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Abstract Spatial crowdsourcing (SC) outsources tasks to a set of workers who are required
to physically move to specified locations and accomplish tasks. Recently, it is emerging
as a promising tool for emergency management, as it enables efficient and cost-effective
collection of critical information in emergency such as earthquakes, when search and res-
cue survivors in potential ares are required. However in current SC systems, task locations
and worker locations are all exposed in public without any privacy protection. SC systems
if attacked thus have penitential risk of privacy leakage. In this paper, we propose a pro-
tocol for protecting the privacy for both workers and task requesters while maintaining
the functionality of SC systems. The proposed protocol is built on partially homomorphic
encryption schemes, and can efficiently realize complex operations required during task
assignment over encrypted data through a well-designed computation strategy. We prove
that the proposed protocol is privacy-preserving against semi-honest adversaries. Simula-
tion on two real-world datasets shows that the proposed protocol is more effective than

� Shuo Shang
jedi.shang@gmail.com

An Liu
an.liu@kaust.edu.sa

Weiqi Wang
20154227018@stu.suda.edu.cn

Qing Li
itqli@cityu.edu.hk

Xiangliang Zhang
xiangliang.zhang@kaust.edu.sa

1 King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia

2 School of Computer Science and Technology, Soochow University, Suzhou, China

3 Department of Computer Science, City University of Hong Kong, Hong Kong, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-017-0305-2&domain=pdf
mailto:jedi.shang@gmail.com
mailto:an.liu@kaust.edu.sa
mailto:20154227018@stu.suda.edu.cn
mailto:itqli@cityu.edu.hk
mailto:xiangliang.zhang@kaust.edu.sa


Geoinformatica

existing solutions and can achieve mutual privacy-preserving with acceptable computation
and communication cost.

Keywords Spatial crowdsourcing · Spatial task assignment · Location privacy · Mutual
privacy protection

1 Introduction

Crowdsourcing has revolutionized the landscape of problem solving by outsourcing a task,
usually performed by a designated agent, to a large group of people in the form of an open
call [19]. Providing on-demand talent capacity and expert services with significantly less
cost than hiring dedicated professionals, it has been successfully applied, for example, to
transcribe books [41], fold proteins [5], classify galaxies [13], and monitor traffic [42].
Recently, crowdsourcing has also been widely used in emergency management, as it enables
efficient and cost-effective collection of critical information in emergency and disaster such
as the area of impact, population at risk, and potential areas where search and rescue oper-
ations are likely to be required. For example, on April 25, 2015, Nepal was struck by a
7.8 magnitude earthquake. To provide detailed damage assessment, DigitalGlobe collected
pre- and post-earthquake high-resolution satellite images of the affected areas, which are
divided into small sections and given to an online crowd to identify damaged buildings and
blocked roads. Thanks to crowdsourcing, more than 21,000 damaged buildings and roads
were identified and tagged within a month [8], providing valuable data for both relief and
rebuilding.

The role crowdsourcing played in emergency management can be more proactive due
to the fast development of ubiquitous wireless networks and smart mobile devices [12, 21,
33]. A novel type of crowdsourcing, Spatial Crowdsourcing (SC) [20], outsources a spatial
task (i.e., a task related to a location) to a number of workers with mobile devices who
are required to physically move to some specified locations and accomplish the task. Let
us continue the above example of emergency management in an earthquake. An SC-server
sends a spatial task of assessing whether or not there are survivors in a specific collapsed
building to all available workers consisting of both volunteers and professionals with life
detector instrument. Workers who are willing to perform the task go to the building, check
it and send the results back to the SC-server, based on which subsequent rescue plan can
be made, for example, professional heavy rescue equipments will be deployed on site if
someone are identified to be trapped in rubble.

The success of crowdsourcing depends on the active participation of the crowd despite
its application domains [22, 25, 31, 35, 47]. For spatial crowdsourcing, location privacy
concerns are a major factor in hindering workers from engaging in spatial tasks [26, 37].
To enable effective task assignment (effectiveness here means spatial-tasks can be com-
pleted quickly by being assigned to nearby workers), the SC-server needs to continuously
collect workers’ locations via their mobile devices [30, 32, 34]. However, it is very dif-
ficult for workers to control the usage of their location data stored by the SC-server, an
untrusted third-party. In fact, the collected location data is likely to be shared, rent or sold
with other parties, which has serious privacy implications [23, 24, 29, 45]. Based on these
location data, an adversary can stage a broad spectrum of attacks against individuals such
as physical surveillance and stalking, identity theft, and breach of sensitive information,
for instance, home address and lifestyle habits. Hence, location privacy protection, or more
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generally, worker privacy protection, is an important aspect of spatial crowdsourcing, as it
can stimulate workers to take active part in spatial tasks. This is of particular importance
for emergency management, as more active workers typically mean tasks can be completed
more quickly.

Tasks on existing crowdsourcing platforms such as Amazon Mechanical Turk are pub-
licly available to all workers. This mode may not be suitable for spatial crowdsourcing in
the scenario of emergency management. Once the location of a task is known publicly,
overeager workers motivated by altruism can go there to perform the task even if they are
not required to, which may set off more disruption, for example, a traffic jam [36]. There-
fore, the task’s location should not be learned by workers except the one to whom the task
is assigned. Sometimes task location protection is also welcome from the task requester
viewpoint. For example, someone suffering a health problem at home can ask for help by
crowdsourcing, but publication of her health problem together with her home address clearly
breaches her privacy. Hence, task location privacy should also be respected in the course of
spatial crowdsourcing.

While a lot of efforts [16, 29, 45] have been made towards location privacy protection
in the scenario of location-based services, there are only a couple of works [37, 38] that
study location privacy preserving in spatial crowdsourcing applications. In [37], worker
locations are collected and perturbed by a trusted party which injects calibrated noises into
the raw data according to differential privacy [9]. Upon receiving a spatial task, an SC-
server queries the disguised location data to determine a region that is very likely to contain
sufficient workers nearby the task’s location. Workers in this region are notified about this
task and have the right to decide whether or not to perform it. The proposed solution in this
pioneering work has several weaknesses. First, it only takes into account worker location
privacy without considering task location privacy. Second, it performs task assignment pri-
marily based on worker travel distance, and fails to consider other important factors, such
as worker velocity, which makes assignment results sometimes unsatisfactory. Further, it
works on a very strong assumption that there is a trusted party who has the access to all
workers’ locations.

In this paper, we propose a protocol for privacy-preserving task assignment in spatial
crowdsourcing with the following objectives:

– Mutual privacy protection. Not only worker privacy but also task privacy should be pro-
tected during task assignment. We adopt well-known cryptosystems to encrypt private
data of both parties, thus achieving strong mutual privacy guarantee.

