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Abstract Efficient processing of Distance-Based Join

Queries (DBJQs) in spatial databases is of paramount

importance in many application domains. The most re-

presentative and known DBJQs are the K Closest Pairs

Query (KCPQ) and the ε Distance Join Query (εDJQ).

These types of join queries are characterized by a num-

ber of desired pairs (K) or a distance threshold (ε) be-

tween the components of the pairs in the final result,

over two spatial datasets. Both are expensive operati-

ons, since two spatial datasets are combined with addi-

tional constraints. Given the increasing volume of spa-

tial data originating from multiple sources and stored

in distributed servers, it is not always efficient to per-

form DBJQs on a centralized server. For this reason,

this paper addresses the problem of computing DBJQs

on big spatial datasets in SpatialHadoop, an extension
of Hadoop that supports efficient processing of spatial

queries in a cloud-based setting. We propose novel algo-

rithms, based on plane-sweep, to perform efficient pa-

rallel DBJQs on large-scale spatial datasets in Spatial-

Hadoop. We evaluate the performance of the proposed

algorithms in several situations with large real-world

as well as synthetic datasets. The experiments demon-
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strate the efficiency and scalability of our proposed met-

hodologies.
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1 Introduction

Distance-Based Join Queries (DBJQs) in spatial da-

tabases [2] have received considerable attention from

the database community, due to its importance in

numerous applications, such as image processing [3],

location-based systems [4], geographical information sy-

stems (GIS) [5], continuous monitoring in streaming

data settings [6] and road network constrained data [7].
The most representative and known DBJQs are the

K Closest Pairs Query (KCPQ), that discovers the K

closest pairs of objects between two spatial datasets,

and the ε Distance Join Query (εDJQ), that discovers

the pairs of objects with distance smaller than ε bet-

ween two spatial datasets (detailed definitions appear

in Subsections 3.1.1 and 3.1.2, respectively).

Both join queries are expensive operations since

two spatial datasets are combined with additional con-

straints, and they become even more costly operations

for large-scale data. Several different approaches have

been proposed, aiming to improve the performance of

DBJQs by proposing efficient algorithms [8–11]. Ho-

wever, all these approaches focus on methods that are

executed in a centralized environment.

With the fast increase in the scale of big input da-

tasets, processing large data in parallel and distributed

fashions is becoming a common practice. A number of

parallel algorithms for DBJQs, like the K Closest Pair

Query (KCPQ) [1], K Nearest Neighbor Join (KNNJ)
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[12–15] and similarity join [16] in MapReduce [17] have

been designed and implemented recently. However, as

real-world spatial datasets continue to grow, novel ap-

proaches and paradigms are needed.

Parallel and distributed computing using shared-

nothing clusters on extreme-scale data is becoming a

dominating trend in the context of data processing and

analysis. MapReduce [17] is a framework for proces-

sing and managing large-scale datasets in a distributed

cluster, which has been used for applications such as

generating search indices, document clustering, access

log analysis, and various other forms of data analysis

[18]. MapReduce was introduced with the goal of sup-

plying a simple yet powerful parallel and distributed

computing paradigm, providing good scalability and

fault tolerance mechanisms. The success of MapReduce

stems from hiding the details of parallelization, fault

tolerance, and load balancing in a simple and powerful

programming framework [18–21].

However, as indicated in [22], MapReduce has weak-

nesses related to efficiency when it needs to be applied

to spatial data. A main shortcoming is the lack of an

indexing mechanism that would allow selective access

to specific regions of spatial data, which would in turn

yield more efficient query processing algorithms. A re-

cent solution to this problem is an extension of Hadoop,

called SpatialHadoop [23], which is a framework that

inherently supports spatial indexing on top of Hadoop.

In SpatialHadoop, spatial data is deliberately partiti-

oned and distributed to nodes, so that data with spa-

tial proximity is placed in the same partition. Moreo-

ver, the generated partitions can be indexed, thereby

enabling the design of efficient query processing algo-

rithms that access only part of the data and still re-

turn the correct result query. As demonstrated in [23],

various algorithms have been proposed for spatial que-

ries, such as range, nearest neighbor, spatial joins and

skyline queries. Efficient processing of the most repre-

sentative and studied DBJQs over large-scale spatial

datasets is a challenging task, and is the main target of

this paper.

SpatialHadoop is an efficient MapReduce disk-based

distributed spatial query-processing system. Actually,

SpatialHadoop is a mature and robust spatial extension

of Hadoop (the most well-known shared-nothing paral-

lel and distributed system). SpatialHadoop has been

developed for a longer time than related Spark-based

spatial extensions, although Spark-based systems are,

in general, faster than Hadoop-based systems, especi-

ally for iterative problems [24]. SpatialHadoop utilizes

pure MapReduce based processing and not DAG (Di-

rected Acyclic Graph) based processing (a generaliza-

tion of MapReduce), as Spark-based systems. The pro-

blem we study, processing DBJQs, is well suited to pure

MapReduce based processing, since it has limited ite-

rativeness and works on the whole datasets, in batch

mode. In this paper, we develop MapReduce algorithms

for these queries and study them in SpatialHadoop (a

popular system with a wide installation base), as a first

step of a series of studies of spatial processing in shared-

nothing parallel and distributed systems that will also

include Spark-based spatial extensions during further

research steps.

Motivated by these observations, we first propose

new parallel algorithms, based on plane-sweep techni-

que, for DBJQs in SpatialHadoop on big spatial data-

sets. In addition to the plane-sweep base technique, we

present a methodology for improving the performance

of the KCPQ algorithms by the computation of an up-

per bound of the distance of the K-th closest pair. To

demonstrate the benefits of our proposed methodolo-

gies, we present the results of the execution of an exten-

sive set of experiments that demonstrate the efficiency

and scalability of our proposals using big synthetic and

real-world points datasets.

This paper substantially extends our previous work

[1], which was the foundation of the present research

results, with the following novel contributions:

1. We improve the plane-sweep-based KCPQ MapRe-

duce algorithm in SpatialHadoop [1] by using new

sampling and approximate techniques, that take ad-

vantage of SpatialHadoop partitioning techniques,

to compute an upper bound of the distance of the

K-th closest pair and make the KCQP MapReduce

algorithm much more efficient.

2. We have implemented a new distributed KCPQ al-
gorithm using the local index(es) (R-trees) provi-

ded by SpatialHadoop, similarly to the distributed

join algorithm [23], and we compare this approach

to our plane-sweep-based KCPQ MapReduce algo-

rithm, proving experimentally that our algorithm

outperforms the one that uses the local index(es).

3. We propose a new MapReduce algorithm for εDJQs

in SpatialHadoop, based on the plane-sweep techni-

que, similar to our KCPQ MapReduce algorithm.

4. In experiments of DBJQ MapReduce algorithms, we

utilize additional partitioning techniques available

in SpatialHadoop to check if performance impro-

vements are obtained with respect to the partitio-

ning used in [1].

5. We present results of an extensive experimental

study that compares the performance of the propo-

sed MapReduce algorithms and their improvements

in terms of efficiency and scalability. For synthetic

datasets’ experiments, we have used clustered (more

realistic) datasets, instead of uniform ones [1]. More-
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over, for real datasets’ experiments, we have created

a new big quasi-real dataset that is combined with

the biggest real dataset used in [1].

The current research work is based on a completely

new setting with respect to the one of [11], since we have

used a scalable and distributed MapReduce framework

supporting spatial data, SpatialHadoop, while in [11]

processing in a centralized system is followed. Here, we

have only used the new plane-sweep KCPQ algorithm

published in [11] and executed it in each parallel task.

Moreover, new methodologies and improvements have

been proposed to speedup the response time of the stu-

died DBJQs under cloud computing.

The rest of this article is organized as follows. In

Section 2, we review related work about different rese-

arch prototype systems that have been proposed for

large-scale spatial query processing, the MapReduce

implementations of the most representative spatial que-

ries and the recent SpatialHadoop framework for spa-

tial query processing. Section 3 defines the KCPQ and

εDJQ, which are the DBJQs studied in this work. Mo-

reover, a detailed presentation of SpatialHadoop in the

context of spatial query processing is exposed, which

is the core framework of this paper. In Section 4, we

present the parallel (MapReduce) algorithms for the

processing of DBJQs (the KCPQ and εDJQ) in Spati-

alHadoop, using plane-sweep techniques and local spa-

tial indices. Section 5 presents several improvements of

the KCPQ MapReduce algorithm with main objective

to make the algorithm faster. In Section 6, we present

representative results of the extensive experimentation

that we have performed, using real-world and synthetic

datasets, for comparing the efficiency of the proposed

algorithms. Finally, in Section 7, we provide the con-

clusions arising from our work and discuss potential

directions for future work.

2 Related Work

In this section we review related literature to high-

light the most representative prototype systems that

have been developed for large-scale spatial query pro-

cessing. Next, we look over specific spatial operations

using MapReduce and finally, we review the proposed

spatial queries that have been implemented in Spatial-

Hadoop.

2.1 Research prototype systems for large-scale spatial

query processing

Researchers, developers and practitioners worldwide

have started to take advantage of the MapReduce envi-

ronment in supporting large-scale spatial data proces-

sing. Until now, the most representative contributions

in the context of scalable spatial data processing are

the following prototypes:

- Parallel-Secondo [25] is a parallel spatial DBMS

that uses Hadoop as a distributed task scheduler.

- Hadoop-GIS [26] extends Hive [27], a data ware-

house infrastructure built on top of Hadoop with

a uniform grid index for range queries, spatial joins

and other spatial operations. It adopts Hadoop Stre-

aming framework and integrates several open source

software packages for spatial indexing and geometry

computation.

- SpatialHadoop [23] is a full-fledged MapReduce fra-

mework with native support for spatial data. It tig-

htly integrates well-known spatial operations (inclu-

ding indexing and joins) into Hadoop.

- SpatialSpark [28] is a lightweight implementation

of several spatial operations on top of the Apache

Spark1 in-memory big data system. It targets at in-

memory processing for higher performance.

- GeoSpark [29] is an in-memory cluster computing

system for processing large-scale spatial data, and it

extends the core of Apache Spark to support spatial

data types, indices and operations.

- Simba (Spatial In-Memory Big data Analytics) [30]

offers scalable and efficient in-memory spatial query

processing and analytics for spatial big data. Simba

extends the Spark SQL engine to support rich spa-

tial queries and analytics through both SQL and the

DataFrame API.

