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Abstract

The Analog Ensemble (AnEn) method tries to estimate the probability distri-
bution of the future state of the atmosphere with a set of past observations that
correspond to the best analogs of a deterministic Numerical Weather Predic-
tion (NWP). This model post-processing method has been successfully used to
improve the forecast accuracy for several weather-related applications including
air quality, and short-term wind and solar power forecasting, to name a few.
In order to provide a meaningful probabilistic forecast, the AnEn method re-
quires storing a historical set of past predictions and observations in memory
for a period of at least several months and spanning the seasons relevant for
the prediction of interest. Although the memory and computing costs of the
AnEn method are less expensive than using a brute-force dynamical ensemble
approach, for a large number of stations and large datasets, the amount of mem-
ory required for AnEn can easily become prohibitive. Furthermore, in order to
find the best analogs associated with a certain prediction produced by a NWP
model, the current approach requires searching over the entire dataset by apply-
ing a certain metric. This approach requires applying the metric over the entire
historical dataset, which may take a substantial amount of time. In this work,
we investigate an alternative way to implement the AnEn method using deep
generative models. By doing so, a generative model can entirely or partially re-
place the dataset of pairs of predictions and observations, reducing the amount
of memory required to produce the probabilistic forecast by several orders of
magnitude. Furthermore, the generative model can generate a meaningful set of
analogs associated with a certain forecast in constant time without performing
any search, saving a considerable amount of time even in the presence of huge
historical datasets.
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1. Introduction

Quick and accurate weather prediction is an essential and critical part for
decision-making, in particular when human lives are at stake. It has been
counted that more than 200 people died in 2018 because of all weather and
climate events over U.S. and the damages has been estimated to be more than
90 billion dollars (NOAA 2018). However, these losses would be far higher if
scientists had not predicted these events. NWP model forecast is usually used
as the main tool for weather prediction. However, its utility is limited as it
represents only a single plausible future state of the atmosphere. In fact, imper-
fect initial conditions and model deficiencies can lead to model errors that grow
non-linearly during the model evolution. Lorenz (1969) pointed out that, “the
errors in estimating the current state of the atmosphere are due mainly to omis-
sion rather than inaccuracy”. In other words, the errors can be related to the
gaps in science or computational resources and the uncertainty in input data.
However, current NWP models are state-of-the-science models that include the
most recent discovered science. So, reducing the effects of uncertain data is a
possible option to increase the accuracy and reliability of these models.

In order to address the forecast uncertainty of deterministic models, inte-
grated probabilistic forecasts has been widely used. As shown by Hopson (2014),
the rationale for using a probabilistic forecast is four-fold: 1) the ensemble pre-
diction mean usually has half of the error variance of a single forecast; 2) ensem-
ble forecasts are capable to estimate the likelihood of extreme weather events;
3) ensemble forecasts can be used to generate non-Gaussian forecasts Probabil-
ity Density Function (PDF); and 4) ensemble spread acts as a representation
of forecast uncertainty. These ensemble members can be achieved by changing
different parts of the models such as different physical parametrization of the
sub-grid physical processes (Foley et al. 2012), dynamic solvers (Jablonowski
2004), and initial conditions (Sperati et al. 2016). For example, different vari-
ations of an initial condition can be found by adding perturbations from a
stochastic model. Deterministic NWP models realizations with these variations
will generate an ensemble of predictions to capture the uncertainty for a spe-
cific weather event. Although this Monte Carlo based method is a popular and
reliable way of generating probabilistic forecasting, it requires a huge amount of
computational resources for solving Navier-Stokes equations for multiple times
(Schmidt et al. 2017; Syrakos et al. 2012; Fant et al. 2016).

In order to reduce the computational cost of the ensemble forecast gener-
ation, another method was suggested by Delle Monache et al. (2011) which is
called Analog Ensemble (AnEn) method. AnEn assumes that the model error
for past predictions can be used to correct future predictions. As a result, this
technique only requires one single NWP model run and an archive of previous
model runs and observed values to correct the current model run (See 2 for more
details). AnEn has become a very popular method for correcting forecasts due
to its robustness and computational resources efficiency and it has been applied
to different projects by National Center for Atmospheric Research (NCAR) in
the recent years (Cervone et al. 2017). Although AnEn significantly reduced
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computational resources, it requires keeping the whole historical datasets of the
model and corresponding observed values in the memory. The specific imple-
mentation of AnEn is provided by the Parallel Analog Ensemble package (Hu
et al. 2019). This package has been developed during the course of the past
3 years and successfully applied to temperature forecasts for Eastern United
States (Hu and Cervone 2019; Balasubramanian et al. 2018).