– Effective task assignment. During task assignment, travel time is more meaningful than
travel distance especially for tasks with deadlines, so worker velocity is considered to be
an important metric in recent spatial crowdsourcing applications [4, 7, 39]. We integrate
worker velocity with worker location to realize more effective task assignment.

– Acceptable overheads. The strength of privacy protection comes at the expense of
additional computation or communication cost. We combine partially homomorphic
encryption schemes to efficiently realize complex operations required during task
assignment over encrypted data, thus avoiding significant performance penalties.

To summarize, our contributions in this paper are listed as follows:

– We propose a protocol for efficient task assignment in spatial crowdsourcing with
worker and task privacy protection. To the best of our knowledge, this is the first work
that achieves mutual privacy protection in spatial crowdsourcing.
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– We devise a computation strategy to eliminate some complex operations that cannot be
supported by existing practical cryptosystems. By this strategy, our protocol achieves
mutual privacy protection with acceptable overheads.

– We theoretically analyze the security and complexity of our protocol. We also conduct
extensive experiments to evaluate the performance of our protocol on two real-world
datasets.

The rest of the paper is organized as follows. Section 2 presents problem statement and
introduces background knowledge. Section 3 presents the mutual privacy-preserving task
assignment protocol and analyzes its complexity and security. Section 4 gives the experimental
results. Finally, Section 5 discusses some related work and Section 6 concludes the paper.

2 Preliminaries

In this section, we will formally define the problems of privacy-preserving task assignment
in spatial crowdsourcing and briefly review some related cryptographic building blocks.
Table 1 summarizes the notation used throughout this paper.

2.1 System model and problem definitions

Figure 1 depicts the system model of spatial crowdsourcing. For the non-private spatial
crowdsourcing (see Fig. 1a), there are three parties: the SC-server, workers with mobile
devices, and spatial task requesters. The SC-server is in charge of assigning appropriate
workers to spatial tasks created by task requesters. Workers are required to report their
private information (e.g., location and velocity) to the SC-server via their mobile devices.
Based on this framework, we give the following definitions.

Definition 1 (Spatial Task) A spatial task is a task s to be performed at location ls and is
associated with a deadline es .

Table 1 Summary of notation
Notation Meaning

W a set of n moving workers wi

li the location of worker wi

vi the velocity of worker wi

s a spatial task with location ls and deadline es

d(li , ls ) the Euclidean distance between worker wi and task s

E Paillier encryption algorithm

D Paillier decryption algorithm

E′ ElGamal encryption algorithm

D′ ElGamal decryption algorithm

E′ ElGamal re-encryption algorithm

D′ ElGamal re-decryption algorithm

fk a pseudo-random function (PRF)
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(a) (b)

Fig. 1 System model of spatial crowdsourcing (SC)

Definition 2 (Worker) A worker is a person w who is willing to perform spatial tasks.
Each worker is associated with an ID idw designated by the SC-server, a velocity vw and a
location lw where she is currently located.

With spatial crowdsourcing, a task requester creates a spatial task s and specifies its
location ls and deadline es . To perform this task, workers have to physically move to ls and
arrive at ls before the deadline es . Upon receiving a spatial task, the SC-server assigns it to
appropriate workers based on some predefined strategy. In this paper, we assume that the
SC-server prefers the worker who might be the first to arrive at ls . Following [37], we also
assume that every worker accepts an assigned task with a certain probability, denoted as
acceptance rate (AR). We first define simple task assignment problem as follows, assuming
the AR of every worker is 100%:

Definition 3 (Task Assignment Problem) Let W = {w1, w2, · · · , wn} be a set of n workers.
Given a spatial task s, the task assignment problem, PTA(W, s), is to assign the task s to a
worker wi∗ such that:

1. wi∗ can arrive at location ls before the deadline es ;
2. no other workers can arrive at ls before wi∗ .

In Definition 3, the first requirement means tc +d(li∗ , ls)/vi∗ ≤ es where tc is the current
time, li∗ is wi∗ ’s current location, vi∗ is wi∗ ’s velocity, and d(li∗ , ls) is the Euclidean distance
between locations li∗ and ls . The second requirement means there does not exist wj such
that d(lj , ls)/vj < d(li∗ , ls)/vi∗ . To facilitate later discussion, we call wi∗ the winner of
this problem and take i∗ as her ID. Note that such a winner does not exist when all workers
cannot arrive at ls before the deadline. In this case, the SC-server informs the task requester
that there are no winners.

In practice, however, workers do not necessarily accept tasks assigned to them. To guar-
antee a task is accepted with a high probability, more than one worker can be asked to
perform the task. Suppose the AR of worker wi is ai . Denote by η(W, s) the probability
that at least one worker in W accepts the task s. Clearly, η(W, s) = 1 − ∏n

i=1(1 − ai). We
thus define below another task assignment problem:
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Definition 4 (Task Assignment with Acceptance Guarantee Problem) Let W =
{w1, w2, · · · , wn} be a set of n workers. Given a spatial task s, the task assignment with
acceptance guarantee problem, PTAG(W, s), is to assign the task s to a set of workers W ∗
(called winner set) such that:

1. every worker wi∗ ∈ W ∗ can arrive at location ls before the deadline es ;
2. no other worker wj ∈ W \ W ∗ can arrive at ls before any worker wi∗ ∈ W ∗;
3. η(W ∗, s) ≥ α where α is the expected probability that s is accepted by at least one

worker in W ∗.

Adversary model Figure 1b shows the system model of privacy-preserving spatial crowd-
sourcing. A new party crypto service provider (CSP) is introduced to provide cryptographic
services, such as key generation, to the SC-server and workers. Regarding adversary model,
we assume all parties are semi-honest [17], that is, they follow a protocol exactly as speci-
fied, but may try to learn as much as possible about other parties’ private input from what
they see during the protocol’s execution. In particular, the SC-server is interested in every
worker’s location and velocity, and every winner’s ID. CSP is also interested in that, as well
as the task’s location. Every worker is interested in other workers’ location and velocity,
every winner’s ID, and the task’s location. As a special worker, every winner is entitled to
know her ID and the task’s location, but she is also interested in other workers’ location
and velocity, and other winners’ IDs. Base on the adversary model, we have the following
definition:

Definition 5 (Privacy-preserving Task Assignment Problem) Let W = {w1, w2, · · · , wn}
be a set of n workers. Given a spatial task s, the privacy-preserving task assignment problem,
PPTA(W, s), is to find wi∗ the winner of PTA(W, s) in a way that:

1. for each worker wi ∈ W , her location li and velocity vi cannot be learned by the
SC-server, CSP, and any other worker wj ∈ W,wj �= wi ;

2. the task’s location ls cannot be learned by CSP and all workers except wi∗ ;
3. the ID of wi∗ cannot be learned by the SC-server, CSP and all workers except wi∗ .