- LocationSpark [31] has been recently presented as a

spatial data processing system built on top of Apa-

che Spark. It offers a rich set of spatial query opera-

tors, e.g., range search, KNN, spatio-textual opera-

tion, spatial join and KNN join. Moreover, it offers

an efficient spatial Bloom filter into LocationSpark’s

indices to avoid unnecessary network communica-

tion overhead when processing overlapped spatial

data.

All the previous prototypes have been designed for

processing and analysis of massive spatial vectorial data

(e.g. points, line-segments, etc.), but there are other

prototypes for managing spatial raster data derived

from imaging and spatial applications (e.g. climate data

[32], satellite data, etc.). The most remarkable scientific

prototype systems for handling raster data are: SciHa-

doop [33], Shahed [34] and SciSpark [35]. SciHadoop [33]

supports array-based query processing of climate data

in Hadoop and defined a query language to express com-

mon data analysis tasks. Shahed [34] is a MapReduce-

1 http://spark.apache.org/
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based system for querying, visualizing, and mining large

scale satellite data. It considers both the spatial and

temporal aspects of remote sensing data to build a

multi-resolution Quadtree-based spatio-temporal index

to conduct selection and aggregate queries in real-time

using MapReduce. SciSpark [35] extends Apache Spark

to achieve parallel ingesting and partitioning of multi-

dimensional scientific data.

It is important to highlight that the previous pro-

totype systems differ significantly in terms of distri-

buted computing platforms, data access models, pro-

gramming languages and the underlying computatio-

nal geometry libraries. Moreover, all these prototypes

support query processing for the most representative

spatial operators and use the MapReduce software fra-

mework to carry them out. In the next subsection we

review the most remarkable contributions of the litera-

ture for spatial query processing using MapReduce.

2.2 Spatial query processing using MapReduce

Actually, there are a lot of works on specific spatial que-

ries using MapReduce. This programming framework

adopts a flexible computation model with a simple in-

terface consisting of map and reduce functions whose

implementations can be customized by application de-

velopers. Therefore, the main idea is to develop map

and reduce functions for the required spatial operation,

which will be executed on-top of an existing Hadoop

cluster. Examples of such research works on specific

spatial queries using MapReduce include:

- Region query [36,37], where, in general, the input

file is scanned, and each record is compared against

the query region.

- K Nearest Neighbors (KNN) query [36,38,39]. In

[36], a brute force approach calculates the distance

to each point and selects the nearestK points. Anot-

her approach partitions points using a Voronoi dia-

gram and finds the answer in partitions close to the

query point [38]. Lastly, in [39] a MapReduce-based

approach for KNN classification is proposed.

- Skyline query [40,41]. In [40], new algorithms for

processing skyline and reverse skyline queries in

MapReduce are proposed. In [41], an advanced two-

phase MapReduce solution that efficiently addresses

skyline queries on large datasets is presented.

- Reverse Nearest Neighbor (RNN) query [38,42]. In

[38], the input data is partitioned by a Voronoi dia-

gram to exploit its properties to answer RNN que-

ries. In [42], the problem of RNN query is inves-

tigated on the inverted grid index over large scale

spatial datasets in a distributed environment using

MapReduce.

- Spatial Join query [36,43]. In [36,43] the partition-

based spatial-merge join [44] is ported to MapRe-

duce, giving rise to a new algorithm for Spatial Join

with MapReduce (SJMR).

- K Nearest Neighbor (KNN) Join query [12–15]. In

[12], novel (exact and approximate) algorithms in

MapReduce to perform efficient parallel KNN join

on large data are proposed, and they use the R-

tree and a Z-value-based partition join to implement

them. In [13], the authors use Voronoi diagram-

based partitioning method that exploits pruning ru-

les for distance filtering, and hence reduces both the

shuffling and computational costs. In [14], methods

for accelerating the KNN join processing have been

also proposed. Recently, in [15], a novel method for

classifying multidimensional data using a KNN join

algorithm in the MapReduce framework is propo-

sed.

- Top-K closest pair problem (where just one data-

set is involved) [45], this problem is studied with

Euclidean distance using MapReduce.

- Similarity Join query for high-dimensional data

using MapReduce has been also studied. One of the

most representative work is [16], where a partition-

based similarity join for MapReduce is proposed

(called MRSimJoin), based on the QuickJoin algo-

rithm [46].

- Multi-Way Spatial Join query. In [47], the problem

of processing multi-way spatial joins on MapRe-

duce platform is investigated. The authors study

two common spatial predicates, overlap and range,

and discuss how the join queries involving both pre-

dicates are processed. The most important contri-

bution of this paper is a Controlled-Replicate frame-

work, and how it is carefully engineered to minimize

the communication among cluster nodes.

- Trajectory query. In [48], a new distributed R-

tree index, called the Distributed Trajectory R-tree

(DTR-tree), in Apache Spark has been developed,

and it is used to solve the problem of a distributed

trajectory query search with activities.

As apparent from the discussion, multiple efforts

addressing various aspects of spatial query processing

using MapReduce have appeared during last years. Ho-

wever, our work is complementary to these, in the sense

that we have implemented new approaches and impro-

vements to solve DBJQs (i.e. KCPQ and εDJQ) for

spatial big data.
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2.3 Spatial queries in SpatialHadoop

SpatialHadoop is equipped with a several spatial ope-

rations, including range query, KNN and spatial join

[23], and other fundamental computational geometry

algorithms as polygon union, skyline, convex hull, fart-

hest pair, and closest pair [49]. In [50] a scalable and

efficient framework for skyline query processing that

operates on top of SpatialHadoop is presented, and it

can be parameterized by individual techniques related

to filtering of candidate points as well as merging of

local skyline sets. Then, the authors introduce two no-

vel algorithms that follow the pattern of the framework

and boost the performance of skyline query processing.

Recently, a first parallel KCPQ algorithm in MapRe-

duce on big spatial datasets, adopting the plane-sweep

technique, was proposed in [1]. The MapReduce algo-

rithm was also improved with the computation of an

upper bound of the distance value of the K-th closest

pair from sampled data as a global preprocessing phase.

The efficient processing of DBJQs over large-scale

spatial datasets using SpatialHadoop is a challenging

task. The improvements of the KCPQ MapReduce al-

gorithm [1] and a new MapReduce algorithm for εDJQ

are the main targets of this work and, as we will de-

monstrate, our approaches accelerate the response time

by using plane-sweep, specific spatial partitioning, and

determining the needed number of computing nodes de-

pending on the parallel tasks.

3 Preliminaries and Background

We now introduce the details of the semantics of the

studied queries, along with the corresponding notation

and processing paradigms. We start with the definiti-

ons and characteristics of both DBJQs and then, we

review SpatialHadoop, the scalable and distributed fra-

mework for managing spatial data and the steps for

spatial query processing.

3.1 Distance-Based Join Queries

A DBJQ is characterized as a join between two data-

sets based on a distance function, reporting a set of

pairs according to a given constraint (e.g. a number of

desired pairs, a distance threshold, etc.) over two da-

tasets. The most representative and known DBJQs are

the K Closest Pairs Query (KCPQ) and the ε Distance

Join Query (εDJQ).

3.1.1 K Closest Pairs Query

The KCPQ discovers the K pairs of data formed from

the elements of two datasets having the K smallest re-

spective distances between them (i.e. it reports only the

top K pairs). It is one of the most important spatial

operations, where two spatial datasets and a distance

function are involved. It is considered a distance-based

join query because it involves two different spatial data-

sets and uses distance functions to measure the degree

of nearness between pairs of spatial objects. The formal

definition of the KCPQ for point datasets (the exten-

sion of this definition to other, more complex spatial

objects – e.g. line-segments, objects with extents, etc.

– is straightforward) is the following:

Definition 1 (K Closest Pairs Query, KCPQ)

Let P = {p0, p1, · · · , pn−1} and Q = {q0, q1, · · · , qm−1}
be two set of points in Ed, and a number K ∈ N+.

Then, the result of the K Closest Pairs Query (KCPQ)

is an ordered collection KCPQ(P,Q,K) ⊆ P×Q con-

taining K different pairs of points from P×Q, ordered

by distance, with the K smallest distances between all

possible pairs of points:

KCPQ(P,Q,K) = {(p1, q1), (p2, q2), · · · , (pK , qK)} ∈
(P × Q), such that for any (p, q) ∈ P × Q \
KCPQ(P,Q,K) we have dist(p1, q1) ≤ dist(p2, q2) ≤
· · · ≤ dist(pK , qK) ≤ dist(p, q).

Note that if multiple pairs of points have the same

K-th distance value, more than one set of K different

pairs of points are suitable as a result of the query. It is

straightforward to extend the presented algorithms so

as to discover all such sets of pairs.

This spatial query has been actively studied in cen-

tralized environments, regardless whether both spatial

datasets are indexed or not [8,9,11,51–55]. In this con-

text, recently, when the two datasets are not indexed

and stored in main-memory, a new plane-sweep algo-

rithm for KCPQ, called Reverse Run, was proposed in

[9]. Two improvements on the Classic plane-sweep algo-

rithm for this spatial query were presented as well. Ex-

perimentally, the Reverse Run plane-sweep algorithm

proved to be faster since it minimized the number of Eu-

clidean distance computations. However, datasets that

reside in a parallel and distributed framework have not

attracted similar attention and this is the main ob-

jective of this work.

3.1.2 εDistance Join Query

The ε Distance Join Query (εDJQ) reports all the pos-

sible pairs of spatial objects from two different spatial

objects datasets, having a distance smaller than a dis-

tance threshold ε [11]. Note that, if ε = 0, then we have
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the condition of spatial overlap join, which retrieves all

different intersecting spatial object pairs from two dis-

tinct spatial datasets [2]. This query is also related to

the similarity join [16], where the problem of deciding

if two objects are similar is reduced to the problem of

determining if two high-dimensional points are within

a certain distance threshold ε of each other. The formal

definition of εDJQ for point datasets is the following:

Definition 2 (ε Distance Join Query, εDJQ)

Let P = {p0, p1, · · · , pn−1} and Q = {q0, q1, · · · , qm−1}
be two set of points in Ed, and a distance threshold ε

∈ R≥0. Then, the result of the ε Distance Join Query

(εDJQ) is the set εDJQ(P,Q, ε) ⊆ P × Q containing

all the possible different pairs of points from P×Q that

have a distance of each other smaller than, or equal to

ε:

εDJQ(P,Q, ε) = {(pi, qj) ∈ P ×Q : dist(pi, qj) ≤ ε}

The εDJQ can be considered as an extension of

the KCPQ, where the distance threshold of the pairs

is known beforehand and the processing strategy (e.g.

plane-sweep technique) is the same as in the KCPQ for

generating the candidate pairs of the final result. On the

other hand, in the case of the KCPQ the distances of

the K closest pairs are not known beforehand and they

are updated during the processing of the algorithm.

