Skip to main content
Log in

A dynamic approach for presenting local and global information in geospatial network visualizations

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

We present a dynamic approach for revealing the underlying information in locally cluttered areas within a geo-spatial connected graph while maintaining global edge trends. Two time series data-flow visualization approaches at both local and global scales are proposed respectively: a stream model focuses on data flows within the local area while a hub model addresses the relations between groups of nodes across the graph. The computational complexity and quantitative performance analysis on three different datasets were conducted to examine the scalability of the visualization model. The simulation results show that the central algorithms in our approach are able to achieve acceptable performance in real world test cases. Finally, our model’s effectiveness is demonstrated by two significant case studies in different application fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://web.cs.dal.ca/~sbrooks/EyeOpening.mp4

References

  1. Barnes J, Hut P (1986) A hierarchical O(NlogN) force-calculation algorithm. Nature 324(6096):446–449

    Article  Google Scholar 

  2. Barrault M (2001) A methodology for placement and evaluation of area map labels. Comput Environ Urban Syst 25(1):33–52

    Article  Google Scholar 

  3. Bostock M, Ogievetsky V, Heer J (2011) D3: Data-driven documents. IEEE Trans Vis Comput Graph 17(12):2301–2309

    Article  Google Scholar 

  4. Brewer CA, Buttenfield BP (2009) Mastering map scale: balancing workloads using display and geometry change in multi-scale mapping. GeoInformatica 14(2):221–239

    Article  Google Scholar 

  5. Carstensen LW (1987) A comparison of simple mathematical approaches to the placement of spot symbols. Cartographica 24(3):46–63

    Article  Google Scholar 

  6. Consens MP, Cruz IF, Mendelzon AO (1992) Visualizing queries and querying visualizations. ACM SIGMOD Rec 21(1):39–46

    Article  Google Scholar 

  7. Furnas GW (1986) Generalized fisheye views. SIGCHI Conference on Human Factors in Computing Systems, New York, NY 16-23

  8. GitHub Inc. GitHub API v3, https://developer.github.com/v3/. Accessed Aug 2016

  9. Google Inc. The Google Maps Geocoding API, https://developers.google.com/maps/documentation /geocoding/intro#Geocoding. Accessed Aug 2016

  10. I. Grigorik. GitHub Archive, http://www.githubarchive.org. Accessed Aug 2016

  11. Guo D, Peuquet DJ, Gahegan M (2003) ICEAGE: Interactive Clustering and Exploration of Large and High-Dimensional Geodata. Geoinformatica 7(3):229–253

    Article  Google Scholar 

  12. Henry N, Fekete JD, McGuffin MJ (2007) Nodetrix: a hybrid visualization of social networks. IEEE Trans Vis Comput Graph 13(6):1302–1309

    Article  Google Scholar 

  13. Hirsch SA (1982) An algorithm for automatic name placement around point data. The American Cartographer 9(1):5–17

    Article  Google Scholar 

  14. Holten D (2006) Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans Vis Comput Graph 12(5):741–748

    Article  Google Scholar 

  15. D. Holten and J. J. van Wijk. Force-directed edge bundling for graph visualization. In Computer Graphics Forum, volume 28, pages 983–990. Wiley Online Library, 2009

  16. J. Patokallio and Contentshare Pte Ltd. OpenFlights, http://openflights.org/. Accessed Aug 2016

  17. L. W. Johnson and R. D. Riess. Numerical analysis. Addison-wesley, 1982

    Google Scholar 

  18. T. Klein, M. van der Zwan, and A. Telea. Dynamic multiscale visualization of flight data. Computer Vision Theory & Applications, volume 1, pages 104–114. IEEE, 2014

  19. S. Ko, S. Afzal, S. Walton, Y. Yang, J. Chae, A. Malik, Y. Jang, M. Chen, and D. Ebert. Analyzing high-dimensional multivariate network links with integrated anomaly detection, highlighting and exploration. In IEEE Conference on Visual Analytics Science and Technology, pages 83–92. IEEE, 2014

  20. A. Lambert, R. Bourqui, and D. Auber. 3D edge bundling for geographical data visualization. In Information Visualisation, pages 329–335. IEEE, 2010

  21. H. Lam, E. Bertini, P. Isenberg, C. Plaisant and S. Carpendale, "Empirical studies in information visualization: seven scenarios," in IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 9, pages 1520–1536, Sept. 2012

  22. S. Libeskind, Euclidean and transformational geometry: a deductive inquiry, pages 110–112, 2007

  23. K. L. Ma and D. M. Camp. High performance visualization of time-varying volume data over a wide-area network. In ACM/IEEE 2000 Conference on supercomputing, pages 29–29. IEEE, 2000

  24. A. M. MacEachren, M. Gahegan, W. Pike, I. Brewer, G. Cai, E. Lengerich, and F. Hardistry. Geovisualization for knowledge construction and decision support. Computer Graphics and Applications, IEEE, 24(1):13–17, 2004

    Article  Google Scholar 

  25. MacEachren AM, Kraak MJ (2001) Research challenges in geovisualization. Cartogr Geogr Inf Sci 28(1):3–12

    Article  Google Scholar 

  26. McGuffin MJ, Jurisica I (2009) Interaction techniques for selecting and manipulating subgraphs in network visualizations. IEEE Trans Vis Comput Graph 15(6):937–944

    Article  Google Scholar 

  27. Mukherjea S, Foley JD (1995) Visualizing the world-wide web with the navigational view builder. Computer Networks and ISDN Systems 27(6):1075–1087

    Article  Google Scholar 

  28. Panse C, Sips M, Keim DA, North SC (2006) Visualization of geo-spatial point sets via global shape transformation and local pixel placement. IEEE Trans Vis Comput Graph 12(5):749–756

    Article  Google Scholar 

  29. Phillips RJ, Noyes L (1982) An investigation of visual clutter in the topographic base of a geological map. Cartogr J 19(2):122–132

    Article  Google Scholar 

  30. Rosenholtz R, Li Y, Nakano L (2007) Measuring visual clutter. J Vis 7(2):17–17

    Article  Google Scholar 

  31. Rylov MA, Reimer AW (2015) Improving label placement quality by considering basemap detail with a raster-based approach. Geoinformatica 19(3):463–486

    Article  Google Scholar 

  32. A. Telea and O. Ersoy. Image-based edge bundles: Simplified visualization of large graphs. In Computer Graphics Forum, volume 29, pages 843–852. Wiley Online Library, 2010

  33. Tufte ER (1983) The visual display of quantitative information. Graphics Press, Conn

    Google Scholar 

  34. United States Department of Transportation. T-100 Domestic Market Database, http://www.transtats.bts.gov/. Accessed Aug 2016

  35. N. Wong, S. Carpendale, and S. Greenberg. Edgelens: An interactive method for managing edge congestion in graphs. In IEEE Symposium on Information Visualization, pages 51–58. IEEE, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Brooks.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Brooks, S. A dynamic approach for presenting local and global information in geospatial network visualizations. Geoinformatica 23, 733–757 (2019). https://doi.org/10.1007/s10707-019-00350-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-019-00350-5

Keywords

Navigation