However, for newer computer architectures, the amount of memory capacity
and memory bandwidth per core is diminishing. As shown in Mahapatra and
Venkatrao (1999); Wulf and McKee (1995), the rate of improvement in micro-
processor speed exceeds the rate of improvement in DRAM memory. This is
mostly due to the division of the semiconductor industry into microprocessor
and memory camps. Consequently, microprocessor performance has been im-
proving at a rate of 60 percent per year, whereas the access time to DRAM has
been improving at less than 10 percent per year.

As a result, we hypothesized that a similar analog method can be applied us-
ing the probability distribution function (PDF) of the historical dataset instead
of using the actual data. Indeed, we applied a generative machine learning model
to generate the analogous states of atmosphere based on current NWP model
forecast. The application of different machine learning methods in Geoscience
has been explored in other studies. For instance, Convolutional Neural Network
(CNN) models have been used to analyze satellite images (Li et al. (2017)) and
Recurrent Neural Network (RNN) models for air quality predictions (Athira
et al. (2018), Roozitalab et al. (2019)). However, the use of generative machine
learning models has been not studied for doing atmospheric probabilistic fore-
casts. In this study, we apply generative machine learning models for the first
time as a new technique of atmospheric probabilistic forecasting. Specifically,
probabilistic characteristics of Conditional Variational Autoencoder (CVAE) is
utilized in this study to learn the multivariate probability distribution of his-
torical observed dataset based on historical modeled dataset and it can be used
to produce ensemble forecasts.

This paper is organized as follows: Section 2 summarizes the theory behind
the Analog Ensemble method and its most important practical and compu-
tational aspects; Section 3 introduces the main concepts of deep generatives
modelling, mathematical background of Variational Autoencoders and Condi-
tional Variational Autoencoders; Section 4 explains how probabilistic forecasting
can be performed using Conditional Variational Autoencoders and reports the
main technical issues encountered during the process; Section 5 describes the
experimental setting; Section 6 reports the results obtained by the experiments
and describes the metric used to evaluate and compare the performance of the
CVAE against the AnEn; Section 7 provides more insights about the results
and shows the memory footprint and runtime for probabilistic forecasting using
CVAE; finally, Section 8 concludes the paper describing the potential uses of
producing probabilistic forecasting with deep generative models and proposing
new ideas for future works.
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2. Analog Ensemble

The Analog Ensemble (AnEn) method tries to estimate the probability dis-
tribution of the future state of the atmosphere with a set of past observations
that correspond to the best analogs of a deterministic NWP. In particular, AnEn
seek to estimate the probability distribution [f(.)] of the observed value of the
predictand variable given a model prediction, which can be represented as in
Eq. 1

f(y|xf ) (1)

where, at a give time and location, y is the observed future value of the
predictand variable, and xf = (xf1 , x

f
2 , ..., x

f
k) contains the values of k predictors

from the deterministic model prediction at the same location.
The AnEn method generates samples of y via three main steps using a

history of cases, called the analog training period, in which both the NWP
(deterministic forecast) and the verifying observations are available. Step 1
consists in searching and selecting the best-matching historical forecasts for the
current prediction, these forecasts are called analogs. An analog may come from
any past date within the training period. Step 2 consists in getting each analog’s
verifying observation. Step 3 consists in grouping the selected observations,
creating the final ensemble prediction for the current forecast.

For Step 1, the quality of an analog is determined by a metric, which is
usually represented by the following equation presented in Delle Monache et al.
(2011):

‖Ft, At′‖ =

Nv∑
i=1

wi
σfi

√√√√√ t∑
j=−t

(Fi,t+j −Ai,t′+j)2 (2)

where Ft is the current NWP deterministic forecast valid at the future time t
at a station location; At′ is an analog at the same location and with the same
forecast lead time but valid at a past time t′; Nv and wi are the number of
physical variables used in the analogs search and their weights, respectively; σfi
is the standard deviation of the time series of past forecasts of a given variable
at the same location and forecast lead time; t is equal to half the number of
additional times over which the metric is computed; and Fi,t+j and Ai,t′+j are
the values of the forecast and the analog in a time window for a given variable.