3.2 SpatialHadoop

SpatialHadoop [23] is a full-fledged MapReduce fra-

mework with native support for spatial data. Note

that, MapReduce [17] is a scalable, flexible and fault-

tolerant programming framework for distributed large-

scale data analysis. A task to be performed using the

MapReduce framework has to be specified as two pha-

ses: the map phase, which is specified by a map function

that takes input (typically from Hadoop Distributed

File System, HDFS, files), possibly performs some com-

putations on this, and distributes it to worker nodes;

and the reduce phase that processes these results as

specified by a reduce function. An important aspect

of MapReduce is that both the input and the out-

put of the map step are represented as key-value pairs,

and that pairs with same key will be processed as one

group by the reducer : map : (k1, v1)→ list(k2, v2) and

reduce : k2, list(v2) → list(v3). Additionally, a combi-

ner function can be used to run on the output of map

phase and perform some filtering or aggregation to re-

duce the number of keys passed to the reducer.

SpatialHadoop [23] is a comprehensive extension to

Hadoop that injects spatial data awareness in each Ha-

doop layer, namely, the language, storage, MapReduce,

and operations layers. In the Language layer, Spatial-

Hadoop adds a simple and expressive high level lan-

guage for spatial data types and operations. In the

Storage layer, SpatialHadoop adapts traditional spa-

tial index structures as Grid, R-tree, R+-tree, Quad-

tree, etc. to form a two-level spatial index [56]. Spa-

tialHadoop enriches the MapReduce layer by two new

components, SpatialFileSplitter and SpatialRecordRea-

der for efficient and scalable spatial data processing.

At the Operations layer, SpatialHadoop is also equip-

ped with a several spatial operations, including range

query, kNN query and spatial join. Other computati-

onal geometry algorithms (e.g. polygon union, skyline,

convex hull, farthest pair and closest pair) are also im-

plemented following a similar approach [49]. Finally, we

must emphasize that our contribution for DBJQs is lo-

cated in the Operations and MapReduce layers.

In general, a spatial query processing in SpatialHa-

doop consists of four steps [23,1]:

1. Preprocessing, where data are partitioned accor-

ding to a specific spatial partitioning technique (e.g.

Grid, STR, Quadtree, Hilbert, etc.) [56], generating

a set of partitions, called cells. Each HDFS block

corresponds to a cell, and the HDFS blocks in each

file are globally indexed, generating a spatially in-

dexed file. In the partitioning phase, spatial data lo-

cality is obeyed, since spatially nearby objects are

assigned to the same cell [23].

2. Pruning, when the query is issued, the master

node examines all partitions and prunes by a fil-

ter function those ones that are guaranteed not

to include any possible result of the spatial query.

Note that, SpatialHadoop enriches traditional Ha-

doop systems in this step with the SpatialFileSplit-

ter component, that is, an extended splitter that ex-

ploits the global index(es) on input file(s) to prune

easily file cells/partitions not contributing to the

answer. The two steps (Preprocessing and Pruning)

can be seen in [1] and in the Figure 2.

3. Local Spatial Query Processing, where local spa-

tial query processing is performed on each non-

pruned partition in parallel on different machines

(map tasks). Note that SpatialHadoop also enriches

traditional Hadoop systems in this step by the Spati-

alRecordReader, which reads a split originating from

the spatially indexed input file(s) and exploits local

index(es) to efficiently processes the spatial queries.

In this step, if we do not want to use the Spatial-

RecordReader component (for example, to use the

plane-sweep technique) and exploit the advantages

of the local index(es), we just use a RecordReader

that extracts records as key-value pairs which are
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passed to the map function. We can see this option

in Figure 1, between SSR and map function.

4. Global Processing, where the results are collected

from all machines in the previous step and the final

result of the concerned spatial query is computed

(reduce tasks). A combine function may be applied

in order to decrease the volume of data that is sent

from the map task. The reduce function is omitted

when the results from the map phase are final. See

Figure 1 to observe these last two steps, MapReduce

query processing in SpatialHadoop.

Next we are going to follow this query processing

scheme to include DBJQs into SpatialHadoop.

Fig. 1 MapReduce query processing in SpatialHadoop.

4 DBJQs Algorithms in SpatialHadoop

In this section, we will state our algorithmic approaches

for DBJQs algorithms on top of SpatialHadoop. First,

we present the KCPQ MapReduce algorithm using the

plane-sweep technique for each map task and next, we

will extend such MapReduce algorithm to design the

distributed algorithm for εDJQ in SpatialHadoop.

4.1 KCPQ Algorithms in SpatialHadoop

In this subsection, we describe our approach to KCPQ

algorithms on top of SpatialHadoop. This can be des-

cribed as a generic top-K MapReduce job that takes

one of the specific KCPQ algorithms as a parameter.

In general, our solution scheme is similar to how the

distributed join algorithm [23] is performed in Spatial-

Hadoop, where combinations of cells from each dataset

are the input for each map task, when the spatial query

is performed. Then the reducer emits the top-K results

from all mapper outputs. In particular, our approach

makes use of plane-sweep KCPQ algorithms for main-

memory resident datasets [9].

The plane-sweep technique [57] has been success-

fully used in spatial databases to report the result of

KCPQ for two indexed datasets [8,51,53,58], whereas

it has been improved recently for non-indexed sets of

points [9,11]. In this paper we will use the algorithms

presented in [9,11] and their improvements to adapt

them to MapReduce versions in SpatialHadoop. When

the partitions are locally indexed by R-trees, we will

adapt algorithms proposed in [8] to KCPQ to the dis-

tributed join algorithm [23] to compare them with our

KCPQ MapReduce algorithms based on plane-sweep

technique.

In [9,11], the Classic Plane-Sweep for KCPQ [8,

53] was reviewed and two new improvements were also

presented to reduce the search space, when the point

datasets reside in main memory. In general, if we as-

sume that the two point sets are P and Q, the Clas-

sic PS algorithm consists of the two following steps:

(1) sorting the entries of the two point sets, based on

the coordinates of one of the axes (e.g. X) in increa-

sing order, and (2) combining one point (reference) of

one set with all the points of the other set satisfying

point.x − reference.x ≤ δ (point.x − reference.x is

called dx distance function on the X-axis), where δ is

the distance of the K-th closest pair found so far, and

choosing those pairs with point distance (dist) smal-

ler than δ. The algorithm chooses the reference point

from P or Q, following the order on the sweeping axis.

We notice that the search space is only restricted to

the closest points with respect to the reference point,

according to the current distance threshold (δ) on the

sweeping axis, and this is called sliding strip. No du-

plicated pairs are obtained, since the points are always

checked over sorted sets.

In [9,11], a new plane-sweep algorithm for KCPQ

was proposed for minimizing the number of distance

computations. It is called Reverse Run Plane-Sweep al-

gorithm and is based on the concept of run, which is

a continuous sequence of points of the same set that

doesn’t contain any point from the other set. Each point

used as a reference forms a run with other subsequent

points of the same set. During the algorithm proces-

sing, for each set, we keep a left limit, which is updated

(moved to the right) every time that the algorithm con-

cludes that it is only necessary to compare with points

of this set that reside on the right of this limit. Each

point of the active run (reference point) is compared

with each point of the other set (comparison point) that

is on the left of the first point of the active run, until the

left limit of the other set is reached. And the reference

points (and their runs) are processed in ascending X-

order (the sets are X-sorted before the application of

the algorithm). Each point of the active run is compa-

red with the points of the other set (comparison points)

in the opposite or reverse order (descending X-order).
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Moreover, for each point of the active run being com-

pared with a current comparison point, there are two

cases: (1) if the distance between this pair of points in

the sweeping axis (dx) is larger than or equal to δ, then

there is no need to calculate the distance (dist) of the

pair; thus, we avoid this distance computation, and (2)

if the distance (dist) between this pair of points (refe-

rence, comparison) is smaller than the δ distance value,

then the pair will be considered as a candidate for the

result. For more details of the algorithm see [9,11].

The two improvements of the plane-sweep technique

for KCPQs presented in [9,11] for reducing the search

space, called Sliding Window and Sliding Semi-Circle,

can be applied both in Classic and Reverse Run algo-

rithms. The general idea of Sliding Window consists in

restricting the search space to the closest points inside

the window with width δ and a height 2 ∗ δ (i.e. [0, δ]

in the X-axis and [−δ, δ] in the Y -axis, from the refe-

rence point). The core idea of the Sliding Semi-Circle

improvement consists in reducing the search space even

more; by select only those points inside the semi-circle

(or half-circle) centered in the reference point with ra-

dius δ.

Processing the KCPQ in MapReduce [1] adopts the

top-K MapReduce methodology. The basic idea is to

partition P and Q by some method (e.g., Grid) into n

and m cells of points and generate n×m possible pairs

of cells to possibly combine. Then, every suitable pair

of cells (one from P and one from Q) is sent as the input

for the map phase. Each mapper reads the points from

the pair of cells and performs a plane-sweep (Classic or

Reverse Run) KCPQ algorithm (PSKCPQ) between

the points inside that pair of cells. That is, it finds the

K closest pairs between points in the local cell from P
and in the local cell from Q using a plane-sweep KCPQ

algorithm (PSKCPQ). To this end, each mapper sorts

the points inside the pair of cells from P and Q in one

axis (e.g., X axis in ascending order) and then applies

a plane-sweep KCPQ algorithm. The results from all

mappers are sent to a single reducer that will in turn

find the global top-K results of all the mappers. Finally,

the results are written into HDFS files, storing only the

point coordinates and the distance between them.

