randomised automatically for each subject at the Web interface
level.

At the end of the design process, the survey dataset contained 50 pairs
of geographic terms to be rated on 5-point Likert scales, including 97 Open-
StreetMap terms, with three terms being repeated twice. The pairs were se-
lected to ensure an even distribution between low, medium and high related-
ness/similarity. The rating was to be executed in two independent question-
naires, one for semantic similarity (QSIM ) and one for semantic relatedness
(QREL), randomly assigned to the human subjects. In February 2012, the sur-
vey was disseminated in OpenStreetMap and geographic information system
(GIS)-related forums and mailing lists.

4.2 Survey results

The online questionnaires on relatedness and similarity received 305 responses,
124 for relatedness and 181 for similarity. Given the nature of online surveys,
particular attention has to be paid to the agreement between the human sub-
jects, and the detection of unreliable and random answers. In this survey,
raters expressed quantitative judgements on geo-semantic relatedness and sim-
ilarity on a 5-point Likert scale. Two important statistical aspects to be dis-
cussed are the interrater reliability (IRR) and the interrater agreement (IRA)
[30]. IRR considers the relative similarity in ratings provided by multiple raters
(i.e. the human subjects) over multiple targets (i.e. the term pairs), focusing
on the order of the targets. IRA, on the other hand, captures the absolute ho-
mogeneity between the ratings, looking at the specific rating chosen by raters.

Several indices have been devised to capture IRR and IRA in psychologi-
cal surveys [7, 30]. Most indices range between 0 (total disagreement) and 1
(perfect agreement). For example, the ratings of two raters on three targets
{1, 2, 3} and {2, 3, 4} obtain a IRR = 1 and IRA = 0: the subjects agree per-
fectly on the ordering of the targets, while disagreeing on all absolute ratings.
LeBreton and Senter [30] recommend using several indices for IRR and IRA,
to avoid the bias of any single index. We thus include the following indices
of IRA and IRR: the mean Pearson’s correlation coefficient [43]; Kendall’s
W [25]; Robinson’s A [42]; Finn coefficient [14]; James, Demaree and Wolf’s
rWG(J) [18].

The 305 responders included both native (208) and non-native English
speakers (97). We observed a substantially lower inter-subject agreement when
including non-native speakers (rWG(J) < .5): the wider variability in these re-
sults is due to the varying knowledge of English of these subjects, who might
have associated terms to ‘false friends’ in their native language, i.e. expressions
in two different languages that look or sound similar, but differ considerably
in meaning. For example, Italian speakers may confuse the meaning of ‘fac-
tory’ with ‘farm’ (‘fattoria’ in Italian). Hence, they were excluded from the
dataset. Furthermore, three subjects did not complete the task, and their re-
sponses were discarded. In order to detect random answers, we computed the
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Relatedness Similarity Overall
QREL QSIM –

Responders total N 81 122 203
Gender Male 72 93 165

Female 9 29 38
Age 18-25 28 39 67

26-35 14 41 55
36-45 12 23 35
46-55 15 10 25
56-65 7 9 16
>65 5 - 5

Continent Africa - 3 3
Asia - 1 1

Europe 58 95 153
North America 11 20 31
South America - - -

Oceania 12 3 15
Web map Never used 6 14 20
expertise Occasional user 18 33 51

Frequent user 37 39 76
Expert 20 36 56

Table 3 Demographics of human subjects in GeReSiD

correlation between every individual subject and the means. This way, two
subjects in the similarity test showed no correlation at all with the mean rat-
ings (Spearman’s ρ ∈ [−.05, .05]), and were removed from the dataset.

Of the resulting dataset, Table 3 summarises demographic information (age
group, gender, continent of origin, and self-assessed map expertise). As is pos-
sible to observe, the subjects tend be young, male, European, and frequent
users of web maps.5 Table 4 focuses on the indices of IRR and IRA. Following
Resnik [41], we consider upper bound on the cognitive plausibility of a com-
putable measure to be the highest correlation obtained by a human rater with
the means (e.g. ρ = .92 for relatedness). The table shows these upper bounds
both for Spearman’s ρ and Kendall’s τ . All the IRR and IRA indices indicate
very similar results, falling in the range [.61, .67]. Given the highly subjective
nature of semantic conceptualisations, this correlation is satisfactory, and is
comparable with analogous psychological surveys [44].