During this whole three-step process, the entire historical dataset of past
forecasts and observations needs to be kept in memory. Furthermore, the met-
ric expressed in eq. 2 used in Step 1 has to be applied to each and every forecast
of the historical dataset in order to select the best analogs. Although the mem-
ory and computing costs of the AnEn method are less expensive than running
a numerical weather prediction model, for a large number of stations and large
datasets, the amount of memory required for AnEn can easily become pro-
hibitive.
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3. Deep Generative Models

A generative model describes how a dataset is generated, in terms of a
probabilistic model. The final goal is to sample from the generative model
in order to generate new data which is consistent with the original model. A
generative model must be probabilistic rather than deterministic. In fact, a
generative model should not produce the same output given the same input.
For this reason, a generative model should include a stochastic element that
drives the generation of new samples.

In machine learning, the most common task performed by models is discrim-
ination, either in the form of classification (e.g. is this a picture of a cat or not?)
or regression (e.g. what’s the prediction for tomorrow’s temperature?). In both
cases, a set of features is given as input to the model and the output is either
a classification value (label) or a prediction. In generative models, the model
is asked to learn how samples of a certain class look like and to produce new
ones based on a stochastic value. In a more formal way, discriminative models
estimate p(y|x), meaning the probability of having the label y given the input
x.

Generative models on the other hand, try to estimate p(x): the probability of
observing the input x. If the dataset is labeled, a generative model estimates the
distribution P (x|y). This distribution represents the probability of having a set
of features x given a label y. In other words, discriminative models attempt to
estimate the probability that an observation x belongs to category y. Generative
models do not care about labeling observations. Instead, they try to estimate
the probability of seeing the observation at all. Assuming to be able to build a
perfect discriminative model to identify cats vs non-cats, the model would still
have no idea how to create a picture (or features like weight and height) that
looks like a cat. It can only output probabilities against existing images, as this
is what it has been trained to do. We would instead need to train a generative
model, which can output sets of pixels that have a high chance of belonging to
the original training dataset.

3.1. Variational Autoencoder

One of the first papers about deep generative models was published by
Kingma and Welling (2013), which laid the foundations of the well-known deep
neural network called Variational Autoencoder (VAE). The mathematical ba-
sis of Variational Autoencoders has relatively little to do with the traditional
autoencoders. In fact, VAE are called ”autoencoders” only because of their
architecture, composed by an encoder and decoder, resembles a traditional au-
toencoder. In this work, we only provide a high-level view to justify the applica-
tion of VAE for probabilistic forecasts. A very detailed and yet understandable
explanation of VAE is provided by Doersch (2016).

As mentioned in Sec. 3, a deep generative model tries to approximate the
true distribution of the inputs using a deep neural network.

x ∼ Pθ(x) (3)

5



The distribution is expressed in eq. 3, where theta are the parameters of the
distribution determined during training. In machine learning, it is important
to find equation 4, a joint distribution between the inputs x and the latent
variables Z. The latent variables are derived by the encoder of the VAE and
they represent properties observable from inputs. This sort of learning is called
representation learning and it is based on the idea that each point in the latent
space (having less dimensions than the original one) is the representation of
some high-dimensional sample, as explained in Bengio et al. (2012). In other
words, eq. 4 is a distribution of input data points and their attributes.

Pθ(x, z) (4)

The main distribution in eq. 3 can be computed as expressed in eq. 5

Pθ(x) =

∫
Pθ(x, z)dz (5)

which means considering all of the possible attributes in order to describe the
input. This problem is not tractable, because eq. 5 cannot be solved analytically.
By using the Bayes theorem, equation 6 represents an alternative expression for
eq. 5:

Pθ(x) =

∫
Pθ(z|x)P (z)dz (6)

The goal of the VAE is to find a tractable distribution that estimates Pθ(z|x).
In order to make P (z|x) tractable, VAE makes use of an ”encoder” able to

generate the distribution Qφ defined in the following equation:

Qφ(z|x) ≈ Pθ(z|x) (7)

Q can be approximated by a neural network and it is chosen to be a multi-
variate Gaussian, as expressed in the following equation:

Qφ(z|x) = N (z;µ(x), diag(σ(x))) (8)

where µ and σ are computed by the encoder using the input dataset.
Qφ(z|x) generates the latent vector z from the input x and it represents the

encoder of the VAE. On the other hand, Pθ(x|z) generates the input from the
latent vector z and thus it acts as decoder. Our final goal is still to estimate
Pθ(x).