In Algorithm 1 we can see our proposed solution

for KCPQ in SpatialHadoop which consists of a sin-

gle MapReduce job. The map function aims to find the

K closest pairs between the local pair of cells from P
and Q with a particular plane-sweep (Classic or Re-

verse Run) KCPQ algorithm (PSKCPQ). KMaxHeap

is a max binary heap [59] used to keep record of local

selected top-K closest pairs that will be processed by

the reduce function. The output of the map function is

in the form of a set of DistanceAndPair elements (cal-

Algorithm 1 KCPQ MapReduce Algorithm

1: function MAP(P: set of points, Q: set of points, K: num-
ber of pairs)

2: SortX(P)
3: SortX(Q)
4: KMaxHeap← PSKCPQ(P,Q,K)
5: if KMaxHeap is not empty then
6: for all DistanceAndPair ∈ KMaxHeap do
7: output(null, DistanceAndPair)
8: end for
9: end if

10: end function

11: function COMBINE, REDUCE(null, D: set of Distan-
ceAndPair, K: number of pairs)

12: Initialize(CandidateKMaxHeap, K)
13: for all DistanceAndPair ∈ D do
14: Insert(CandidateKMaxHeap, DistanceAndPair)
15: end for
16: for all candidate ∈ CandidateKMaxHeap do
17: output(null, candidate)
18: end for
19: end function

led D in Algorithm 1), i.e. pairs of points from P and Q
and their distances. As in every other top-K pattern,

the reduce function can be used in the combiner to mi-

nimize the shuffle phase. The reduce function aims to

examine the candidate DistanceAndPair elements and

return the final set of the K closest pairs. It takes as

input a set of DistanceAndPair elements from every

mapper and the number of pairs. It also employs a max

binary heap, called CandidateKMaxHeap, to calculate

the final result. Each DistanceAndPair element is in-

serted into the heap if its distance value is less than the

distance value of the heap root. Otherwise, that pair of
points is discarded. Finally, candidate pairs which have

been stored in the heap are returned as the final result

and stored in the output file.

To compare the plane-sweep-based KCPQ MapRe-

duce algorithms, an implementation using the local in-

dices provided by SpatialHadoop similarly to distribu-

ted join algorithm [23] has been made. When a spa-

tial dataset is partitioned using a partitioning techni-

que (e.g. Grid, Str, etc.), SpatialHadoop generates only

a global index of the data. However, if a file is parti-

tioned using Str or Str+ there is the option to gene-

rate a local index in the form of one R-tree for each of

the partitions/cells that are part of the previous glo-

bal index. The new distributed KCPQ algorithm fol-

lows the same scheme presented in Algorithm 1, consis-

ting of a single MapReduce job whose only difference is

the processing performed in the map function, keeping

the reduce function unmodified. In this case, the map

function applies a plane-sweep algorithm over the no-

des of the R-trees as described in [8]. This algorithm
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consists in traversing both R-trees in a best-first or-

der, keeping a global min binary heap [59] prioritized

by the minimum distance between the considered pairs

of MBRs. When dealing with leaf nodes, a plane-sweep

algorithm is applied to the elements that are contained

on them, whereas the δ value is updated appropriately.

In the case of internal nodes, plane-sweep is also applied

for processing two internal nodes; the MBR pairs with

minimum distance greater than δ are pruned. We have

chosen the best-first traversal order for the combination

of the two R-trees, since it is the fastest algorithm for

processing of KCPQs according to [8].

4.2 εDJQ in SpatialHadoop

Processing the εDJQ in MapReduce adopts the map

phase of the join MapReduce methodology. The basic

idea is to have P and Q partitioned by some method

(e.g., Grid) into two set of cells, CP and CQ, with n and

m cells of points, respectively. Then, every possible pair

of cells (one from CP and one from CQ) is sent as input

for the filter phase. The CELLSFILTER function takes

as input, combinations of cells in which the input set of

points are partitioned and a distance threshold ε, and

it prunes pairs of cells which have minimum distances

larger than ε. Using SpatialHadoop built-in function

MinDistance we can calculate the minimum distance

between two cells, i.e. this function computes the mini-

mum distance between the two MBRs, Minimum Boun-

ding Rectangles, of the two cells (each of the two MBRs

covers the points of a different cell). That is, if we find

a pair of cells with points which cannot have a distance

value smaller than ε, we can prune this pair.

On the map phase each mapper reads the points

of a pair of cells and performs a plane-sweep (Clas-

sic or Reverse Run) εDJQ algorithm (PSεDJQ) bet-

ween the points inside that pair of cells from CP and

CQ. That is, it computes the εDJQ between points in

the local cell of CP and in the local cell of CQ using

a plane-sweep εDJQ algorithm (variation of the plane-

sweep-based KCPQ algorithm [11]). To this end, each

mapper sorts the points inside the pair of cells from CP
and CQ in one axis (e.g., X axis in ascending order)

and then applies a particular plane-sweep (Classic or

Reverse Run) εDJQ algorithm (PSεDJQ). The results

from all mappers are just combined in the reduce phase

and written into HDFS files, storing only the pairs of

points with distance up to ε, as we can see in Algorithm

2.

In addition, we can use the local indices provided

by SpatialHadoop to obtain improvements in the per-

formance of the previous εDJQ MapReduce algorithm.

This new algorithm follows the same scheme of a single

Algorithm 2 εDJQ MapReduce Algorithm

1: function MAP(P: set of points, Q: set of points, ε: thres-
hold distance)

2: SortX(P)
3: SortX(Q)
4: Results ← PSεDJQ(P,Q, ε)
5: for all DistanceAndPair ∈ Results do
6: output(null,DistanceAndPair)
7: end for
8: end function

9: function CELLSFILTER(CP: set of cells, CQ: set of cells,
ε: threshold distance)

10: for all c ∈ CP do
11: for all d ∈ CQ do
12: minDistance←MinDistance(c, d)
13: if minDistance ≤ ε then
14: output(c, d)
15: end if
16: end for
17: end for
18: end function

MapReduce job whose only difference is the processing

that is realized in the map function, maintaining the

function CELLSFILTER without any modification. In

this case, we have locally indexed the data in each parti-

tion by R-tree structures that we can use to process the

query. The algorithm consists of performing a iterative

depth-first search over the R-trees (this is used for the

implementation of the distributed join algorithm [23]).

That is, for each pair of internal nodes, one from each

index, the minimum distance between their MBRs is

calculated; if it is larger than ε, then this pair is pru-

ned. Otherwise, the children of the nodes will be chec-

ked in the next step following a depth-first order. When

the leaf nodes are reached, the same plane-sweep algo-

rithm as the one without local indices is applied. We

have chosen the iterative depth-first traversal order for

the combination of two R-trees and not the best-first

one, because, if ε is large enough, the global min binary

heap can grow very quickly and exceed the available

main memory and, thus management of secondary me-

mory is needed and the response time of the algorithm

execution will be notably extended.

5 Improvements for KCPQ in SpatialHadoop

It can be clearly seen that the performance of the propo-

sed solution of the KCPQ MapReduce algorithm (Al-

gorithm 1) will depend on the number of cells in which

the two sets of points are partitioned. That is, if the

set of points P is partitioned into n cells (the set CP)

and the set of points Q is partitioned in m cells (the

set CQ), then we obtain n × m combinations of cells

or map tasks. On the other hand, we know that plane-
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sweep-based KCPQ algorithms use a pruning distance

value, which is the distance value of the K-th closest

pair found so far, to discard those combinations of pairs

of points that are not necessary to consider as a can-

didate of the final result. As suggested in [1], we need

to find in advance an upper bound distance of the dis-

tance value of the K-th closest pair of the joined da-

tasets, called β. The computation of β can be carried

out (a) by sampling globally both big datasets and exe-

cuting a PSKCPQ algorithm over the two samples, or

(b) by appropriately selecting a specific pair of cells to

which the two big datasets are partitioned and either

(b1) by sampling locally the cells of this pair and exe-

cuting a PSKCPQ algorithm over the two samples, or

(b2) by applying an approximate variation of a plane-

sweep KCPQ algorithm over the entries of the cells of

this pair. In the following subsections we will see all

these methods.

5.1 Computing β by Global Sampling

The first method of computing β can be seen in Algo-

rithm 3 (computing β by global sampling algorithm),

where we take a small sample from both sets of points

(P and Q) and calculate the K closest pairs using a

plane-sweep-based KCPQ algorithm (PSKCPQ [11])

that is applied locally. Then, we set β equal to the dis-

tance of the K-th closest pair of the result and use this

distance value as input for mappers. This β value gua-

rantees that there will be at least K closest pairs if

we prune pairs of points with larger distances in every

mapper. Figure 2 shows the general schema of compu-

ting β (upper bound of the distance of the K-th closest

pair) using global sampling, which is used to filter only

pairs of cells/partitions with minimum distance of their

MBRs smaller than or equal to β.

Furthermore, we can use this β value in combination

with the features of the global indexing that Spatial-

Hadoop provides to further enhance the pruning phase.

Before the map phase begins, we exploit the global in-

dices to prune cells that cannot contribute to the final

result. CELLSFILTER takes as input each combina-

tion of pairs of cells in which the input set of points

are partitioned. Using SpatialHadoop built-in function

MinDistance, we can calculate the minimum distance

between two MBRs of the cells. That is, if we find a

pair of cells with points which cannot have a distance

value smaller than or equal to β, we can prune this com-

bination of pairs of cells. Using different percentages of

samples of the input datasets in Algorithm 3, we have

obtained results with a significant reduction of execu-

tion time as explained later in the section of experimen-

tation. Note that to obtain a sample from each dataset,

Algorithm 3 Computing β by global sampling Alg.

1: function CALCULATEβ(P: set of points, Q: set of
points, ρ: global sampling ratio, K: number of pairs)

2: SampledP ← SampleMR(P, ρ)
3: SampledQ← SampleMR(Q, ρ)
4: SortX(SampledP )
5: SortX(SampledQ)
6: KMaxHeap← PSKCPQ(SampledP, SampledQ,K)
7: if KMaxHeap is full then
8: βDistanceAndPair ← pop(KMaxHeap)
9: β ← βDistanceAndPair.Distance

10: output(β)
11: else
12: output(∞)
13: end if
14: end function

15: function CELLSFILTER(CP: set of cells, CQ: set of cells,
β: upper bound distance)

16: for all c ∈ CP do
17: for all d ∈ CQ do
18: minDistance←MinDistance(c, d)
19: if minDistance ≤ β then
20: output(c, d)
21: end if
22: end for
23: end for
24: end function

Fig. 2 Schema for computing β by global sampling.

we use a SpatialHadoop built-in MapReduce function,

called SampleMR, which extracts a percentage of sam-

ples (sampling ratio ρ in %, 0.0 < ρ ≤ 100.0) following

a sampling Without Replacement (WoR) pattern [60].

5.2 Computing β by Local Processing

Analyzing the above method for the β calculation, it

is clearly observed that the greatest time overhead

occurs in the execution of the two calls to the Sam-

pleMR function, since they are complete MapReduce

jobs. Therefore, to try to improve the previous algo-



Efficient Large-scale Distance-Based Join Queries in SpatialHadoop 11

rithm and avoid to call the SampleMR function, we

are looking to take advantage of the information provi-

ded by the indices and other features of SpatialHadoop,

and, thus, to make faster the β computation.

