Skip to main content
Log in

Mining spatiotemporal co-occurrence patterns in non-relational databases

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Spatiotemporal co-occurrence patterns (STCOPs) represent the subsets of feature types whose instances are frequently co-occurring both in space and time. Spatiotemporal co-occurrences reflect the spatiotemporal overlap relationships among two or more spatiotemporal instances both in spatial and temporal dimensions. STCOPs can be potentially used to predict and understand the generation and evolution of different types of interacting phenomena in various scientific fields such as astronomy, meteorology, biology, geosciences. Meaningful and statistically significant data analysis for these scientific fields requires processing sufficiently large datasets. Due to the computationally expensive nature of spatiotemporal operations required for mining spatiotemporal co-occurrences, it is increasingly difficult to identify spatiotemporal co-occurrences and discover STCOPs in centralized system settings. As a solution, we developed a cloud-based distributed mining system for discovering STCOPs. Our system uses Accumulo, a column-oriented non-relational database management system as its backbone. In order to efficiently mine the STCOPs, we propose three data models for managing trajectory-based spatiotemporal data in Accumulo. We introduce an in-memory join-index structure and a join algorithm for effectively performing spatiotemporal join operations on spatiotemporal trajectories in non-relational databases. Lastly, with the experiments with artificial and real life datasets, we evaluate the performance of the proposed models for STCOP mining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The Apache Accumulo - https://accumulo.apache.org/

  2. HBase– http://hbase.apache.org/

  3. Cassandra– ‘http://cassandra.apache.org/

  4. http://grid.cs.gsu.edu/~baydin2/proj/nonrelstcop.html

  5. Heliophysics Event Registry - https://www.lmsal.com/hek/api.html

  6. NBA.com/Stats - http://stats.nba.com/

  7. Amazon Web Services - Cloud Computing Services – http://aws.amazon.com/

  8. JTS Topology Suite – http://www.vividsolutions.com/jts/JTSHome.htm

References

  1. Apache Accumulo user manual version 1.6., https://accumulo.apache.org/1.6/accumulo_user_manual.html (2014). Accessed: December 1, 2014

  2. Agouris P., Aref W., Goodchild M.F., Barbra S., Jensen J., Knoblock C.A., Langley R., Mikhail E., Shekhar S., Wolfson O., Yuan M. (2012) From GPS and virtual globes to spatial computing-2020. Tech. rep., Computing Community Consortium

  3. Agrawal R., Srikant R. (1994) Fast algorithms for mining association rules in large databases. In: VLDB’94, Proceedings of 20th international conference on very large data bases, Santiago de Chile, pp 487–499

  4. Andrienko N.V., Andrienko G.L. (2007) Designing visual analytics methods for massive collections of movement data. Cartographica 42(2):117–138

    Article  Google Scholar 

  5. Armbrust M., Fox A., Griffith R., Joseph A.D., Katz R.H., Konwinski A., Lee G., Patterson D.A., Rabkin A., Stoica I., Zaharia M. (2010) A view of cloud computing. Commun ACM 53(4):50–58

    Article  Google Scholar 

  6. Aydin B., Angryk R.A., Pillai K.G. (2014) ERMO-DG: Evolving region moving object dataset generator. In: Proceedings of the twenty-seventh international florida artificial intelligence research society conference, FLAIRS 2014, Pensacola Beach

  7. Aydin B., Kempton D., Akkineni V., Angryk R., Pillai K.G. (2015) Mining spatiotemporal co-occurrence patterns in solar datasets. Astronomy and Computing. doi:10.1016/j.ascom.2015.10.003. In Press

  8. Aydin B., Kempton D., Akkineni V., Govaparam S., Pillai K.G., Angryk R. (2014) Spatiotemporal indexing techniques for efficiently mining spatiotemporal co-occurrence patterns. In: Workshop on solar astronomy big data, 2014 IEEE International Conference on Big Data. IEEE, pp 1–10

  9. Burrows M. (2006) The Chubby lock service for loosely-coupled distributed systems. In: Proceedings of the 7th symposium on operating systems design and implementation 2006, OSDI ’06. USENIX Association, Seattle, pp 335–350

  10. Celik M. (2011) Discovering partial spatio-temporal co-occurrence patterns, Fuzhou, pp 116–120

  11. Celik M., Azginoglu N., Terzi R. (2012) Mining periodic spatio-temporal co-occurrence patterns: a summary of results. In: 2012 international symposium on innovations in intelligent systems and applications (INISTA), pp 1–5

  12. Celik M., Shekhar S., Rogers J.P., Shine J.A. (2008) Mixed-drove spatiotemporal co-occurrence pattern mining. IEEE Trans Knowl Data Eng 20 (10):1322–1335

    Article  Google Scholar 

  13. Chang F., Dean J., Ghemawat S., Hsieh W.C., Wallach D.A., Burrows M., Chandra T., Fikes A., Gruber R.E. (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26(2)