Given the set of term pairs, and the set of human raters, we computed
the relatedness/similarity scores as the mean ratings, normalised in the inter-
val [0, 1], where 0 means no relatedness/similarity, and 1 maximum related-
ness/similarity. As we have stated in the survey objectives, the distribution of
such scores should be as even as possible, to ensure that a semantic measure
performs well across the board, and not only in a specific region of the seman-
tic relatedness/similarity space. Several pairs in the dataset contain related
but not similar terms, and the scores confirm this difference. More specifically,
<sea,island> obtained a relatedness score of .74 and a similarity of .4. Sim-

5 Although a better gender, age, and geographic balances would be desirable, we found it
difficult to obtain it in practice without drastically limiting the size of the sample.
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Relatedness Similarity
QREL QSIM

IRR mean Pearson’s r .64* .65*
IRA Kendall’s W .65* .64*

Robinson’s A .62 .61
Finn coefficient .65* .66*

rWG(J) .66 .67
Upper bound Spearman’s ρ .92* .93*

Kendall’s τ .79* .82*

Table 4 Indices for interrater reliability (IRR) and interrater agreement (IRA) in GeReSiD.
(*) p < .001.

Pair Mean Agreement
# Term A Term B rel sim rel sim
1 motel hotel .93 .90 .86 .82
2 public transport station railway platform .87 .81 .80 .72
3 stadium athletics track .85 .76 .74 .63
4 theatre cinema .82 .87 .57 .79
5 art shop art gallery .78 .75 .58 .60

. . . . . . . . . . . . . . . . . .
46 water ski facility office furniture shop .05 .05 .92 .88
47 greengrocer aqueduct .04 .03 .91 .95
48 interior decoration shop tomb .03 .05 .96 .92
49 political boundary women’s clothes shop .02 .02 .96 .93
50 nursing home continent .01 .02 .97 .95

Table 5 Sample term pairs in GeReSiD, with mean geo-semantic relatedness, similarity,
and agreement

ilarly, <mountain hut, mountaintop> obtained respectively .71 and .49 for
relatedness and similarity.

A dimension that has not been addressed in existing similarity gold stan-
dards is that of the pair agreement, i.e. the consistency of ratings expressed by
all subjects on a single pair (see Section 3). For this purpose, we adopt James,
Demaree and Wolf’s rWG, a popular index to measure IRA on a single tar-
get, based on the rating variance [18]. Each pair in QREL and QSIM obtains
an agreement measure ∈ [0, 1], where 0 indicates a squared distribution (i.e.
raters gave all ratings in equal proportion), and 1 is perfect agreement (i.e. all
raters assigned exactly the same rating to the pair). Table 5 shows the content
of the resulting dataset, including mean ratings and pair agreement.

Figures 1 and 2 show several statistical characteristics of the resulting
dataset, for the 50 pairs in QREL and QSIM . Plot 1(a) shows the density
of the final relatedness/similarity scores, i.e. the normalised mean rankings
in range [0, 1]. While the similarity is skewed towards the range [0, .4], the
relatedness has slightly more scores in the range [.4, 1], resulting in symmetrical
densities. This clearly reflects the fact that semantic similarity is a specific
type of semantic relatedness, and semantic similarity is generally lower than
relatedness. This can be also observed in the sum of the 50 relatedness scores
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Fig. 1 GeReSiD: rel: semantic relatedness; sim: semantic similarity. (a) Density of pair
score; (b) scatterplot of relatedness versus similarity.
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Fig. 2 GeReSiD: rel: semantic relatedness; sim: semantic similarity. (a) Density of pair
agreement; (b) scatterplot of pair agreement and pair score.

(sum = 22.01,mean = .44) against the similarity scores (sum = 19.5,mean =
.39). The paired Wilcoxon signed rank test [56] indicates that the relatedness
scores are higher than the corresponding similarity ones, at p < .001. This
trend is clearly visible in plot 1(b). Overall, these densities show that all the
score range [0, 1] is satisfactorily covered, i.e. the dataset does not show large
gaps.

Plots 2(a) and 2(b) show the properties of pair agreement (index rWG),
reporting the relationship between relatedness and similarity, the density of
pair agreement, and the relationship between pair agreement and related-
ness/similarity scores. In terms of pair agreement, relatedness and similarity
follow very close patterns, with a peak ≈ .5. This agreement might seem low,
but it is largely expected, due to the subjective interpretation of the values on
the Likert scale.
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An explanation of this trend in the pair agreement lies in the fact that
humans give consistently different ratings to the same objects: some subjects
tend to be strict, and some lenient, resulting in different relative ratings, and
therefore low absolute pair agreement [30]. In this regard, a clear pattern
emerges from plot 1(b). Pair agreement tends to be high (> .7) at the extremes
of the scores, when the relatedness/similarity judgement is very low ([0, .25),
no relation) or very high ((.75, 1], strong relation). On the other hand, pairs
with middle scores (in the interval [.25, .75]) tend to have low pair agreement.
Relatedness and similarity do not show important differences with respect to
pair agreement (sum = 30,mean = .6 for relatedness, sum = 29.6,mean =
.59 for similarity). This detailed analysis, in particular in relation to IRR and
IRA, confirms the statistical soundness of GeReSiD, which can be used to
assess the cognitive plausibility of computational measures of geo-semantic
relatedness and similarity.