Global indices in SpatialHadoop provide the MBR

of index cells, as well as the number of elements contai-

ned in them, so that we can get an idea of the distri-

bution of data into each cell. To simplify the sampling

process we will find a suitable pair of cells, that by their

characteristics, may contain K closest pairs with a β

value as small as possible. Then we can sample locally

those cells without having to execute a MapReduce job

(as SampleMR).

Since we are looking for the K closest pairs, the se-

arch for the most suitable pair of cells can be reduced

to look for the pair of cells with an MBR containing

them that has the highest density of points and whose

intersection is the largest. The larger the area of in-

tersection of two cells, the larger the probability that

points in one set are near points in the other set. If the

density is also higher, the distances between points are

smaller and therefore we will be able to obtain better

candidate pairs of cells. Let c ∈ CP and d ∈ CQ be a

pair of cells from two global indices generated in Spati-

alHadoop from P and Q, |c| is the number of elements

inside cell c (cardinality of c), Area(c ∪ d) is the area

of the MBR that covers both MBRs of cells c and d

(union MBR), and Area(c ∩ d) is the area of the in-

tersection MBR of both MBRs of cells c and d. Then,

by PDDAI(c,d) we denote a metric that expresses the

suitability, based on data density and area intersection,

of these two cells to allocate K closest pairs with as

small distances as possible (PDDAI is the acronym of

Pair Data Density Area Intersection).

PDDAI(c, d) =
|c|+ |d|

Area(c ∪ d)
× (1 +Area(c ∩ d))

We will select the pair of cells with the maximum va-

lue of this metric, so that we will have the pair with

the larger combination of density of points and area of

intersection. In the case of pairs of cells that do not

intersect only the data density is taken into count.

5.2.1 Computing β by Local Sampling

The new method of computing β can be seen in

Algorithm 4 (computing β by local sampling algo-

rithm), which follows a scheme similar to that of glo-

bal sampling. There is a new step, the SELECTCELLS

function, in which the pair of cells (c and d) having the

highest value for the PDDAI(c,d) metric is obtained.

To do this, the cells of the two global indices are joined

by calculating the PDDAI metric for each combination.

Then the candidate pair of cells is sampled by recalcu-

lating the sampling ratio ρ, since we are dealing with a

subset of elements and we want to obtain the same num-

ber of elements as for the case of global sampling. Once

the samples are obtained locally and verified that they

reside in memory, a local plane-sweep-based KCPQ al-

gorithm (PSKCPQ) is applied to obtain β. Finally, this

value is used in the CELLSFILTER function just as in

Algorithm 3.

Algorithm 4 Computing β by local sampling Alg.

1: function SELECTCELLS(CP: set of cells, CQ: set of
cells)

2: maxDensity ← 0
3: bestPair ← ∅
4: for all c ∈ CP do
5: for all d ∈ CQ do
6: pairDensity ← PDDAI(c, d)
7: if pairDensity > maxDensity then
8: maxDensity ← pairDensity
9: bestPair ← (c, d)

10: end if
11: end for
12: end for
13: output(bestPair)
14: end function

15: function CALCULATEβ(P: set of points, Q: set of
points, ρ: global sampling ratio, K: number of pairs)

16: localPρ← CalculateLocalRatio(|P|, ρ)
17: SampledP ← Sampling(P, localPρ)
18: localQρ← CalculateLocalRatio(|Q|, ρ)
19: SampledQ← Sampling(Q, localQρ)
20: SortX(SampledP )
21: SortX(SampledQ)
22: KMaxHeap← PSKCPQ(SampledP, SampledQ,K)
23: if KMaxHeap is full then
24: βDistanceAndPair ← pop(KMaxHeap)
25: β ← βDistanceAndPair.Distance
26: output(β)
27: else
28: output(∞)
29: end if
30: end function

31: function CELLSFILTER(CP: set of cells, CQ: set of cells,
β: upper bound distance)

32: for all c ∈ CP do
33: for all d ∈ CQ do
34: minDistance←MinDistance(c, d)
35: if minDistance ≤ β then
36: output(c, d)
37: end if
38: end for
39: end for
40: end function
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Fig. 3 Schema for computing β. Global sampling vs. local sampling (with Grid partitioning technique).

5.2.2 Computing β by Local Approximate Methods

Several approximation techniques (ε-approximate, α-

allowance, N -consider and Time-consider) have been

proposed for distance-based queries using R-trees in

[61]. These techniques can be also used to obtain

approximate solutions with a faster execution time,

trying to find a balance between computational cost

and accuracy of the result. N -consider is an approxi-

mate technique that depends on the quantity of points

to be combined and Time-consider depends only on

the time for query processing. On the other hand, ε-

approximate and α-allowance are distance-based ap-

proximate techniques, and can be used for adjustment

of quality of the result (KCPQ). For this reason, we

will consider them as candidates for application in our

problem. Since ε ≥ 0 values are unlimited, according

to the conclusions of [61,10], it is not easy to adjust

the β value (upper bound of the distance value of K-th
closest pair). For this reason, here we will choose the

α-allowance technique, where α is a bounded positive

real number (0 ≤ α ≤ 1). With this approximate met-

hod we can easily adjust the balance between execution

time of the KCPQ algorithm and the accuracy of the

final result. Notice that this α-allowance technique can

be easily transformed to the ε-approximate technique

with α = 1/(1 + ε) [10].

According to [61], we can apply the α-allowance ap-

proximate technique in plane-sweep-based KCPQ algo-

rithms (PSKCPQ) [9,11] and the three sliding variants

(Strip, Window and Semi-Circle) to adjust the final re-

sult. It can be carried out by multiplying δ by (1− α),

giving rise to αPSKCPQ, since it is a distance-based ap-

proximate technique. In this case, when α = 0 we will

get the normal execution of the plane-sweep PSKCPQ

algorithm, when α = 1 we will invalidate the δ value (it

will be always 0) and no pair of points will be selected

for the result. Finally, when 0 < α < 1, we can adjust

the sizes of the strip, the window and the semi-circle

over the sweeping axis, since all of them depend on the

δ value. Therefore, the smaller α value, the larger the

upper bound of the δ value (i.e. more points will be

considered and fewer points will be discarded); on the

other hand, the larger α value, the smaller the upper

bound of the δ value (i.e. fewer points will be considered

and more points will be discarded).

The schema to compute β by using the α-

allowance approximate technique with a plane-sweep-

based KCPQ algorithm (αPSKCPQ) is very similar to

the schema of computing β by local sampling illustra-

ted in the right diagram of Figure 3. The difference is

essentially that sampling is not used in the selected pair

of cells and all points from the two cells are combined

by the αPSKCPQ algorithm, obtaining a β value in a

faster way if the α value is large enough.

The adaptation of the previous Algorithm 4 to local

approximate is straightforward. The CALCULATEβ
function no longer accepts ρ as parameter, since we do

not perform a sampling of the input datasets, but for

each set we get a number of elements that allow us to

work with in main memory. Furthermore we have a new

α parameter and the function PSKCPQ is replaced by

the new αPSKCPQ function that takes this new para-

meter for the adjustment of the approximate technique.

The next steps of the algorithm remain unmodified.

6 Performance Evaluation

This section provides the results of an extensive ex-

perimental study aiming at measuring and evaluating

the efficiency of the algorithms proposed in Section 5.

In particular, Subsection 6.1 describes the experimen-

tal settings. Subsection 6.2 shows experimentally the

advantages of using the proposed techniques to com-

pute β and use this upper bound distance for KCPQ

in SpatialHadoop. Subsection 6.3 compares different
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plane-sweep techniques and the use of local indices.

Subsection 6.4 shows the effect of using different spa-

tial partitioning techniques included in SpatialHadoop.

Subsections 6.5 and 6.6 examine the effect of incre-

menting the K values for KCPQ and the ε values for

εDJQ, respectively. Subsection 6.7 shows the scalability

of the proposed DBJQ MapReduce algorithms, varying

the number of computing nodes. Finally, in Subsection

6.8 a summary from the experimental results is repor-

ted.

6.1 Experimental Setup

For the experimental evaluation, we have used real 2d

point and synthetic (clustered) datasets to test our

DBJQ MapReduce algorithms in SpatialHadoop. For

real-world datasets we have used three datasets from

OpenStreetMap1: BUILDINGS which contains 115M

points (25 GB) of buildings (see Figure 5), LAKES

which contains 8.4M points (8.6 GB) of water areas,

and PARKS which contains 10M points (9.3 GB) of

parks and green areas [23].

For synthetic datasets, we have created cluste-

red data, since data in real-world are often clus-

tered or correlated; in particular, real spatial data

may follow a distribution similar to the clustered

one. We have generated several files of different si-

zes using our own generator of clustered distributi-

ons, implemented in SpatialHadoop and with a simi-

lar format to the real data. The sizes of the data-

sets are 25M (5.4 GB), 50M (10.8 GB), 75M (16.2

GB), 100M (21.6 GB) and 125M points (27 GB),

with 2500 clusters in each dataset (uniformly distribu-

ted in the range [(-179.7582155, -89.96783429999999)

- (179.84404100000003, 82.51129005000003)]), which is

the MBR of BUILDINGS ), where for a set having N

points, N/2500 points were gathered around the center

of each cluster, according to Gaussian (normal) distri-

bution with mean 0.0 and standard deviation 0.2 as

in [49]. For example, for an artificial dataset of 100M

of points, we have 2500 clusters uniformly distributed,

and for each cluster we have generated 40000 points

according to Gaussian distribution with (mean = 0.0,

standard deviation = 0.2). In Figure 4, we can observe

a small area of a clustered dataset. We made 5 combina-

tions of synthetic datasets by combining two separate

instances of datasets, for each of the above 5 cardinali-

ties (i.e. 25MC1×25MC2, 50MC1×50MC2, 75MC1×
75MC2, 100MC1×100MC2 and 125MC1×125MC2).

Moreover, to experiment with the biggest real da-

taset (BUILDINGS, which contains 115M points) for

1 http://spatialhadoop.cs.umn.edu/datasets.html

Fig. 4 Synthetic dataset. Small area from a clustered data-
set.

DBJQ MapReduce algorithms, we have created a new

big quasi-real dataset from LAKES (8.4M), with a si-

milar quantity of points. The creation process is as fol-

lows: taking one point of LAKES, p, we generate 15 new

points gathered around p (i.e. the center of the cluster),

according to the Gaussian distribution described above,

resulting in a new quasi-real dataset, CLUS LAKES,

with around 126M of points (27.5 GB). This dataset

has the same shape as LAKES, but with more dense

areas along the world.

