Skip to main content
Log in

Operations to support temporal coverage aggregates over moving regions

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

A temporal coverage operation computes the duration that a moving object covers a spatial area. We extend this notion into temporal coverage aggregates, in which the spatial area covered for a maximum or minimum amount of time by a moving region, or set of moving regions, is discovered. We define the max temporal aggregate coverage operation and the min temporal aggregate coverage operation. We provide an algorithm to compute these operations, and show that it is correct. Finally, the algorithm is implemented in the open source, Pyspatiotemporalgeom library to verify the algorithm under a variety of test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beckmann N, Kriegel H, Schneider R, Seeger B (1990) The r*-tree: an efficient and robust access method for points and rectangles. SIGMOD Rec 19(2):322–331

    Article  Google Scholar 

  2. Chazelle B, Edelsbrunner H, Guibas L, Sharir M (1992) Diameter, width, closest line pair, and parametric searching. In: Symposium on computational geometry. ACM, pp 120–129

  3. Cotelo Lema JA, Forlizzi L, Güting RH, Nardelli E, Schneider M (2003) Algorithms for moving objects databases. Comput J 46(6):680–712. doi:10.1093/comjnl/46.6.680. http://comjnl.oxfordjournals.org/content/46/6/680.abstract

  4. Forlizzi L, Güting RH, Nardelli E, Schneider M (2000) A data model and data structures for moving objects databases. SIGMOD Rec 29(2):319–330. doi:10.1145/335191.335426

    Article  Google Scholar 

  5. Güting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M (2000) A foundation for representing and querying moving objects. ACM Trans Database Syst 25(1):1–42

    Article  Google Scholar 

  6. Guttman A (1984) R-trees: a Dynamic Index Structure for Spatial Searching. In: ACM. doi:10.1145/602259.602266, NY, USA, pp 47–57

  7. Kim KS, Zettsu K, Kidawara Y, Kiyoki Y (2009) Moving phenomenon: Aggregation and analysis of geotime-tagged contents on the web. In: Web and wireless geographical information systems. Springer, pp 7–24

  8. Lazaridis I, Mehrotra S (2001) Progressive approximate aggregate queries with a multi-resolution tree structure. SIGMOD Rec 30(2):401–412

    Article  Google Scholar 

  9. Lema J, Forlizzi L, Güting RH, Nardelli E, Schneider M (2003) Algorithms for moving objects databases, vol 46

  10. Lopez I, Snodgrass R, Moon B (2005) Spatiotemporal aggregate computation: a survey. IEEE Trans Knowl Data Eng 17(2):271–286

    Article  Google Scholar 

  11. McKenney M (2016) Pyspatiotemporalgeom package. https://pypi.python.org/pypi/pyspatiotemporalgeom/. Version 0.2.7.1, Accessed: 2016-01-14

  12. McKenney M (2016) Pyspatiotemporalgeom source code. https://bitbucket.org/marmcke/pyspatiotemporalgeom/. Version 0.2.7.1, Accessed: 2016-01-14

  13. McKenney M, Frye R, Benchly Z, Maughan L (2014) Temporal coverage aggregates over moving region streams. In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming, IWGS ’14. doi:10.1145/2676552.2676555. ACM, NY, USA, pp 21–24

  14. McKenney M, Viswanadham SC, Littman E (2014) The cmr model of moving regions. In: Proceedings of the 5th ACM SIGSPATIAL international workshop on geostreaming. ACM, pp 62–71

  15. Papadias D, Kalnis P, Zhang J, Tao Y (2001) Efficient olap operations in spatial data warehouses. In: Proceedings of the international symposium on advances in spatial and temporal databases

  16. Schneider M, Behr T (2006) Topological relationships between complex spatial objects. ACM Trans Database Syst 31(1):39–81

    Article  Google Scholar 

  17. Sellis T, Roussopoulos N, Faloutsos C (1987) The r+-tree: a dynamic index for multi-dimensional objects. In: Proceedings of the international conference on very large data bases

  18. Sistla AP, Wolfson O, Chamberlain S, Dao S (1997) Modeling and querying moving objects. In: Proceedings of the Thirteenth International Conference on Data Engineering, ICDE ’97. http://dl.acm.org/citation.cfm?id=645482.653301. IEEE Computer Society, DC, USA, pp 422–432

  19. Tao Y, Papadias D (2005) Historical spatio-temporal aggregation. ACM Trans Inf Syst (TOIS) 23(1):61–102

    Article  Google Scholar 

  20. Timko I, Böhlen M, Gamper J (2011) Sequenced spatiotemporal aggregation for coarse query granularities. VLDB J 20(5):721–741

    Article  Google Scholar 

  21. Worboys MF (1994) A unified model for spatial and temporal information. Comput J 37(1):26–34. doi:10.1093/comjnl/37.1.26. http://comjnl.oxfordjournals.org/content/37/1/26.abstract

  22. Zhang D, Tsotras VJ (2001) Improving min/max aggregation over spatial objects. In: Proceedings of the 9th ACM international symposium on advances in geographic information systems, GIS ’01

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark McKenney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKenney, M., Frye, R., Benchly, Z. et al. Operations to support temporal coverage aggregates over moving regions. Geoinformatica 21, 351–364 (2017). https://doi.org/10.1007/s10707-016-0257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-016-0257-y

Keywords

Navigation