5 Conclusions

To date, despite its great potential in GIR and information integration, geo-
semantic relatedness has been only marginally studied. In this article, we have
discussed a notion of geo-semantic relatedness based on Lehrer’s theory of se-
mantic fields, contrasting it with the widely studied geo-semantic similarity.
Despite the variety and importance of computational measures devised in nat-
ural language processing, the evaluation of such measures remains a difficult
and complex task [12].

In order to provide an evaluative baseline for geo-semantic research on re-
latedness and similarity, we have designed, collected, and analysed the Geo
Relatedness and Similarity Dataset (GeReSiD). This dataset contains human
judgements about 50 term pairs on semantic relatedness and similarity, cover-
ing 97 unique geographic terms. To increase the dataset’s usability and clarity,
the terms have been mapped to the corresponding terms in WordNet. The
judgements were collected from 203 English native speakers, through a ran-
domised online survey. GeReSiD is freely available online, released under an
Open Knowledge license.6 The following points deserve particular considera-
tion:

– The human judgements have interrater agreement (IRA) and interrater
reliability (IRR) in the interval [.61, .67]. Considering the type of psycho-
logical test, this is a fair agreement, indicating that the dataset can be used
to evaluate computational measures of semantic relatedness and similarity
for geographic terms.

– Human subjects strongly agree on cases of very high and low semantic
relationships, and tend to have lower agreement on the intermediate cases.

– Semantic relatedness and similarity are strongly correlated (τ = .84, ρ =
.95). Furthermore, semantic relatedness scores are consistently higher than

6 http://github.com/ucd-spatial/Datasets (acc. Apr 10, 2013)

http://github.com/ucd-spatial/Datasets
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semantic similarity, confirming the more specific nature of semantic simi-
larity.

– The contribution of GeReSiD lies both in its design and validation method-
ology, as well as the dataset itself. The raw data and the resulting dataset
are available for analysis and re-use under a Creative Commons license.

– GeReSiD constitutes an evaluative baseline to evaluate measures of se-
mantic similarity and relatedness. Furthermore, it permits the empirical
determination of whether a given measure better approximates similarity
or relatedness through the direct comparison of rankings or scores.

– A variety of techniques can be used to compare the rankings or scores gen-
erated by a computational measure with GeReSiD, including correlation
coefficients (Spearman’s ρ and Kendall’s τ), and categorical approaches
(Cohen’s kappa or Fisher’s exact test).

Although GeReSiD provides a novel resource to evaluate computational mea-
sures of geo-semantic relatedness and similarity, several questions remain open.
GeReSiD distinguishes between geo-semantic relatedness and similarity, but
not among different contexts. As context has been identified as a key aspect of
semantic similarity [26], new datasets should be generated to capture explic-
itly the differences in geo-similarity and relatedness judgements with respect
to different contexts, such as appearance and affordances. The investigation of
what specific geographic aspects are used by subjects in their judgements also
constitutes important future work. The dataset’s IRA and IRR are comparable
to similar datasets, but have a large margin of improvement.

As Ferrara and Tasso [12] point out, this evaluative approach has several
limitations. Human subjects understand intuitively semantic relatedness and
similarity, but the translation of such judgements into a number is very sub-
jective. Different information communities can express different judgements
on the same term pairs. Alternative approaches to the evaluation of computa-
tional measures should be investigated, aiming at cross-validating the findings
generated by GeReSiD. A promising route might consist of evaluating human-
readable explanations of relatedness measures, and not only numeric scores or
rankings [17]. Moreover, the collection of judgements was conducted through
online surveys in an uncontrolled environment, which have well-known issues
[57].

Ultimately, the cognitive plausibility is assessed using correlation indexes
such as Spearman’s ρ and Kendall’s τ , which have specific limitations. For
example, they tend to attribute the same weight to high and low similar-
ity rankings, whilst computational applications normally need more precision
on highly-related/similar pairs, which tend to be utilised in GIR and infor-
mation integration. Using GeReSiD as input data, new techniques to assess
cognitive plausibility can be developed, offering tools tailored to the study of
geo-semantic relatedness and similarity. Fruitful future work, as geo-semantic
similarity is a specific case of geo-semantic relatedness, will consist of the gen-
eralisation of existing geo-similarity theories to the framework of geo-semantic
relatedness.
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