To study the performance DBJQ MapReduce algo-

rithms where two datasets are involved, we experimen-

ted using the above datasets and the most represen-

tative spatial partitioning techniques (Grid, Str, Quad-

tree and Hilbert) provided by SpatialHadoop, according

to [56]. In our case, STR is equivalent to STR+ because

we are working with points.

In Figures 5 and 6 (as an example) we show the

effect of the partitioning phase using the STR techni-
que [56] for PARKS and BUILDINGS, respectively. It

is evident that each cell contains points which are close

in space. If fact, all the partitioning methods respect

spatial locality and distribute the points of a dataset to

cells, considering (each method in a different way) spa-

tial locality of these points. Since, processing of a pair of

cells in a computing node during the map phase is only

done if the spatial distance between these cells is be-

low a threshold (avoiding unnecessary computations),

the MapReduce algorithms we study take advantage of

spatial locality.

To further study the spatial locality characteristics

of the different spatial partitioning techniques, in Table

1, for each such technique, we show the number of cells

generated by SpatialHadoop, the average of the number

of points per cell and the standard deviation, for all real

datasets. From this table, we can deduce that:

- The number of cells created by Quadtree partitio-

ning is larger than the other methods [56] and this
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Fig. 5 Real-world dataset. PARKS (10M records of parks)
with STR partitioning.

Fig. 6 Real-world dataset. BUILDINGS (115M records of
buildings) with STR partitioning.

has as a result a smaller average number of points

per cell.

- The standard deviation of the number of points per

cell of Quadtree partitioning is larger than STR

and Hilbert. This is explained by the fact that

Quadtree partitioning divides space regularly, al-

ong fixed lines (the middle axes of the current sub-

space): an overflown area (quadrant) that is divided

to four subquadrants may result to non-overflown

cells (subquadrants) with uneven numbers of points.

This area would probably be divided by STR or Hil-

bert to cells with borders not falling on the middle

axes of the current subspace, but with almost equal

numbers of points.

- The standard deviation of the number of points per

cell of Quadtree partitioning is smaller than Grid,

since Grid partitioning is not guided by data distri-

bution.

These observations, along with the principles gui-

ding the different partitioning techniques, lead to follo-

wing conclusions regarding trends of query processing

performance:

- The larger number of cells of Quadtree partitioning

permits finer pruning of pairs of cells based on the

distance between them (i.e. the pruning is more se-

lective).

# of Cells Grid Str Quadtree Hilbert

LAKES 6 3 7 3
PARKS 6 3 13 3

BUILDINGS 24 28 78 27
CLUS LAKES 36 45 115 42

Average Grid Str Quadtree Hilbert

LAKES 1403216 2806432 1202756 2806432
PARKS 2846245 3320619 766296 3320619

BUILDINGS 4783185 4099873 1471749 4251720
CLUS LAKES 3508040 2806432 1098169 3006891

Stdev Grid Str Quadtree Hilbert

LAKES 1774152 6917 1192916 596
PARKS 2974069 6345 1109663 30441

BUILDINGS 12393021 20098 1190434 21064
CLUS LAKES 8095904 14628 805211 16175

Table 1 Number of cells generated by SpatialHadoop,
average and standard deviation of the spatial partitioning
techniques for all real datasets.

- Quadtree, STR and Hilbert partitioning produce

cells that adapt to the data distribution, contrary

to Grid. This improves distance-based pruning of

pairs of cells.

- Note that, when processing a pair of cells, the pos-

sible pairs of points that can be formed from these

cells affects the necessary number of calculations du-

ring plane-sweep for this pair, but this is not the

only such factor. The current distance threshold and

the distribution of each dataset within the cell also

affect the number of calculations. Depending on the

distributions of the specific datasets involved, ha-

ving larger collections of cells with varying numbers

of points in Quadtree partitioning, or having smal-

ler collections of cells with similar numbers of points

in STR or Hilbert partitioning may favor load ba-

lancing between nodes.

To find out the actual effect of these trends on query

processing performance, we performed extensive expe-

rimentation.

All experiments were conducted on a cluster of 12

nodes on an OpenStack environment. Each node has 4

vCPU with 8GB of main memory running Linux ope-

rating systems and Hadoop 2.7.1.2.3. Each node has a

capacity of 3 vCores for MapReduce2 / YARN use.

The main performance measure that we have used in

our experiments has been the total execution time (i.e.

response time); this measurement is reported in seconds

(sec) and represents the overall CPU time spent, as well

as the I/O time needed by the execution of each DBJQ

MapReduce algorithm in SpatialHadoop.

Table 2 summarizes the configuration parameters

used in our experiments (sampling ratio values express

% of the whole datasets). Default parameters (in pa-

rentheses) are used unless otherwise mentioned.
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Parameter Values (default)

K 1, 10, (102), 103, 104, 105

ε (×10−4) 2.5, 5, 7.5, 12.5, (25), 50
α 0.0, 0.25, 0.50, (0.75), 0.85, 0.95

Sampling ratio, ρ 0.005, 0.01, 0.05, (0.1), 0.5, 1, 5, 10
% Dataset, γ 25, 50, 75, (100)

Number of nodes 1, 2, 4, 6, 8, 10, (12)
Type of partition Grid, (Str), Quadtree, Hilbert

PS algorithms Classic, (Reverse Run)
PS improvements Strip, Window, (Semi-Circle)

Table 2 Configuration parameters used in our experiments.

6.2 The effect of applying the β computation

Our first experiment is to examine the use of β dis-

tance value for KCPQ MapReduce algorithms in Spa-

tialHadoop (computed by global sampling (Algorithm

3), by local sampling (Algorithm 4) or by using the α-

allowance approximate technique) as the upper bound

of the distance value of the K-th closest pair.

As shown in Figure 7, upper chart, for large real

datasets LAKES×PARKS (Grid) and different sam-

pling ratios (ρ), the execution time is almost constant

for the three methods. This trend in the results is

mainly due to the fact that there is a trade-off bet-

ween the time of sampling and β calculation with the

one of the individual MapReduce tasks. With a larger

sampling ratio ρ, a better β is obtained, which in turn

improves the final PSKCPQ execution time. However,

increasing the value of ρ also increases the time to calcu-

late β. The use of β values accelerates the answer of the

KCPQ and using the method of local sampling reduces

the response time by around 22 times; whereas for the
global sampling, the reduction is around 4 times faster

than without β computation. This means that the use

of local sampling shortens notably the execution time

because by selecting suitably two cells for each dataset

and applying sampling over this pair of cells reduces the

computed β values and increases the power of pruning

when it is passed to the mappers. For instance, for a

sampling ratio (ρ) equal to 0.1%, the β values obtai-

ned by global sampling is 0.0144191, whereas by local

sampling it is 0.0054841.

In the lower chart of Figure 7, we see a different

behavior if we apply the STR partitioning technique

for the same large datasets. We observe that the use

of global sampling for the computation of β is more

expensive than without β values in the preprocessing

phase; this is due to the fact that with the dataset sizes

and the used partitioning technique (STR), the time

spent to perform the MapReduce sampling jobs (Sam-

pleMR) produces an overhead much higher than the

improvement in response time that can be obtained.

On the other hand, the use of local sampling to get the

KCPQ is faster than the other two alternatives, be-

cause the time required to perform the local sampling

is very small and the use of β improves the time of

the individual map tasks. In addition, a similar trend

is observed between global and local sampling that con-

firms that the improvement comes actually from redu-

cing as much as possible the time required to obtain

β. Finally, when comparing both charts, STR outper-

forms Grid due to the fact that STR is a partitioning

technique based on how the data is distributed; the-

refore, partitions/cells with more uniform numbers of

elements are produced, improving distance-based pru-

ning of pairs of cells and load balancing between nodes.

However, the Grid partitioning is based on a uniform

division of space without taking into account the data;

therefore, it produces some partitions with much more

elements than others. so that certain map tasks can

delay the total response time of the query. Note that,

we have chosen for this first experiment the GRID and

STR partitioning techniques, because they are used in

[23] for performance comparison of the spatial queries

and, GRID is the simplest (uniform grid of d
√
ne×d

√
ne

grid cells, where n is the desired number of partitions)

and STR corresponds to R-trees which are widely used

(this technique bulk loads a random sample of the da-

taset into an R-tree using the STR algorithm [62] and

the capacity of each node is set to bk/nc, where k is the

sample size).

Figure 8 illustrates the same type of experiment (re-

porting the total execution times), but now for the big-

gest real datasets BUILDINGS × PARKS. In the

upper chart we can see the same trend for Grid par-

titioning as in Figure 7, where the preprocessing phase

for computing β with local sampling is 2.7 times faster

than using global sampling (whereas without the pre-

processing phase needed around 21900 seconds and it

is not depicted in the figure). In the lower chart, STR

is faster than Grid (e.g. for ρ = 0.1% and global sam-

pling, STR is 2.7 times faster than Grid), and the use

of local sampling is also 80 seconds faster than global

sampling for computing β for the same reasons explai-

ned previously. Notice that without the computation of

β, around 2900 seconds to carry out the KCPQ were

needed (not depicted in the figure). Again, comparing

both charts, STR outperforms Grid according to the

same reasons exposed above.

From these experiments we can conclude that the

use of local sampling for computing β (Algorithm 4) ge-

nerates smaller β values (e.g. BUILDINGS×PARKS
(STR) and ρ = 0.1%, the β value obtained by glo-

bal sampling is 0.00211, whereas for local sampling it

is 0.00050) and then this is more effective than global
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Fig. 7 KCPQ cost without and with β computation (large
datasets).

sampling when it is passed to the mappers. Moreover,

the partitioning technique is an important factor to take

into account for this kind of distance-based join; in par-

ticular STR outperforms Grid in all cases. Finally, the

value of ρ (sampling ratio) is an important parameter to

be considered, and we have to find a trade-off between

the time of sampling and the value of β computation

(the smaller β value, the larger the time of sampling).

Therefore, we have chosen ρ = 0.1% as the value for

the remaining experiments, due to its excellent results.

Interesting results are also shown in Table 3,

where all possible pairs of cells/partitions are shown,

considering different percentages (γ) of the datasets

(BUILDINGS × CLUS LAKES (STR)) and, with

(GS ≡ using global sampling and LS ≡ using local
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Fig. 8 KCPQ cost without and with β computation (big
datasets).

sampling) or without using the computation of β for

K = 100 (for other K values the percentage of re-

duction was similar). We can extract three interesting

conclusions from this table: (1) with the use of β, we

reduce significantly the number possible pairs of cells to

be joined (e.g. using the complete datasets, only 120 out

of 1260 possible pairs of cells are considered), (2) the β

value returned by global or local sampling is not that

determinant for the reduction of the number of pairs

of cells to be combined (i.e. a smaller β value does not

imply the reduction of the number of considered pairs

of cells) as one can see in the two right columns; (3)

the percentage of datasets to be joined is related with

the number of considered pairs of cells when a β value

is applied for the STR partitioning technique (e.g. the
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75%, 50% and 25% of 120 are very close to 85, 55 and

32).