  14. Elsberry R.L. (2002) Predicting hurricane landfall precipitation: optimistic and pessimistic views from the symposium on precipitation extremes. Bull Am Meteorol Soc 83(9):1333–1339

    Article  Google Scholar 

  15. Erwig M. (2004) Toward spatio-temporal patterns. In: de Caluwe R, de Tr G, Bordogna G (eds) Spatio-temporal databases. Springer, Berlin, pp 29–53

  16. Gauthreaux S.A., Belser C.G. (2003) Bird movements on Doppler weather surveillance radar. Birding 35(6):616–628

    Google Scholar 

  17. Ghemawat S., Gobioff H., Leung S. (2003) The google file system, Bolton Landing, pp 29–43

  18. Huang Y., Shekhar S., Xiong H. (2004) Discovering colocation patterns from spatial data sets: a general approach. IEEE Trans Knowl Data Eng 16(12):1472–1485

    Article  Google Scholar 

  19. Kempton D., Pillai K.G., Angryk R.A. (2014) Iterative refinement of multiple targets tracking of solar events. In: 2014 IEEE international conference on big data, big data 2014, Washington, pp 36–44, doi:10.1109/BigData.2014.7004402, (to appear in print)

  20. Kuhn K., Campbell-Lendrum D., Haines A., Cox J. (2005) Using climate to predict infectious disease epidemics. World Health Organ, Geneva

    Google Scholar 

  21. Langhoff S.R., Straume T. (2012) Highlights of the space weather risks and society? workshop. Space Weather 10(6)

  22. Manning C.D., Raghavan P., Schu̇tze H. (2008) Introduction to information retrieval. Cambridge University Press

  23. O’Neil P.E., Cheng E., Gawlick D., O’Neil E.J. (1996) The log-structured merge-tree (lsm-tree). Acta Inf 33(4):351–385

    Article  Google Scholar 

  24. Pillai K.G., Angryk R.A., Aydin B. (2013) A filter-and-refine approach to mine spatiotemporal co-occurrences. In: 21st SIGSPATIAL international conference on advances in geographic information systems. SIGSPATIAL, Orlando, pp 104–113

  25. Pillai K.G., Angryk R.A., Banda J.M., Schuh M.A., Wylie T. (2012) Spatio-temporal co-occurrence pattern mining in data sets with evolving regions. In: 12th IEEE international conference on data mining workshops, ICDM Workshops, Brussels, pp 805–812

  26. Qian F., He Q., He J. (2009) Mining spread patterns of spatio-temporal co-occurrences over zones. In: Computational science and its applications - ICCSA 2009, international conference. Proceedings, Part II, Seoul, pp 677–692

  27. Sen R., Farris A., Guerra P. (2013) Benchmarking apache accumulo bigdata distributed table store using its continuous test suite. In: IEEE international congress on big data. BigData Congress, pp 334–341

  28. Shekhar S., Chawla S. (2003) Spatial databases - a tour. Prentice Hall

  29. Shekhar S., Huang Y. (2001) Discovering spatial co-location patterns: A summary of results. In: Proceedings advances in spatial and temporal databases, 7th international symposium, SSTD 2001, Redondo Beach, pp 236–256

  30. Vatsavai R.R., Ganguly A., Chandola V., Stefanidis A., Klasky S., Shekhar S. (2012) Spatiotemporal data mining in the era of big spatial data: Algorithms and applications. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial ’12. ACM, New York, pp 1–10, doi:10.1145/2447481.2447482, (to appear in print)

  31. Wong C.C., Loewke K.E., Bossert N.L., Behr B., De Jonge C.J., Baer T.M., Pera R.A.R. (2010) Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol 28 (10):1115–1121

    Article  Google Scholar 

  32. Yoo J.S., Shekhar S. (2004) A partial join approach for mining co-location patterns. In: Proceedings 12th ACM international workshop on geographic information systems, ACM-GIS 2004, Washington, pp 241–249

  33. Yoo J.S., Shekhar S. (2006) A joinless approach for mining spatial colocation patterns. IEEE Trans Knowl Data Eng 18(10):1323–1337

    Article  Google Scholar 

  34. Zhang Z., Wu W. (2008) Composite spatio-temporal co-occurrence pattern mining. In: Proceedings of Wireless algorithms, systems, and applications, third international conference, WASA 2008, Dallas, pp 454–465

Download references

Acknowledgments

This work was supported in part by two NASA Grant Awards (No. NNX11AM13A, and No. NNX15AF39G), and one NSF Grant Award (No. AC1443061). The NSF Grant Award has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berkay Aydin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, B., Akkineni, V. & Angryk, R. Mining spatiotemporal co-occurrence patterns in non-relational databases. Geoinformatica 20, 801–828 (2016). https://doi.org/10.1007/s10707-016-0255-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-016-0255-0

Keywords

Navigation