In order to quantify the distance between Qφ(z|x) and Pθ(z|x), the Kullback-
Leibler (KL) divergence is used. KL determines the distance between our two
conditional densities, as expressed in the following equation:

DKL(Qφ(z|x)‖Pθ(z|x)) = Ez∼Q[logQφ(z|x)− logPθ(z|x)] (9)
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By using the Bayes theorem and rearranging a few terms, equation 9 be-
comes:

logPθ(x)−DKL(Qφ(z|x)‖Pθ(z|x)) = Ez∼Q[logPθ(x|z)]−DKL(Qφ(z|x)‖Pθ(z))
(10)

Equation 10 represents the core equation of the VAE. On the left-hand side,
the term Pθ(x) is the term we are trying to estimate minus the error imposed
by Qφ(z|x): the approximation of the real Pθ(z|x). When the approximation of
Pθ(z|x) is good, the KL distance goes to zero. This first part of the equation
represents the encoder of the VAE. On the right-hand side, P (x|z) represents
the decoder of the VAE, whereas the DL distance represents the loss function
from the Gaussian distribution Qφ(z|x) expressed in eq. 8.

The left-hand side of eq. 10 is also known as Evidence Lower Bound (ELBO),
and because the KL divergence is always positive, it represents a lower bound
for logPθ(x). When the encoder and decoder of the VAE are trained together,
the ELBO is maximized; meaning that the KL distance on the left-hand side
of the equation goes to zero (thus the encoding of x in z is getting better) and
that logPθ(x|z) on the right-hand side is maximized (thus the decoder is getting
better in reconstructing x from the latent representation z).

The right-hand side of eq. 10 has two important parts of the final loss func-
tion of the VAE: the decoder part Ez∼Q[logPθ(x|z)] takes samples from the
output of the encoder to reconstruct the inputs. Maximizing this term means
minimizing the reconstruction loss LR. The second part −DKL(Qφ(z|x)‖Pθ(z))
is straightforward to evaluate, thanks to the Gaussian nature of Qφ(z|x), be-
coming:

−DKL(Qφ(z|x)‖Pθ(z)) = 0.5

J∑
j=1

(1 + log(σj)
2 − (µj)

2 − (σj)
2) (11)

where J is the dimension of z. This quantity is called KL Loss, represented
as LKL.

Summarizing, the loss function of the VAE is LV AE = LR + LKL.
Although theoretically solid, in practice this approach usually leads to a

degenerate solution where Qφ(z|x) ≈ Pθ(z); meaning that the variational pos-
terior does not depend on the data (x and z are basically independent). In
other words, the model does not learn a good representation of the data. This
problem is known as KL-vanishing and it will be covered in Sec. 4.1.1.

An alternative way to see the ELBO is as a regularized version of the reg-
ular autoencoder. In particular, LR represents the reconstruction loss of the
regular autoencoder and LKL the regularization. From this point of view, it is
natural to introduce a new hyperparameter β able to control the strength of the
regularization, leading to the following equation:

LV AE = LR + βLKL (12)
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By changing the value of β from 0 to 1 (or greater than 1) we can nullify
(transforming the VAE in an AE) or force more the posterior on the latent
representation. As explained by Fu et al. (2019), by cyclically assigning values
between 0 and 1 to β it is possible to mitigate the KL-vanishing problem.

When β > 1 the VAE is referred as β-VAE by Higgins et al. (2017). As
explained in Kim and Mnih (2018) and Chen et al. (2018), a value of β > 1 can
be used to force the VAE to learn disentangled representations of the data in
the latent representation z.

3.2. Conditional Variational Autoencoder

In a VAE, if the latent space is randomly sampled, the VAE has no control
over which the kind of data to generate. For example, in a VAE trained to
generate hand written digits over the MNIST dataset, there is no control over
which digit should be produced.

The approach proposed in Sohn et al. (2015), called Conditional Variational
Autoencoder (CVAE), solves this problem by imposing a condition on both
encoder and decoder inputs. Equation 10 is modified to include the condition
in each term as follows:

logPθ(x|c)−DKL(Qφ(z|x, c)‖Pθ(z|x, c))
= Ez∼Q[logPθ(x|z, c)]−DKL(Qφ(z|x, c)‖Pθ(z|c)) (13)

Similar to a classic VAE, a CVAE tries to estimate the quantity expressed
in the following equation:

Pθ(x|c) (14)

which would allow us to generate samples from the distribution of the input
data under a certain condition.

4. Proposed Approach

The main focus of this work is to generate probabilistic forecasting with-
out maintaining the entire dataset of forecasts and observations in memory.
Generative models are a great fit for learning the distribution of the original
dataset and generating new data. A valid way to generate probabilistic fore-
casting using deep generative models is to transform the AnEn method from an
instance-based ( Aha et al. (1991)) to a generative-based method.