While its non-private version (i.e., PTA) is simple, PPTA is very challenging as it tries
to protect worker privacy and task privacy at the same time. In particular, the winner is
determined by not only worker position but also worker velocity, both of which should be
kept secret during computation. At the first glance, this requirement means that we need to
perform division over ciphertext. Unfortunately, efficient homomorphic division is still an
open question nowadays. Moreover, the task’s location ls is required to be hidden from all
workers except the winner, which makes the computation of d(li , ls) much harder than that
over plaintext. Note that the winner has to know ls as she needs to physically move there to
perform the task, so this does not count as a breach of privacy. The last requirement of PPTA
indicates that the SC-server is not allowed to know the identity of the winner. If the SC-
server knows who is the winner, it is likely to infer the winner’s approximate location based
on some background knowledge, for example, the task’s location and deadline. Clearly, it is
the SC-server that decides the winner in PTA. In PPTA, however, the SC-server is not allowed
to know who is the winner. This contradiction is another difficult challenge of PPTA.

Similarly, we have the following definition of privacy-preserving task assignment with
acceptance guarantee problem:
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Definition 6 (Privacy-preserving Task Assignment with Acceptance Guarantee Problem)
Let W = {w1, w2, · · · , wn} be a set of n workers. Given a spatial task s, the privacy-
preserving task assignment with acceptance guarantee problem, PPTAG(W, s), is to find W ∗,
the winner set of PTAG(W, s) in a way that:

1. for each worker wi ∈ W , her location li and velocity vi cannot be learned by the
SC-server, CSP, and any other worker wj ∈ W,wj �= wi ;

2. the task’s location ls cannot be learned by CSP and all workers except the winners in
W ∗;

3. the ID of wi∗ cannot be learned by the SC-server, CSP and all workers except wi∗ .

2.2 Formal privacy definition

We use real-ideal paradigm [17] to define the security of a protocol. Intuitively, a protocol is
secure or privacy-preserving if every party involved in the protocol learns no more knowl-
edge from the execution of the protocol than the knowledge that this party is entitled to
know. This can be formally defined by the real-ideal paradigm as follows: for all adversaries,
there exists a probabilistic polynomial-time simulator, so that the view of the adversary
in the real world and the view of the simulator in the ideal world are computationally
indistinguishable.

Let P−1 be CSP, P0 be the SC-server, and P1, · · · , Pn be n workers. Let viewi , xi , and
Ki (−1 ≤ i ≤ n) be party Pi’s view, its private input, and the extra knowledge it can learn,
respectively, during an execution of protocol P . The privacy requirement of P is formally
defined as follows:

Definition 7 A protocol P is perfectly privacy-preserving against party Pi in the sense
that it reveals no more knowledge than the final output to Pi , if there exists a probabilistic
polynomial-time simulator Si such that:

Si(xi,P(x−1, x0, · · · , xn),Ki)x−1,x0,··· ,xn
≡ viewi(x−1, x0, · · · , xn)x−1,x0,··· ,xn

and Ki = ∅ given all possible inputs (x−1, x0, · · · , xn), where ≡ denotes computational
indistinguishability. If Ki �= ∅, P is said to be privacy-preserving with Ki disclosure
against Pi in the sense that it reveals no more knowledge than Ki and the final output to Pi .

It is clear that perfectly privacy-preserving is a very strong privacy guarantee. However,
such a strong guarantee sometimes cannot be achieved by efficient protocols. In practice,
an extra knowledge K disclosure during an execution of protocol P can be allowed (for
efficiency) as long as it does not breach privacy in the sense that, even based on K , the
probability that an adversary learns the private input of any party during an execution of
protocol P is negligible.

2.3 Cryptographic building blocks

To solve PPTA and PPTAG defined above, we employ several cryptographic tools: pseudo-
random function, Paillier cryptosystem [27] and ElGamal cryptosystem [10], which are
briefly introduced as follows.
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A pseudo-random function (PRF) is a function that cannot be distinguished from a truly
random one by observing the result in a black-box manner. Usually, the PRF is denoted by
fk , a function of the PRF family Fλ = {fk : {0, 1}λ → {0, 1}λ}k∈{0,1}λ indexed by k. Our
working assumption is that keyed one-way hash functions (such as HMAC) can be modeled
as a pseudo-random function [1]. Therefore, the function fk(x) can be implemented by
keying a hash function with k and applying it to x.

Paillier is a public-key cryptosystem whose security is based on an assumption related
(but not known to be equivalent) to the hardness of factoring. It consists of the following
three algorithms:

– Key generation: Choose two distinct large random primes p, q and compute N = pg.
Choose an element g ∈ Z

∗
N2 . The public key pk is (N, g) and the secret key sk is (p, q).

– Encryption E: Let m be a message in ZN . It is encrypted by selecting a random number
r in Z

∗
N and computing

c = E(m) = gmrN mod N2, (1)

where N and g are from the public key pk and c is the ciphertext of m.
– Decryption D: The ciphertext c is decrypted by computing

m = D(c) = (cλ mod N2) − 1

(gλ mod N2) − 1
mod N, (2)

where λ = lcm(p − 1, q − 1) can be computed from the private key sk.

One of the most important properties of Paillier cryptosystem is homomorphic addition.
Specifically, multiplying an encryption of m1 and an encryption of m2 results in an encryp-
tion of m1 + m2, and raising an encryption of m to a constant k results in an encryption of
km, that is,

E(m1)E(m2) = E(m1 + m2), (3)

E(m)k = E(km). (4)

Besides, Paillier is semantic secure, that is, an adversary cannot learn any partial informa-
tion about the plaintext from the ciphertext. As a result, it is also a probabilistic encryption
scheme, which means when encrypting the same message several times, it will produce
different ciphertexts. This is clear from Eq. (1) where a random number r is used in
encryption.