γ (%) Without β β GS β LS

25 120 32 32
50 315 55 55
75 672 85 84
100 1260 120 120

Table 3 Number of considered pairs of cells without or with
(global sampling (GS) or local sampling (LS)) β computation.

In Figure 9 we study the behavior of the KCPQ

MapReduce algorithm in SpatialHadoop with respect

to the total execution time, when β is computed lo-

cally from a suitable pair of cells by local sampling or

by using the α-allowance approximate technique for the

combination of the biggest datasets (real and artificial)

and by using two partitioning techniques (Grid and

STR). In the upper chart, one can see the trends for dif-

ferent sampling ratios (ρ). Again the STR partitioning

reduces significantly the response time for real datasets

(2.6 times faster when ρ = 0.1%) with respect to Grid,

but for the combination of synthetic data the reduction

is smaller (1.3 times faster when ρ = 0.1%); even for

ρ = 1.0%, ρ = 5.0% and ρ = 10.0% the execution times

are almost the same. Moreover, notice that when ρ is

larger than 0.5% the execution time with local sampling

is increased slightly, since the time needed to compute

β increases with the increment of the sampling ratio.

In the lower chart, one can see the effect of applying

the αPSKCPQ algorithm to the two selected cells for

computing β by using different α values (0.0, 0.25, 0.50,

0.75, 0.85 and 0.95) to report the results of KCPQ. The

response time is stable for all α values when the parti-

tioning technique is Grid (real and synthetic) and STR

(synthetic), but for BUILDINGS × CLUS LAKES

(STR) the reduction from α = 0.95 to α = 0.0 is around

580 sec. Taking into account this result, we can deduce

that the use of this approximate technique is useful for

computing β, using high values of α. Moreover, for this

case, the difference between α = 0.75, α = 0.85 and

α = 0.95 is very small. This behavior could be due to

the fact that at the beginning of the αPSKCPQ pro-

cessing, this algorithm gets quickly a small β value and

then it is executed very fast. Finally, if we compare both

charts of Figure 9, we can conclude that both techni-

ques are very suitable to compute β and get the result of

KCPQ in SpatialHadoop very fast, in particular when

ρ ∈ [0.1%, 1.0%] and α ∈ [0.75, 0.95].

Figure 10 shows the time spent in each phase that

processing of the KCPQ in SpatialHadoop is split,

when the three approaches to compute β are app-
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Fig. 9 KCPQ cost using local sampling and α-allowance ap-
proximate technique for β computation.

lied in the pruning step according to Figure 1. The

configuration for this experiment is BUILDINGS ×
CLUS LAKES, STR, ρ = 0.1, K = 100. The three

phases are: preprocessing, filtering and MapReduce. The

time spent in the preprocessing phase (STR) is the same

for the three bars (498 sec), whereas the times spent

for the filtering phase are different depending on the

technique (global sampling, local sampling or approxi-

mate) applied for computing β. By using the local sam-

pling, we get the smallest time spent (7 sec), next the

approximate (40 sec) and the largest execution time is

for global sampling (106 sec). When the filtering phase

is ended, a β value is passed to the next phase; the

smaller the β value, the faster the next phase (MapRe-

duce). With this in mind, the time spent in the last
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Fig. 10 KCPQ cost of different phases in the execution of
KCPQ MapReduce algorithm in SpatialHadoop.

phase for the three techniques are: global β = 578.498

sec (β = 0.00157), local β = 575.854 sec (β = 0.00062)

and approximate β = 559.254 sec (β = 0.00013).

6.3 Comparison of different plane-sweep algorithms

and the use of local indices

This experiment aims to find the combination of one of

the two different plane-sweep-based KCPQ algorithms

(Classic and Reverse Run) and an improvement (Sli-

ding Strip, Windows, or Semi-Circle) that has the best

performance. As we can see in Table 4, the total exe-

cution times obtained do not show significant impro-

vements between the different plane-sweep algorithms

and variants. This is due to various factors such as rea-

ding disk speed, network delays, the time for each indi-

vidual task, etc. As shown in this table, the difference

between them is not quite significant (mainly for large

datasets LAKES × PARKS (LxP)), the Semi-Circle

Reverse Run algorithm being the fastest in all cases,

and the Classic Strip the slowest variant (with the lar-

gest execution time). This is due to the fact that the

Reverse Run algorithm has been specifically designed to

reduce the number of distance computations [9,11]. For

this reason we have chosen the Semi-Circle Reverse Run

as the plane-sweep algorithm for all our experiments.

Finally, since our framework to perform DBJQs in

SpatialHadoop can utilize local indices (R-trees), we

have used this possibility to execute the KCPQ to com-

pare it with the plane-sweep algorithms (without indi-

ces). To achieve this, we have adapted the distributed

join algorithm [23] to perform the distributed KCPQ

using the Reverse Run plane-sweep technique in each

combination of pairs of nodes, in a similar way that the

Classic one is used in [8]. The running time is shown in

the last row of Table 4, and it is slower than the execu-

tion times of the plane-sweep-based algorithms without

using the local indices (R-trees). The reason why the

use of local indices is slower is the fragmentation of the

data produced by the R-tree’s own structure. When no

local indices are used, all elements present in the corre-

sponding cells are loaded into main memory, and then

the appropriate plane-sweep-based KCPQ algorithm is

performed. However, when using R-tree structures the

data are finally stored in the leaves and the number of

leaves is determined by the degree of the tree. This de-

gree, for the node size and configuration used for the

experiments, is 26 (suggested by [23]). When finally it

is necessary to compare leaf nodes, multiple PSKCPQ

algorithms with small quantities of data are performed.

The sum of execution times of these tasks becomes gre-

ater than working with all the data in the cells directly

in main memory. We can see this behavior when two

big datasets are combined, BUILDINGS × PARKS
(BxP), where Reverse Run Semi-Circle is around 30%

faster than using the local indices (R-trees).

KCPQ Algorithm LxP BxP

Classic Strip 126.871 293.852
Classic Window 124.661 283.441

Classic Semi-Circle 121.263 267.171
Reverse Strip 123.013 276.398

Reverse Window 121.768 230.390
Reverse Semi-Circle 120.648 229.226

Local indices (R-tree) 147.023 318.450

Table 4 Total execution time (in seconds) spent by each
KCPQ algorithm, plane-sweep without indices and with local
indices (R-tree).

For the εDJQ we have designed and executed the

same type of experiment as the one for the KCPQ, to

detect which is the best variant of plane-sweep algo-

rithm. Table 5 shows these results, and we can observe

that the Strip variant of Classic and Reverse Run is the

slowest, but Window and Semi-Circle have very close

execution times, the Classic Semi-Circle being slightly

the fastest. Moreover, as for the KCPQ, we have adap-

ted the distributed join algorithm [23] to implement

a distributed εDJQ algorithm using the Classic plane-

sweep technique in each combination of pairs of nodes of

local R-trees. The total execution time is shown in the

last row of Table 5, which it is much slower than the exe-

cution times of the plane-sweep-based algorithms wit-

hout using the local indices (R-trees). The justification

of this behavior is very similar to the one exposed above

for the KCPQ. We can highlight that when two large

datasets, LAKES×PARKS (LxP), are combined, the
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Classic Semi-Circle is around 23 times faster than using

the local indices, while for the join of two big datasets,

BUILDINGS × PARKS (BxP), Classic Semi-Circle

is around 25 times faster.

εDJQ Algorithm LxP BxP

Classic Strip 275.701 2798.069
Classic Window 98.024 418.473

Classic Semi-Circle 91.923 391.612
Reverse Strip 268.777 2506.165

Reverse Window 99.150 437.814
Reverse Semi-Circle 98.981 434.038

Local indices (R-tree) 2129.338 9748.563

Table 5 Total execution time (in seconds) spent by each
εDJQ algorithm, plane-sweep without indices and with local
indeces (R-tree).

6.4 The effect of using different spatial partitioning

techniques

In [56], seven different partitioning techniques are pre-

sented, and an extensive experimental study on the

quality of the generated index and the performance of

range and spatial join queries is reported. These se-

ven partitioning techniques are classified in two catego-

ries according to boundary object handling: replication-

based techniques (Grid, Quadtree, STR+ and K-d tree)

and distribution-based techniques (STR, Z-Curve and

Hilbert-Curve) [56]. The distribution-based techniques

assign an object to exactly one overlapping cell and

the cell has to be expanded to enclose all contained

records. The replication-based techniques avoid expan-

ding cells by replicating each record to all overlapping

cells) but the query processor has to employ a duplicate

avoidance technique to account for replicated elements

(in accordance to the literature, we follow this naming

of techniques, although, in the case of points no re-

plication takes place). The most important conclusions

in [56] for distributed join processing, using the over-

lap spatial predicate, are the following: (1) the smallest

running time is obtained when the same partitioning

technique is used for the join processing (except for Z-

Curve, that reports the worst running times), and (2)

the Quadtree outperforms all other techniques with re-

spect to the running time, since it minimizes the num-

ber of overlapping partitions between the two files by

employing a regular space partitioning. According to

the first conclusion, we are going to experiment with the

DBJQ MapReduce algorithms, where both datasets are

partitioned with the same technique. Finally, the parti-

tioning techniques that we have chosen are: Grid, STR,
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Fig. 11 KCPQ cost considering different partition techni-
ques in SpatialHadoop.

Quadtree and Hilbert-Curve, because they showed the

best performance for distributed overlap join in [56].

As shown in the upper part of Figure 11 for

the KCPQ of real datasets (LAKES × PARKS,

BUILDINGS × PARKS and BUILDINGS ×
CLUS LAKES), the choice of a partitioning technique

clearly affects the execution time. For instance, Quad-

tree is the fastest (445 sec), the STR is the second (642

sec), the third is Hilbert (884 sec) and the slowest is

the Grid (1667 sec), for the combination of the big-

gest real datasets, BUILDINGS × CLUS LAKES

(BxC L). Moreover, we can see that the influence of

the partitioning technique is less for the combination

of the smallest datasets, LAKES × PARKS (LxP),

where the execution times are almost the same (e.g.