Equation 2 represents the probability distribution of the observed value of
the predictand variable y given a model prediction x, composed by various
predictors. This equation can be easily seen as equation 14 of a CVAE, where
the condition c is the forecast coming from the deterministic NWP and x is the
observation coming from the input data.
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For a correctly and successfully trained CVAE, we can perform probabilistic
forecasting without keeping in memory the whole dataset and without perform-
ing any search of the best-matching analogs. This is because the CVAE has
been trained to generate samples that already match as best as possible the dis-
tribution of the input data, conditioned to the forecast provided as condition.

As mentioned in Sec. 1, the AnEn method is very popular for correcting
forecasts produced by a numerical weather model. In this work, we focus on
correcting only the wind speed by using four predictors: wind speed, wind
direction (expressed in radians), 2 meter temperature and pressure.

4.1. CVAE Training

Given a dataset D, composed by observations o paired with forecasts f
produced by a NWP model, the training phase for a CVAE can be performed
by passing the observations as the data to be generated by the model, and the
forecasts as the conditions. In formulas, Pθ(x|c) becomes Pθ(o|f).

Fig. 1 shows the structure of the CVAE during training: the variables that
we want to generate, coming from the observations, are the inputs of the CVAE
(e.g. T obs represents the observed temperature). The condition is the forecast
produced by the NWP model, associated with the observations given as input
(e.g. Ws for stands for Wind Speed forecast). The same condition is given to
the decoder during the training phase, this allows the decoder to tie a specific
condition with a certain latent representation). The output of the decoder layer
is the reconstructed features given in input.

4.1.1. KL-Vanishing Problem and Cyclic Annealing Scheduling

Training a CVAE with traditional methods can be challenging, in particular
because of a notorious issue already experienced by Bowman et al. (2015); Yang
et al. (2017): the decoder ignores the latent variable, yielding what is termed
the KL-vanishing or latent variable collapse problem ( Dieng et al. (2018)). As
mentioned in Sec. 3.1, it is possible to mitigate the KL-vanishing problem by
cyclically changing the value of β during the training as explained in details
by Fu et al. (2019).

The KL-vanishing problem is supposed to be related to the low quality of
z at the beginning of the decoder training. As a result, the model is forced to
learn an easier solution by relying only on the previous samples of x without
relying on z at all.

During the training of our CVAE with β fixed to 1, we observed the KL-
vanish problem since the very first epochs. As mentioned by Sønderby et al.
(2016) and Bowman et al. (2015), setting β = 0 for the first epoch and then fix it
to 1 for the rest of the epochs made a huge difference in the final results. In fact,
this approach called Warm-up transforms the CVAE in a regular autoencoder
for the first epoch, creating a more meaningful z than random values to be used
by the final CVAE when β is set to 1 (monotonic annealing schedule). The
cyclic annealing scheduling proposed by Fu et al. (2019) produced even better
results for our CVAE. This approach proposes to cyclic several times between
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β = 0 and β = 1 during the epochs. By doing so, the values of z is very close
to Qθ(z|x) at the beginning of the training, which is very meaningful.

Figure 1: CVAE general architecture - training

For our CVAE, we obtained the best results by using a cyclic annealing
scheduling including values of β > 1. In particular, we adopted the cyclic scheme
shown in Figure 2 where only one epoch was executed by setting β = 0.0 and
0.5; for β = 1.0, 2.0 and 4.0 we executed 50 epochs in each case.

Figure 2: Cyclic Annealing with Beta > 1
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4.2. CVAE Inference

Inference or sample generation in VAE and CVAE is performed only by the
decoder. In order to generate a new data point, z-dimension random numbers
r sampled by a Normal distribution with mean 0 and variance 1 represent the
vector z in the latent space. This vector of random numbers is given as input
to the decoder along with the forecast as condition of the CVAE.

Figure 3 shows the decoder architecture able to generate analogs according
to the condition ”Ws for”.

Figure 3: CVAE decoder architecture - inference

This simple two-step method allows us to make probabilistic forecast in
constant time and memory.

5. Experiments

As the case study in this work, we seek to correct the forecasted wind speed
value using observational dataset. As a result, we feed NWP forecasted wind
speed to the model as the condition layer. Delle Monache et al. (2013) found
that 10-m wind speed (Ws) and direction (Wd), 2-m temperature (T), and
surface pressure (P) were the most important parameters in AnEn for 10-m
wind speed prediction. As a result, the same variables have been used in this
study for input and output layers.