ElGamal is a public-key cryptosystem whose security is based on the difficulty of the
discrete logarithm problem. It consists of some public domain parameters that can be shared
by a number of users and three algorithms:

– Domain parameters. Let p be a large prime and q be a medium prime such that q|p−1,
g be an element of F∗

p of prime order q, that is, g = r(p−1/q) mod p �= 1 for some
r ∈ F

∗
p . These public parameters create a public finite abelian group G of prime order

q with generator g.
– Key generation. Choose an integer x such that 0 ≤ x ≤ q − 1 and compute h = gx

mod p. The public key pk is h and the secret key sk is x.
– Encryption E′. Let m be a message in G. It is encrypted by selecting a random number

r such that 0 ≤ r ≤ q − 1 and computing

c1 = gr , c2 = mhr . (5)

The ciphertext c of m is E′(m) = (c1, c2).
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– Decryption D′. The ciphertext c is decrypted by computing

m = D′(c) = c2(c
x
1 )−1 (6)

ElGamal is also a probabilistic encryption scheme as each message is encrypted by a
different random number r , as shown in Eq. (5). One interesting property of ElGamal cryp-
tosystem is homomorphic multiplication. Specifically, multiplying an encryption of m1 and
an encryption of m2 results in an encryption of m1m2, that is:

E′(m1)E
′(m2) = E′(m1m2). (7)

A commutative encryption satisfies the property that the order of two encryptions is irrel-
evant. ElGamal can be extended to support commutative-like encryption [6]. In particular,
two new algorithms are defined as follows [6]:

– Re-encryption E′. Given a ciphertext E′
ha (m) = (gra , mh

ra
a ) encrypted by public key

ha , it can be re-encrypted by selecting a random number rb such that 0 ≤ rb ≤ q − 1
and computing c1 = gra , c2 = grb , and c3 = mh

ra
a h

rb
b where hb is the public key. The

ciphertext of E′
ha (m) is E′

hb
(E′

ha (m)) = (c1, c2, c3).
– Re-decryption D′. The ciphertext (c1, c2, c3) can be decrypted by secret keys xa and

xb in different orders, producing the same result. Using secret key xa first, we have
D′

xa (E′
hb

(E′
ha (m))) = (c2, c3(c

xa

1 )−1) = (grb ,mhrb

b ) = E′
hb

(m), which can be
decrypted again by xb to obtain m. It is easy to verify that the result is also m when first
using xb and then xa .

3 Privacy-preserving task assignment protocol

According to Definition 5, our objective is to find the winner of PTA without disclos-
ing worker location information. Though some existing privacy protection tools such as
k-anonymity and differential privacy could be adopted to protect individual privacy, they
typically assume a trusted third party that has the access to the whole raw data (e.g., all
workers’ locations), which is too strong in practice. Besides, they preserve individual pri-
vacy at the cost of decreasing data utility, which means approaches based on them may
not be able to find the correct winner of PTA. Therefore, we decide to make use of crypto-
graphic tools to solve PPTA accurately. To prevent privacy leakage, the private data of each
worker are encrypted by herself before being sent to the SC-server. From Definition 3, the
key problem in PPTA is to determine which worker will be the first to arrive ls . To solve this
problem, we need to compare the travel times of two workers wi and wj , that is, to evaluate
the following inequality:

d(li , ls)

vi

<
d(lj , ls)

vj

. (8)

Clearly, the evaluation consists of several fundamental operations: addition and multi-
plication (for distance computation), division, and comparison. It is important to note that
these operations should be performed over ciphertext since, for example, li and vi have been
encrypted for privacy protection. In theory, we can design an approach based on a fully
homomorphic encryption (FHE) scheme [14, 15] to enabling the above evaluation, but this
will incur prohibitive computation cost which makes the approach being of limited practi-
cal significance. We therefore consider to use partially homomorphic encryption schemes.
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Though they are much more efficient than FHE, none of them can support all the opera-
tions required in the evaluation of inequality (8). We will show how to solve this difficult
challenge in the next subsections.

3.1 Protocol overview

Figure 2 gives a high level picture of our privacy-preserving task assignment protocol. Based
on the above discussion, we adopt two partially homomorphic encryption schemes, Paillier
and ElGamal, to construct our solution, which consists of five stages depicted in different
colors in Fig. 2. In stage 0, CSP generates domain parameters for ElGamal and the pair of
keys for Paillier and ElGamal according to the requirement of security. It keeps the secret
keys private and issues the public keys to the SC-server and all workers. The creation of a
spatial task by a task requester triggers the start of stage 1 during which the SC-server and
all workers run a privacy-preserving distance computation protocol which outputs encrypted
distance values based on encrypted locations. In stage 2, each worker’s velocity is encrypted
and sent to the SC-server which cooperates with CSP to compute the travel time for every
worker. Based on the encrypted travel times obtained in stage 2, the SC-server computes
the winner with the help of CSP in stage 3, but the result is still in the encrypted form. In
the last stage, the encrypted task’s location is broadcast to all workers but only the winner
is able to recover the task’s location. After that, the winner moves to the specified location
to perform the corresponding task.

Fig. 2 Overview of privacy-preserving task assignment protocol
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3.2 Detailed construction

Algorithm 1 shows our protocol for privacy-preserving task assignment. We explain it in
details as follows.

Stage 1. We start to present our detailed construction from stage 1 since key generation
for Paillier and ElGamal cryptosystems required in stage 0 has been introduced
in Section 2.3. Holding the public key of Paillier, the SC-server encrypts the task
location ls = (xs, ys) and sends three ciphertexts E(x2

s + y2
s ), E(xs) and E(ys) to

all workers. On receiving encrypted values from the SC-server, every worker wi

computes the encrypted square of the distance between ls and her current location
li = (xi, yi) as follows:

E(d2(li , ls)) = E(x2
s + y2

s )E(xs)
−2xi E(ys)

−2yi E(x2
i + y2

i ), (9)

whose correctness can be easily verified based on Eqs. (3) and (4). Note that
we can also ask all workers to send the SC-server their encrypted locations (in
the form of E(x2

i + y2
i ), E(xi) and E(yi)) and ask the SC-server to compute

E(d2(li , ls)) for every worker. Though this procedure is similar to what we do in
the non-private case, it incurs much more computation cost for the SC-server. In
other words, our current design has an advantage of amortizing the computation
cost to all workers.

Stage 2. As discussed earlier, privacy-preserving travel time computation needs division
operation over ciphertext. Efficient implementation of homomorphic division,
however, is still an open question. Hence, our objective here is not to design an
efficient protocol of homomorphic division, but to technically eliminate division
during the computation of travel time. To do this, we utilize one interesting prop-
erty of the comparison of travel times, that is, the exact travel time computation
is not necessary. This property is guaranteed by the following lemma:

Lemma 1 Let W = {w1, w2, · · · , wn} be a set of n workers, V be the product of all work-
ers’ velocities, that is, V = ∏n

k=1 vk , and v′
k = V/vk for 1 ≤ k ≤ n. For any two workers

wi,wj ∈ W , d(li , ls)/vi < d(lj , ls)/vj holds if and only if d(li , ls)v
′
i < d(lj , ls)v

′
j .