Quadtree is only 32 sec faster than STR). The be-
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havior for synthetic datasets is different (see the lo-

wer chart of Figure 11), due to the nature of the

data distribution (uniform distribution of the centers

of the clusters) and the type of partitioning technique

(replication-based and distribution-based). The trends

of replication-based techniques (Quadtree and Grid) are

very similar, as is the case for distribution-based (STR

and Hilbert). Moreover, for the combination of the big-

gest synthetic datasets, 125MC1 × 125MC2 (125M),

the fastest partitioning technique is Quadtree (534 sec),

and STR has a very close running time (only 2 sec slo-

wer), Grid takes 651 sec and Hilbert is the slowest with

757 sec. Note that, a label like 25MC on x -axis of the

chart for synthetic datasets signifies the combination

25MC1× 25MC2.
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Fig. 12 εDJQ cost considering different partition techniques
in SpatialHadoop.

As we have just seen for KCPQ, the choice of a par-

titioning technique clearly affects the execution time of

εDJQ, regardless of whether the datasets are real or

synthetic. For instance, for real datasets (see the up-

per chart of Figure 12), for the combination of large

datasets, LAKES × PARKS (LxP), Hilbert partitio-

ning is slightly faster than the other techniques (e.g.

it is 11 sec faster than STR, which is the second),

but for BUILDINGS × PARKS (BxP), Quadtree is

the fastest (82 sec faster than the second, STR), and

for the big datasets, BUILDINGS ×CLUS LAKES

(BxC L), STR is the fastest (324 sec faster than Quad-

tree). From these results with real data, we can con-

clude that the bigger the datasets, the better the perfor-

mance of STR for εDJQ. The behavior for synthetic da-

taset is also different (see the lower chart of Figure 12),

mainly due to the nature of the data distribution and

the type of partitioning technique. In the same way as

for KCPQ, the trends of replication-based techniques

(Quadtree and Grid) are very similar, as the case for

distribution-based (STR and Hilbert), with small gaps

between them. Moreover, for the combination of large

synthetic datasets, 25MC1×25MC2 (25M), again Hil-

bert is slightly the fastest (only 2 sec faster than Quad-

tree). The Quadtree is the fastest for the combination of

50MC1×50MC2 (50M) and 75MC1×75MC2 (75M),

while STR is the fastest for the biggest synthetic data-

sets (e.g. for 125MC1×125MC2 (125M), STR is 28 sec

faster than Quadtree, which is the second). In the same

way as for real datasets, we can conclude for synthetic

data that the bigger the datasets, the better the per-

formance of STR for εDJQ. Note as well that, when we

write on the x -axis of the chart for synthetic datasets

25MC, we really mean 25MC1× 25MC2.

Last, it is very important to highlight the behavior

of Quadtree partitioning technique, that reports the

smallest execution times in most of the cases (mainly

for real datasets and KCPQ), as in [56] for distribu-

ted overlap join. This will be the partitioning technique

to apply in the remainder experiments, together with

STR, which shows an excellent performance for εDJQ

using big datasets.

6.5 The effect of the increment of K values

This experiment studies the effect of increasing of

the K value for the combination of the biggest da-

tasets (real and artificial). The upper chart of Figure

13 shows the total execution time for real datasets

(BUILDINGS×CLUS LAKES) grows slowly as the

number of results to be obtained (K) increases, until

K = 104, but for K = 105 the increment is larger

mainly for STR (around 850 sec). The Quadtree reports
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Fig. 13 KCPQ cost (execution time) vs. K values.

the best execution times, even for large K values (e.g.

K = 105). This means that the Quadtree is less affected

by the increment of K, because Quadtree employs regu-

lar space partitioning depending on the concentration

of the points. For the combination of synthetic datasets

(125MC1 × 125MC2) in the lower chart, for small K

values the Quadtree is slightly faster than STR, but for

larger K values the roles are swapped and STR is faster

than Quadtree.

The main conclusions that we can extract for this

experiment are: (1) the Quadtree again satisfies KCPQ

in the fastest way, mainly for real datasets, and (2) the

higher the K values, the greater the possibility that

pairs of cells are not pruned, more map tasks could be

needed and more total execution time is needed.

6.6 The effect of the increment of ε for εDJQ
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Fig. 14 εDJQ cost (execution time) vs. ε values.

In this experiment we study the effect of increasing

of the ε value in εDJQ MapReduce algorithm in Spa-

tialHadoop for the combination of the biggest datasets

(real and synthetic). As shown in the upper chart of

Figure 14, the total execution time for real datasets

(BUILDINGS × CLUS LAKES) grows as the ε va-

lue increases. Both partitioning techniques (Quadtree

and STR) have similar performance for all ε values, ex-

cept for ε = 50× 10−4, where STR outperforms Quad-

tree (i.e. STR is 295 sec faster). For the combination of

synthetic datasets (125MC1 × 125MC2) in the lower

chart, for small ε values both techniques (Quadtree and

STR) have the same performance, but for larger ε va-
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lues Quadtree is faster than STR (e.g. Quadtree is 65

sec faster for ε = 25× 10−4).

Similar conclusions to the KCPQ can be extracted

for the εDJQ: (1) the Quadtree outperforms STR for

the εDJQ mainly for synthetic datasets (for real data-

sets, except for large ε values) and (2) the higher the ε

values, the greater the possibility that pairs of cells are

not pruned, more map tasks are needed and more total

execution time is needed.

6.7 The speedup of the algorithms
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Fig. 15 Query cost with respect to the number of computing
nodes n.

This experiment aims to measure the speedup of the

DBJQ MapReduce algorithms (KCPQ and εDJQ), va-

rying the number of computing nodes (n). We have used

the Quadtree as the partitioning technique, but STR

follows the same trend. The upper chart of Figure 15

shows the impact of different number of computing no-

des on the performance of parallelKCPQ algorithm, for

BUILDINGS × PARKS with the default configura-

tion values. From this chart, it could be concluded that

the performance of our approach has direct relationship

with the number of computing nodes. It could also be

deduced that better performance would be obtained if

more computing nodes are added. However, when the

number of computing nodes exceeds the number of map

tasks, no improvement for the whole job is obtained. In

the lower chart of Figure 15, we can observe a similar

trend for εDJQ MapReduce algorithm with less execu-

tion time, and we can extract the same conclusions.

6.8 Conclusions from the experiments

We have experimentally demonstrated the efficiency (in

terms of total execution time) and the scalability (in

terms of K and ε values, sizes of datasets and number

of computing nodes) of the proposed parallel algorithms

for DBJQs (the KCPQ and εDJQ) in SpatialHadoop.

By studying the experimental results, we can extract

several conclusions that are shown below:

- The algorithm proposed in [1] for the KCPQ is sig-

nificantly improved by utilizing alternative methods

for the computation of an upper bound β of the dis-

tance of the K-th closest pair. More specifically, we

proposed new such methods that use a local pre-

processing phase and are based either on sampling,

or on the α-allowance approximate technique, and,

through an extensive set of experiments, we have

shown the improved efficiency of the new methods.

- Alternative plane-sweep-based algorithms (Classic

and Reverse Run) in the MapReduce implementa-

tion have similar performances, in terms of execu-

tion time, although they are faster than using local

indices (R-trees) in each map task.

- The Quadtree, or the STR spatial partitioning

technique included in SpatialHadoop (instead of the

Grid or Hilbert ones) improves notably the effi-

ciency of the parallel DBJQs algorithms. This is due

to the partition of space according to the data dis-

tribution (the concentration of the cells depends on

the concentration of points) [56].

- The larger the K or ε values, the larger the proba-

bility that pairs of cells are not pruned, more map

tasks will be needed and more total execution time

is spent for reporting the final result.

- The larger the number of computing nodes (n), the

faster the DBJQ MapReduce algorithms are, but
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when n exceeds the number of map tasks, no im-

provement for the whole job is obtained.

7 Concluding Remarks and Future Work

DBJQs (the KCPQ and εDJQ) are operations widely

adopted by many spatial and GIS applications. Both

operations are costly, especially in large-scale data-

sets, since the combination (Cartesian Product) of two

spatial datasets is coupled with additional constraints.

These DBJQs have been actively studied in centralized

environments. However, for parallel and distributed fra-

meworks they have not attracted similar attention. For

this reason, here we studied the problem of processing

the most representative DBJQs (the KCPQ and εDJQ)

in SpatialHadoop, an extension of Hadoop supporting

spatial operations efficiently.

To achieve this, we have proposed new MapReduce

algorithms in SpatialHadoop on big spatial datasets,

adopting the plane-sweep technique. For the KCPQ,

we have improved the MapReduce algorithm presented

in [1], regarding the computation of an upper bound

(β) of the distance value of the K-th closest pair, by

using a local preprocessing phase based either on sam-

pling, or on approximate techniques. We have shown

experimentally the efficiency of such improvements, ta-

king into account different comparison parameters and

performance measures. We have also proposed the first

MapReduce algorithm in SpatialHadoop for the εDJQ.

More specifically, we have implemented the Reverse

Run plane-sweep algorithm [9,11] for the εDJQ, fol-

lowing a similar scheme to that for the KCPQ. The

result is achieved in competitive response times to the

response times obtained with an alternative method,

the distributed εDJQ computation using local R-trees

indices.

We performed a detailed performance comparison of

the proposed algorithms in various scenarios with big

synthetic and real-world points datasets. The execution

of such experiments has demonstrated the efficiency (in

terms of total execution time) and scalability (in terms

of K and ε values, sizes of datasets, number of compu-

ting nodes, etc.) of our proposals.

As part of our future work, we are planning to ex-

tend the current results in several contexts:

- implement other DBJQs in SpatialHadoop, like the

KNN join query framework [15] and distance join

queries with spatial constraints [63],

- implement other complex spatial queries in Spatial-

Hadoop, like multi-way spatial joins [64] and multi-

way distance joins queries [65],

- implement other partitioning techniques [66,67] in

SpatialHadoop, because this is an important fac-

tor for processing distance-based join queries, as we

have demonstrated.

- implement KCPQs and εDJQs in Spark-based dis-

tributed spatial data management systems, like Lo-

cationSpark [31].
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55. G. Gutierrez, P. Sáez, The k closest pairs in spatial da-
tabases - when only one set is indexed, GeoInformatica
17 (4) (2013) 543–565.

56. A. Eldawy, L. Alarabi, M. F. Mokbel, Spatial partitioning
techniques in spatial hadoop, PVLDB 8 (12) (2015) 1602–
1613.

57. F. P. Preparata, M. I. Shamos, Computational Geometry
- An Introduction, Springer, 1985.

58. A. Corral, J. M. Almendros-Jiménez, A performance
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