A 10*5 box in NAM dataset covering State College, PA, is chosen for running
all the tests. As forecast dataset, we used data from The North American
Mesoscale Forecast System (NAM) (Janjic (2003)) which is one of the major
operational forecasting systems maintained by NOAA(NOAA (2019)). NAM
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initiates every day at 00 UTC and predicts meteorological status of the next
84 hours. The outputs are saved in hourly format for the first 36 hours and
3-hourly for the next 48 hours; in other words, 53 leading times. On the other
hand, NOAA uses real observed data such as satellite, aircraft, and ground
measurements data and by assimilating them into NAM forecasts, it provides
another dataset called NAM Analysis (NOAA (2019)). NAM Analysis usually
has data for 16 hours per day and we used this dataset as the observation dataset
in this study.

Although longer periods have been suggested for probabilistic forecasts (Delle
Monache et al. (2013), our analysis shows that NAM model configurations have
been updated roughly every year. Moreover, consistent data are required for
training machine learning models. As a result for training the model, NAM
forecasts and analysis data for 365 days between 2017-06-01 and 2018-06-01 are
used for training. A 7-days validation period between 2018-06-01 and 2018-06-
08 has been used for tuning and analyzing the probabilistic performance of the
model. Different configurations in terms of number of layers and number of neu-
rons has been tested and a configuration with reasonable size and performance
has been selected as the proposed model (CVAE). Moreover, the performance
of the proposed model with bigger datasets has been evaluated and discussed
in discussion section.

6. Results

The focus of this paper is on generating probabilistic prediction of wind
speed. As a result, the following evaluations are based on the generated (for
CVAE) and analogs (for AnEn) values of wind speed. The performance of
the model for other output variables is discussed in Section 7. In order to
evaluate the performance of the ensemble forecasts generated by the CVAE and
compare the results with the AnEn ensemble analogs, we have used the metrics
for reliability and probability scores in ensemble forecasting. Each of the 7 days
composing the testset has predictions for the next 84 hours; the following results
are based on the average of these 7 days for each leading time. It should be
mentioned that the observations data (NAM analysis) do not change for the first
4 leading times. This can be confusing for the model and also do not provide
meaningful information and thus, we have excluded them from the dataset for
both CVAE and AnEn. The CVAE trained model uses Gaussian noise in order
to produce one forecast as explained in 4.2. However, 21-members ensemble
forecast need 21 forecasts. As a result, the CVAE has to be used for inference
21 times per each forecast, using new generated noise sampled from a normal
distribution (N(0,1)).

6.1. Dispersion and Rank Histogram

In probabilistic forecasting, a reliable forecast seeks to have the same rela-
tive frequency as the probability of the forecasted value (Delle Monache et al.
(2013)). This means that the reliability can be expressed as the conditional
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probability of the observed value given that the forecasted value actually hap-
pens (Jolliffe and Stephenson (2003)):

Pr[Y = k|F = p] = Pk (15)

In eq. 15, Y and k are the observation random variable and observed value,
F and p are the forecast random variable and predicted value. In ensemble
probabilistic forecasts, two criteria are usually studied in terms of reliability
(Sperati et al. (2017); Cervone et al. (2017); Alessandrini et al. (2015)): Rank
Histogram (RH) and Dispersion.

Dispersion is one of the simplest ways to get an insight of the reliability
of an m-member ensemble forecast (Jolliffe and Stephenson (2003) and refer-
ences therein). Dispersion relates that Mean Squared Error (MSE) and mean
ensemble variance should be close to each other (with the ratio of m+1/m) in a
reliable forecast. In this study, a bootstrap method with 1000 samples has been
applied for mean dispersion and CRPS (see section 6.2) in order to consider
uncertainty. Figure 4 depicts 50-stations averaged MSE (mean dispersion) for
each leading time averaged during testing period for CVAE and AnEn. AnEn
has lower all-leading-times averaged MSE which suggests its better prediction
performance compared to CVAE. On the other hand, CVAE Mean dispersion
oscillates more in different leading times whereas the mean ensemble variance
(spread) does not while AnEn dispersion plot shows that MSE and spread have
similar trends during leading times. However, the difference between mean dis-
persion and spread for both CVAE (0.05) and AnEn (0.10) are very close to each
other. This suggests that both models are providing similar reliable probabilistic
characteristics in terms of dispersion.
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In order to get further insights on the reliability of two models, RH has been
studied, too. In order to calculate RH, an observed value is ranked based on
its corresponding ensemble members and the histogram after giving ranks to all
the observed values is plotted (Jolliffe and Stephenson (2003)). The processes of
plotting RH is as follows: in this study, we have 21 predicted values (21-members
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Figure 4: Ensemble members Mean Squared Error (MSE) (solid line) with bootstraping (red
range) and mean ensemble variance (dashed line) for a) CVAE, b) AnEn

ensemble) and one observed actual value per forecast; for a total of 22 values.
These values are sorted in ascending order and the rank of the observed value
is found. After doing the same task for all the forecasts, the histogram of ranks
is plotted. For a reliable probabilistic ensemble forecast with m members, the
ensemble members will be statistically indistinguishable with a constant ratio
of 1/m+1 (0.045 in this study) (Jolliffe and Stephenson (2003)).