Proof

d(li , ls)

vi

<
d(lj , ls)

vj

⇔ d(li , ls)
v′
i

V < d(lj , ls)
v′
j

V ⇔ d(li , ls)v
′
i < d(lj , ls)v

′
j

Based on the lemma, we compute for each worker wi a virtual travel time t ′i = d(li , ls)v
′
i

which is equivalent of the exact travel time ti = d(li , ls)/vk in the sense that a worker having
the shortest virtual travel time necessarily has the shortest exact travel time. Specifically,
every worker wi encrypts her velocity vi by the ElGamal cryptosystem and sends E′(vi) to
the SC-server which can obtain E′(V) by multiplying all the encrypted velocities it received.
The SC-server then asks CSP to decrypt E′(V) and gives V to all workers. By dividing V
by her velocity vi , every worker wi has the value of v′

i and computes E(d2(li , ls))
v′2
i =

E(d2(li , ls)v
′2
i ) = E(t ′2i ). The encrypted virtual travel times are sent to the SC-server for

further processing. Note that the exact value of V is known to CSP and all workers in the
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above procedure. However, this does not breach the individual privacy of any worker, which
will be proved in the next subsection.
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Stage 3. Now, the SC-server has a list of 2-tuples 〈i, E(t ′2i )〉 where i is the ID of worker
wi and 1 ≤ i ≤ n. To protect the identities of workers especially the winner, it
encrypts every worker’s ID by a PRF fk and sends CSP the list 〈fk(i), E(t ′2fk(i)

)〉
to find which worker has the shortest travel time and whether she can arrive the
task location before the deadline es . As CSP has the private key of Paillier, it can

obtain t ′2i by decrypting E(t ′2i ) and compute the real travel time ti =
√

t ′2i /V2.
Then, it is easy for CSP to find the worker having the shortest travel time and to
check whether she can meet the deadline constraint. If not, CSP informs the SC-
server that there are no winners. Otherwise, it encrypts the winner’s ID fk(i

∗)
using ElGamal and sends E′

C(fk(i
∗)) to the SC-server. This encryption is neces-

sary, as the SC-server can infer who is the winner once it knows fk(i
∗). On the

other hand, the winner’s privacy is still protected due to the pseudo-randomness
of the PRF.

Stage 4. On receiving E′
C(fk(i

∗)), the SC-server encrypts the task location ls and
broadcasts Ė(ls) to all workers. Specifically, ls is encrypted as follows:

Ė(ls) = h(E′
C(fk(i

∗))) ⊕ ls , (10)

where h is a length-match hash function which is used to map a long bit string
to a shorter bit string. A specific construction of h proved to be semantically
secure [1] is to truncate a long bit string into multiple shorter bit strings of fixed
length and output the exclusive-OR on these strings. Clearly, only the worker
knowing E′

C(fk(i
∗)) can recover the task location by computing ls = Ė(ls) ⊕

h(E′
C(fk(i

∗))). The following procedure ensures that only the winner knows
E′

C(fk(i
∗)).

First, every workers wi obtains her encrypted ID fk(i) from the SC-server
and encrypts it by ElGamal using her own public key and sends the encrypted
value E′

wi
(fk(i)) to CSP. When receiving it, CSP encrypts it again by ElGa-

mal using its public key and the same random number r used for encryption
of E′

C(fk(i
∗)). The result E′

C(E′
wi

(fk(i))) is send to every worker i who can
decrypt it by her private key to obtain E′

C(fk(i)). Clearly, only the winner wfk(i
∗)

knows E′
C(fk(i

∗)). It is important to note that the public keys used here should
be kept secret for privacy protection.

Remark 1 During the computation of E′(V), an appropriate key length should be set to avoid
overflow of the multiplication of all workers’ velocities. For example, we use 2048-bits keys
in our experiments to deal with 1,000 workers. For very large number of workers, a possible
way is to use least common multiple (LCM) instead of multiplication. However, privacy-
preserving LCM computation (i.e., compute the LCM of multiple encrypted numbers) is a
very challenging problem and we leave it as one of our future directions.

3.3 Performance analysis

Computation cost Table 2 summarizes the computation cost of our protocol. We assume
all workers can perform computation (e.g., encryption and decryption) in parallel and can
interact with the SC-server/CSP in parallel, so we only need to consider the cost of one user.
Besides, we ignore cheaper operations such as big integer multiplication and exclusive-or
of bit strings. The detailed analysis is as follows. In Algorithm 1, three Paillier encryptions
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Table 2 Computation cost of the proposed protocol

SC-server CSP Worker

stage 1 3E 0 1E + 2e

stage 2 0 1D′ 1E + 3e

stage 3 n PRF 1E′ + nD 0

stage 4 0 nE′ 1E′ + 1D′

total 3E + n PRF 1E′ + nE′ + nD + 1D′ 2E + 1E′ + 1D′ + 5e

E, D, E′, D′, E′, D′, e, PRF represent Paillier encryption, Paillier decryption, ElGamal encryption, ElGa-
mal decryption, ElGamal re-encryption, ElGamal re-decryption, modular exponentiation, and pseudorandom
function, respectively

are performed by the SC-server (Line 5) and one Paillier encryption and two modular expo-
nentiations are performed by worker wi (Line 7 and 8) for privacy-preserving travel distance
computation. In stage 2, worker wi protects her velocity by one ElGamal encryption (Line
12). The product of encrypted velocities is decrypted by CSP (Line 15) to enable subse-
quent travel time computation which requires one modular exponentiation for worker wi

(Line 18). In stage 3, the SC-server uses n PRFs to protect workers’ ID (Line 21) and CSP
performs n ElGamal decryptions (Line 23) and one ElGamal encryption (Line 25) to find
the winner and protect her ID. In the last stage, to exchange decryption key, worker wi per-
forms one ElGamal encryption (Line 29) and one ElGamal re-decryption (Line 31), and
CSP performs n ElGamal re-encryptions (Line 30).

Communication cost Table 3 summarizes the communication cost of our protocol. As the
size of ciphertext is typically larger than that of plaintext, we only consider the ciphertexts
sent and received by every party. It is important to note that the ciphertext of ElGamal
encryption and re-encryption are twice and three times longer than the key, respectively. We
omit the detailed analysis as the result is clear from the protocol.

3.4 Security analysis

The following analysis show the security of the proposed protocol.

Theorem 1 Our task assignment protocol (Algorithm 1) is privacy-preserving with extra
knowledge K0 = V , K−1 = {V, tfk(1), · · · , tfk(n)} and Ki = V (1 ≤ i ≤ n) disclosure
against the SC-server, CSP and all workers, respectively.

Table 3 Communication cost of
the proposed protocol. L and L′
are the key size of Paillier and
ElGamal cryptosystems,
respectively

SC-server CSP Worker

stage 1 3L 0 3L

stage 2 nL + (2n + 2)L′ 2L′ L + 2L′

stage 3 nL + 2L′ nL + 2L′ 0

stage 4 0 3nL′ 3L′

total (2n + 3)L + (2n + 4)L′ nL + (3n + 4)L′ 4L + 5L′
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Proof We first show that there is a probabilistic polynomial-time simulator S0 which
can simulate the SC-server’s view based on K0 = V . As the SC-server’s view is
view0 = {E′(v1), · · · , E′(vn), E(t ′21 ), · · · , E(t ′2n ), E′

C(fk(i
∗)),V}, S0 generates view′

0 =
{E′(x1), · · · , E′(xn), E(y1), · · · , E(yn), E′(xn+1),V} where xi (1 ≤ i ≤ n + 1) are random
elements uniformly distributed in G and yi (1 ≤ i ≤ n) are random elements uniformly
distributed in ZN . It is easy to verify that view0 ≡ view′

0 since Paillier and ElGamal are
both semantic secure.

Next, we show that there is a probabilistic polynomial-time simulator Si which can
also simulate worker wi’s view based on Ki = V . For wi who is not the winner,
viewi = {E(x2 + y2), E(x), E(y), fk(i), E′

C(E′
wi

(fk(i
∗))),V} is her view. To simulate

it, Si generates view′
i = {E(x1), E(x2), E(x3), k, E′(E′(y)),V} where xi (i = 1, 2, 3)

are random elements uniformly distributed in ZN , y is randomly sampled from G, and k

is a random element uniformly distributed over {0, 1}λ. For wi∗ , her view is viewi∗ =
{E(x2 +y2), E(x), E(y), fk(i), i

∗,V}, so si∗ generates {E(x1), E(x2), E(x3), k, i∗,V} as its
view′

i∗ . In both cases, we can verify that viewi ≡ view′
i due to the semantic security of

Paillier and ElGamal, as well as the pseudo-randomness of PRF.
Finally, we show that there is a probabilistic polynomial-time simulator S−1 which

can simulate CSP’s view based on K−1 = {V, tfk(1), · · · , tfk(n)}. In our protocol, CSP’s
view is view−1 = {E′

w1(fk(i)), · · · , E′
wn(fk(n))}⋃

K−1. To simulate it, S−1 generates
view′−1 = {E′(x1), · · · , E′(xn)}⋃

K−1 where xi (1 ≤ i ≤ n) are random elements uni-
formly distributed in G. view−1 ≡ view′−1 clearly holds due to the semantic security of
ElGamal.

The above theorem proves our protocol is secure with K disclosure. Before showing K

has limited effects on individual privacy, we give the following lemmas.

Lemma 2 The product π = ∏n
i=1 x̃i is generated by randomly chosen integers x̃i ∈ Z+

between 1 to d (d > n). As d → ∞, the equation
∏n

i=1 xi = π s.t. ∀xi ∈ Z+ has at least
n! solutions with probability 1.

Proof The probability for {x̃1, · · · , x̃n} are all different is given by

η(d, n) = P n
d

dn
= d

d

d − 1

d
· · · d − n + 1

d
.

Any permutation of the sequence {x̃1, · · · , x̃n} is a valid solution. Therefore there are at
least n! different solutions to the equation

∏n
i=1 xi = π with probability η(d, n), and we

have limd→∞ η(d, n) = 1.

Lemma 3 The product π and a set of positive rational numbers {b1, · · · , bn} are generated
by randomly chosen positive integers x̃1, · · · , x̃n, ỹ1, · · · , ỹn between 1 to d (d > n) based
on the equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∏n
i=1 xi = π

yi

xi
= bσ(i)

...
yn

xn
= bσ(n),

where (σ (1), · · · , σ (n)) is an unknown permutation of (1, · · · , n), then the equation has at
least n! solutions with probability 1 as d → ∞.
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Proof The proof is very similar to that of Lemma 2, by noting that as d → ∞, with proba-
bility 1, x̃1, · · · , x̃n will be all different, and any permutation of a solution yields a different
solution.

Lemma 4 Pick a random number in 1, · · · , d, the probability that it is prime is 1/ log d, as
d → ∞.

The above lemma is straightforward from the prime number theorem [18], which states
that the number of primes before d converges to d/ log d as d → ∞.

Remark 2 Using Lemma 4, the probability for xi being a prime or 1 can be approximated as
(1/ log d + 1/d). The probability for every xi having at least two prime factors is therefore

(

1 − 1

log d
− 1

d

)n

(11)

which converges to 1 at the limit d → ∞. This means that with probability 1 the product
π will have at least 2n prime factors, as long as d is chosen large enough. In practice, the
number of solutions to the equation π = ∏n

i=1 xi is even larger than the stated n!.

Theorem 2 Based on knowledge Ki (−1 ≤ i ≤ n), the probability that an adversary Pi

learns the private input of any party during an execution of the task assignment protocol
(Algorithm 1) is negligible in general.

Proof First consider P0, the SC-server, which has the knowledge K0 = V . It can construct
an equation

∏n
i=1 vi = V . Assume 1 ≤ vi ≤ d and denote by η(vi) and η(vi |K0) the

probability that P0 learns vi and the probability that P0 learns vi given K0, respectively.
From Lemma 2, we have

lim
d→∞(η(vi |K0) − η(vi)) = lim

d→∞(1/n! − 1/d) = 1/n!,
which is clearly negligible in general.

The proof for Pi (1 ≤ i ≤ n) is similar, so we consider P−1 (i.e., CSP) now. As K−1 =
{V, tfk(1), · · · , tfk(n)}, it can construct a non-linear system which consists of the following
n + 1 equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∏n
i=1 vi = V

d(ls ,l1)
v1

= tfk(1)

...
d(ls ,ln)

vn
= tfk(n).

From Lemma 3, we also have

lim
d→∞(η(vi |K−1) − η(vi)) = lim

d→∞(1/n! − 1/d) = 1/n!,
which is negligible in general. Moreover, it is clear that CSP cannot know ls and li with prob-
ability significantly better than random guess even if it knows the exact value of d(ls, li ),
which completes the proof.