Figure 8 shows the RH for AnEn and CVAE for the 7-days testing period
considering all the stations. These plots show that although both models are
having flat frequencies in some portions of the histograms, neither CVAE nor
AnEn are perfect reliable forecasts. Specifically, RH results for AnEn show
that there is a skew of the predictions towards lower than the observed (real)
value. On the other hand, right-skew of CVAE results indicate over prediction
of ensemble members. However, roughly distributed RH shows the probabilistic
performance of CVAE model. Overall, the range of the frequencies suggests
that both models are reliable.

It should be mentioned that Delle Monache et al. (2013) and Sperati et al.
(2017) found very uniform RH for wind speed prediction using AnEn which can
be related to the size of the historical dataset (Delle Monache et al. (2013)).
However, for this study only one year of data was used over a period where
the NAM model was not changed. Since the CVAE does not use the actual
data and instead uses the characteristics of the data for forecasting, it is crucial
that used data during learning process have been produced by one single model
configuration. The AnEn method is not very sensitive to these configuration
modifications thanks to its instance-based nature, but this is not true for the
CVAE with current configuration. In fact, by using forecasts produced by dif-
ferent versions of NAM, the CVAE is exposed to different distributions during
the training.
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Figure 5: 21 ensemble members Rank Histogram for a) CVAE, b) AnEn

6.2. Probability Score

A number of probabilistic metrics are used to evaluate the performance of
a forecast using scores (Wilks (2011)). Verification statistics are designed to
assess the reliability and skill of a forecast (Jolliffe and Stephenson (2003)).
The Continuous Ranked Probability Score (CRPS) compares the cumulative
distribution function (CDF) of the forecast and observation for all the possible
outcome values (Jolliffe and Stephenson (2003).

S(F, o) =

∫
(F (z)−H(z − o))2dz (16)

In eq. 16, S represents the CRPS scoring rule, F is the cumulative distribution
function, H(a), the Heaviside function, is 1 if a <= 0 and zero otherwise, and o is
the observed value. However, for obtaining the averaged CRPS, the expectation
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of the above equation has to be calculated using the concept of decomposition
which is explained in detail in Jolliffe and Stephenson (2003) and references
therein. Figure 6 shows CRPS for CVAE and AnEn at each leading time with
bootstrapping. CRPS results are lower for absolute values of AnEn at almost
all the leading times compared to CVAE. However, both models are showing
similar trends. Specifically, the confidence intervals of both models overlap in
some of the lead times, but also do not in others. When the confidence intervals
overlap, we can assume that the models are statistically similar.
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Figure 6: CRPS results for CVAE 21 ensemble members

7. Discussion

The probabilistic verification metrics of CVAE suggest that consistent and
reliable predictions of wind speed can be made using the proposed method.
While these metrics alone capture only some of the characteristics of good
probabilistic predictions, they suggest that the method proposed can be used
to generate reliable analogs.

Although the AnEn displays better performance, the trade-off is the size of
the data required and the time required for making the forecasts. Recall that
CVAE generates ensemble members using the compact representation learned
from the datasets, and thus is much more efficient in computational terms.

As discussed in Section 4, we used wind speed as the condition for the CVAE
and generated ensembles for 2-m temperature, surface pressure, wind direction,
and wind speed in the decoder block. The performance of the proposed approach
for probabilistic forecasting of wind speed is discussed in detail in Section 6. In
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Figure 7: Memory usage comparisons between CVAE and AnEn models

order to provide a more comprehensive evaluation of the observations generated
by the CVAE, in Figure 8 we shows the RH for wind direction, pressure and
2-m temperature for CVAE and AnEn.