Remark 3 It is important to note that Theorem 2 says the privacy-preserving task assignment
protocol is secure in general. In some extreme cases, for example, V = 1, an adversary
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can immediately know that the velocity of every worker is 1, but the probability that this
happens drops dramatically when the number of workers grows.

3.5 Extension to task assignment with acceptance guarantee

The protocol shown in Algorithm 1 can be easily extended to solve PPTAG, the privacy-
preserving task assignment with acceptance guarantee problem. In particular, only Line 24
of Algorithm 1 needs to be updated, as we need to find a winner set rather than a single
winner. On obtaining the travel times of all workers (Line 23 of Algorithm 1), CSP sorts
them in an ascending order and then keeps adding workers to the winner set one by one
until the expected acceptance rate is achieved. Following [37], we also model worker’s AR (
acceptance rate) as a decreasing function φ of travel time and consider two cases: 1) linear,
where AR decreases linearly with travel time starting from an initial MAR (maximum AR)
value (when a worker is just in the task’s location); and 2) Zipf, where AR follows Zipf
distribution. Then, the termination condition of adding new workers to the winner set W ∗ is
1 − ∏

wi∈W ∗(1 − ai) ≥ α where ai = η(tfk(i), MAR).
It is easy to verify that our protocol is still secure with this modification when all parties

are entitled to know |W ∗|, that is , the number of winners. By assuming all workers have the
same AR, we can compute the size of W ∗ is � lg(1−α)

lg(1−ai )
�. Consequently, in stage 3, CSP needs

to perform ElGamal encryption |W ∗| times and the communication cost between CSP and
the SC-server changes from 2L′ to 2|W ∗|L′.

4 Performance evaluation

4.1 Experimental settings

We evaluate the performance of our basic protocol (Algorithm 1) and its extended version
(Section 3.5) in terms of two categories of metrics: efficiency-related and effectiveness-
related. The former includes running time and communication cost, while the latter includes
worker travel distance (WTD), worker travel time (WTT), and the number of notified work-
ers (NNW). Generally, workers perfer shorter WTD, and so do task requesters as their tasks
can be performed early by assuming workers have the same velocity. If workers have dif-
ferent velocities, however, shorter WTD is not necessarily better. In this case, short WTT is
preferred by both workers and task requesters. NNW should be kept low to decrease both
computation cost and communication cost.

For effectiveness evaluation, we take To et al.’s approach [37] as the baseline. As their
approach does not take velocity into account, the velocity of every worker is set to be 1 in the
experiment. In this case, WTT is equal to WTD. Besides, the deadline of every task is set to
be a large value so that all workers can arrive before the deadline. As our basic protocol does
not consider worker acceptance rate and always returns one worker (i.e., NNW always equal
1), we only report the comparison results between the extended version and the baseline.
We randomly generate 1,000 tasks and report the average results.

For efficiency evaluation, we notice that differential privacy is clearly much computation-
ally cheaper than public-key cryptosystems, but it cannot protect data during computation
(e.g., a trusted third party is allowed to see all workers’ locations). It is thus meaningless to
compare our protocl (based on public-key cryptosystems) with To et al.’s approach (based
on differential privacy) in terms of running time. Therefore, we focus only on the efficiency
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Fig. 3 Effect of number of workers on running time

of our basic protocol and its extension, testing whether their overheads could be accepted in
practice. We execute our protocol 10 times and report the average results.

We use two real-world datasets, Gowalla1 and Yelp,2 for performance evaluation.
Gowalla contains the check-in history of users in a location-based social network. We select
an area in California with latitude from 33.720183 to 34.149932 and longitude from -
118.399999 to -117.900516. This area has the check-ins of 5,830 users who are assumed
to be the workers in a spatial-crowdsourcing system. We take the location where a user
has most check-ins as her current location, and assume that a spatial task can be created in
any location that has check-in. For Yelp, we select an area in Phoenix with latitude from
33.205308 to 33.924407 and longitude from -112.400283 to -111.218100. This area has
about 67,000 users and 11,200 businesses. Business locations are regarded as tasks while
the location of a user is randomly selected from businesses that she has a review.

We set the number of workers #W ∈ {100, 400, 700, 1000}, the maximum accep-
tance rate MAR ∈ {0.4, 0.6, 0.8, 1}, and the expected task acceptance probability α ∈
{0.7, 0.8, 0.9, 0.99}. As the baseline relies on differential privacy whose performance is
based on a privacy budget ε, we also set ε ∈ {0.1, 0.4, 0.7, 1.0}, as proposed in [37]. For
security parameter of Paillier and ElGamal, we refer to NIST recommendations (2016)3

and set the key length KL ∈ {1024, 2048}, where 1024 is appropriate for current applica-
tions and 2048 is recommended for next 15 years (2016-2030). The default value for each
parameter is shown in boldface.

In our experiment, the SC-server and CSP are run on a machine with four Intel Xeon E7-
8860 2.2GHz CPUs (each CPU has 16 cores) and 1TB RAM, and a worker is simulated by
a Mi 2 cellphone with APQ 8064 1.5GHz CPU and 2GB RAM. We implement our protocol
using the Bouncy Castle Crypto package.4 The code is written in Java and executed in
JDK 1.8. From Table 2, the performance bottleneck of our protocol is a number of Paillier
decryptions. Fortunately, these expensive operations can be parallelized easily as they are

1https://snap.stanford.edu/data/loc-gowalla.html
2https://www.yelp.com/dataset challenge
3https://www.keylength.com/
4https://www.bouncycastle.org/java.html

https://snap.stanford.edu/data/loc-gowalla.html
https://www.yelp.com/dataset_challenge
https://www.keylength.com/
https://www.bouncycastle.org/java.html
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Fig. 4 Effect of MAR on running time

performed on independent values. In our experiment, we use 64 threads to perform these
decryptions.

4.2 Experimental results

4.2.1 Efficiency

Figure 3a shows the running time of our basic protocol when the number of workers #W

increases from 100 to 1,000 with a step of 300. As expected, when #W increases, the CPU
times of SC-server and CSP also increase, but in a linear manner, as their computation costs
are mainly dominated by cryptographical operations whose number is proportional to the
number of workers. On the other hand, the computation cost of a worker is almost a constant,
for example, about 0.1 seconds in a moderate cellphone, despite of the number of workers.
Therefore, our protocol has a good scalability in practice. In terms of total running time,
our protocol only needs less than 2 seconds to achieve privacy-preserving task assignment
over 1,000 workers. Similar performance trend can be observed in Fig. 3b where 2048-bits
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Fig. 6 Effect of number of workers on communication cost

keys are used to provide much stronger security guarantee (recall that this key length is
recommended for next 15 years). Even in this case, the total running time of our protocol is
less than 7 seconds.

Figures 4 and 5 depict the running time of the extended protocol by varying MAR and
α, respectively. Overall, the extended protocol only introduces limited overheads to provide
specified acceptance guarantee. For example, to make α = 0.9, our protocol needs about
1.79 seconds when MAR = 1, but needs only about 1.84 seconds when MAR decreases to
0.4 (see Fig. 4a). For another example, when MAR = 0.8, our protocol can find a winner set
with α = 0.7 in 1.81 seconds. To ensure tasks can be accepted with a very high probability,
say α = 0.99, our protocol only needs 1.94 seconds. The reason for this performance is that
the extra overheads mostly come from ElGamal encryptions and the number of encryptions
is bounded by the size of the winner set, which is typically small (more results can be found
in Figs. 12, 13 and 14).

In Fig. 6, we measure the communication cost of different parties in our basic protocol.
From Fig. 6b, the SC-server, CSP, and worker need to send or receive 2.7, 2.1, and 0.008
MB data, respectively, when performing a task assignment over 1,000 workers with 2048-
bits keys. We believe this overheads is not a burden at all in current mobile applications. By
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Fig. 8 Effect of α on communication cost

varying the number of workers from 100 to 1,000, we observe in Fig. 6 a linear increase
trend for both SC-server and CSP, as the transferred data are largely ciphertexts whose size
is proportional to the number of workers. Besides, a worker’s communication cost remains
to be a small constant, as explained in Section 3.3. We further investigate the communication
cost of the extended protocol by varying MAR and α, and report the results in Figs. 7
and 8. For all three parties, their communication costs have a very small increase due to
the declaration of multiple winners. In summary, our protocol is also scalable in terms of
communication cost.

4.2.2 Effectiveness

Figures 9, 10 and 11 show the performance of our protocol in terms of WTD by varying
MAR, α, and ε, respectively. In all figures, our protocol performs better than the baseline
in all combinations of datasets (Gowalla, Yelp) and acceptance rate functions (Linear, Zipf).
Specifically, in Fig. 9, we observe that the difference between our protocol and the baseline
increases when MAR decreases. To explain this, we first note that the baseline needs to visit
more grid cells to achieve required acceptance rate. Every cell generally contains a number
of workers. Some of them may be far from the task location but they can accept the task. Our
protocol, however, always selects workers based on their travel times (or travel distances in
this case). That is why our protocol is much better than the baseline when MAR is small.
The similar result can be observed in Fig. 10. Figure 11 shows that the baseline has a larger
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WTD when providing stronger privacy guarantee (e.g., ε = 0.1). However, our protocol
still outperforms the baseline even if it only provides weak privacy guarantee (e.g., ε = 1).

We further evaluate the performance of our protocol in terms of NNW by varying MAR,
α, and ε, and report the results in Figs. 12, 13 and 14, respectively. Again, our protocol
performs better than the baseline in all combinations of datasets (Gowalla, Yelp) and accep-
tance rate functions (Linear, Zipf). In most cases, the number of notified workers is not
larger than 5. In some extreme cases, for example, α = 0.99, our protocol selects less than
15 workers to perform a task. This can explain why our protocol can be extended to PPTAG
with very low overheads. On the other hand, the baseline needs to notify a lot of workers
since it works on gird cells.

5 Related work

SC is a complex procedure that generally consists of four phases: task and workers regis-
tration, task assignment, answer aggregation, and response and quality control [2]. Here we
only review the works that are relevant to task assignment, referring the reader to [2] for
more results on other phases of SC. Kazemi and Shahabi [20] propose several heuristics to
maximize the overall task assignment while conforming to the constraints of workers. Sim-
ilarly, Deng et al. [7] devise both exact and approximation algorithms to find a schedule
for a worker such that the number of performed tasks by the worker is maximized. Spatial-
temporal diversity and reliability are also taken into account in the course of task assign-
ment. Cheng et al. [3] shows task assignment with these constraints is NP-hard and proposes
several approximation algorithms. In [4], efficient methods are designed to assign workers
to complex tasks that require more than one skill. Tong et al. [40] consider task assign-
ment in online scenarios and propose efficient algorithms with provable competitive ratio.
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Zheng and Chen [48] tackle the problem of assigning tasks to workers such that mutual
benefit are maximized. All these works assume that workers are willing to give their pri-
vate location information to the SC-server that is typically untrusted in practice. Our work
complements these works by tackling the privacy leakage problem in the phase of task
assignment.

Location privacy protection has been studied extensively in recent years. Ghinita et al.
[16] adopt private information retrieval (PIR) to enable users to conduct approximate and
exact nearest neighbor search without revealing their locations to the server. Paulet et al.
[28, 29] combines PIR and oblivious transfer (OT) to achieve mutual privacy-preserving
location-based queries. On one hand, the server is unable to know the location of users. On
the other hand, users can only get a limited location data for their queries, thus protecting
the server’s private data. Liu et al. [24] propose a more efficient approach for this problem
by utilizing two rounds of OT and show the efficiency improvement can be realized at the
expense of acceptable communication cost. Yi et al. [44] present a solution based on Paillier
and Rabin cryptosystem for mutual privacy-preserving kNN query where k is fixed. The
solution is extended in [45] to support dynamic k up to a constant and sequential queries.
However, these solutions cannot be applied to our scenario. This is because, in SC, worker
location is not the private data of the SC-server, but rather the sensitive information that
workers want to hide from the SC-server. There are also some works focusing on privacy-
preserving location-based queries over outsourced location data [43, 46], where the data
owner and users sending queries are assumed to trust each other. In SC, however, there is
no inherent trust relationship between task requesters and workers. To enable kNN query
over encrypted data, Elmehdwi et al. [11] propose a set of protocols based on Paillier. While
mutual privacy can be guaranteed due to the security of Paillier, the computation cost of
these protocols are very expensive [23]. Thus, we cannot apply these protocols to directly
solve large task assignment problems.
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6 Conclusion

In this paper, we have identified mutual privacy protection requirement in the course of
spatial crowdsourcing. We have presented a privacy-preserving task assignment protocol
which makes effective decision based on multiple factors. We have theoretically proved
that our approach is secure against semi-honest adversaries. We have conducted extensive
experiments on two real-world datasets. Experimental results have shown that our protocol
is more effective than state-of-the-art solutions in terms of task assignment quality, and the
computation and communication overheads caused by privacy protection are acceptable in
practice.
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