AnEn produces more reliable wind direction values compared to CVAE,
whereas CVAE has better performance for surface pressure. Moreover, the
results for 2m temperature show that the CVAE is unable to capture the prob-
abilistic behavior whereas AnEn has better performance. The reason for rel-
atively poor performance of the CVAE for variables other than the desired
variable can be related to the design of the model. In other words, only the de-
sired variable (wind speed) is feed to the model as the condition and the model
optimizes the results only for that variable. During our tests we observed that
providing the whole set of forecast variables as condition during training and
inference confuses the model and produces worse results than just providing the
goal variable alone (wind speed).

However, the main motivation for this paper was to show the efficiency of
generative machine learning models in probabilistic forecasts in terms of compu-
tations and memory footprint. Since the results confirms the probabilistic per-
formance of CVAE, we studied its efficiency in using computational resources.
Specifically, memory usage and predictions runtime has been analyzed.

Another advantage of the proposed CVAE solution is that the model needs
to be trained only once. As more data becomes available, incremental training
is still possible (encoder block must be saved to retrain CVAE) and useful; in
fact, new cases (in particular if extreme cases) can dramatically change the data
distribution and final prediction.
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Figure 8: RH for wind direction (Wd), surface pressure (P), and 2-m temperature (T) pro-
duced by AnEn (left column) and CVAE (right column) models

Moreover, the training of the model is an offline process. In other words,
once the model is trained, it can be used for predictions without keeping the
original data. As a result, the memory that will be used in the prediction phase
is the size of the model architecture and its weights. Hence, as shown in fig. 7,
the memory usage for using CVAE does not depend on the size of the historical
dataset.

The size of the model will not change since the architecture (number of layers
and neurons) of the model remains constant. In contrast, the memory usage for
AnEn depends on the amount of the data to be kept in memory. Specifically,
AnEn requires two datasets (pairs of historical forecasts and observations) to
be able to find the desired ensemble members; in the case of 1 year the memory
needed is about 30 MB and it can reach up to about 900 MB for 30 years. On
the other hand, the size of the CVAE models for all 50 stations used in this
study is less than 7 MB and it does not change regardless of the size of the
historical dataset used to train the model. It should be mentioned that the size
of the NAM testing data has not been considered since both models have to
keep it in memory.

Using CVAE generally shows inferior results when compared to AnEn, but
nevertheless within a small error margin. Given the very large advantage of
CVAE in terms of memory and computational complexity, the trade-off between
these advantage and the larger error become advantageous for a large class of
problems.

Figure 9 shows the predicted runtime for CVAE and AnEn. The main ad-
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Figure 9: Runtime comparisons between CVAE and AnEn models

vantage of CVAE becomes prominent with large datasets. In fact, while AnEn
needs to linearly scan the entire dataset every time a new set of ensemble needs
to be generated, CVAE generates them nearly instantaneously once the model
has been trained. The training of the model is a computationally expensive
operation, however it is performed only once. Therefore, for large datasets (in
our experiments large corresponds to larger than roughly one year of data), or
in cases when the analogs must be generated in real time, CVAE provides a
faster and more efficient solution, with results that while are inferior of AnEn,
are still very good and can be used in many problems to provide a measure of
uncertainty.

8. Conclusion

The use of specialized hardware able to perform very efficiently only specific
tasks (e.g. deep learning) seems to be the best way to face the challenges
imposed by the exascale era. Furthermore, the memory bottleneck on modern
computing architectures is more than ever a limiting factor, mostly because the
rate of improvement in microprocessor speed exceed the rate of improvement in
DRAM memory. In order to take advantages of the new specialized hardware
and limit the penalty imposed by memory speed, portions of current scientific
codes should be rewritten and new algorithms should be developed.

In this work, we accomplished this by transforming a well established method
for probabilistic forecasting, the Analog Ensemble method, from a traditional
programming style to a deep learning approach. The approach proposed in this
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work not only provides a more efficient way to perform probabilistic forecasting
using the specialized hardware for deep learning, but also shows how general
generative models can be used effectively to generate probabilistic forecasting.
Both these contributions represent make this paper a unique and innovative
work.

The results show that despite the better performance of the AnEn method,
the Conditional Variational Autoencoder used in this work produces reliable
probabilistic forecasts using a fraction of the time and memory needed by the
AnEn. Thanks to the low memory requirements and the advantage of using
new specialized hardware, this new approach represents a valid option for edge-
computing probabilistic forecasting. Such a new possibility provides new op-
portunities to a large amount of safety-critical applications in conditions where
power is very limited and no internet connection is available (e.g. catastrophic
scenarios).

In the future, we plan to explore other generative models (e.g. Deep Be-
lief Networks, Generative Adversarial Networks) to perform better probabilistic
forecasting.
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