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Abstract
In this paper we present a new conceptual model of trajectories, which accounts for semantic
and indoor space information and supports the design and implementation of context-
aware mobility data mining and statistical analytics methods. Motivated by a compelling
museum case study, and by what we perceive as a lack in indoor trajectory research, we
combine aspects of state-of-the-art semantic outdoor trajectory models, with a semantically-
enabled hierarchical symbolic representation of the indoor space, which abides by OGC’s
IndoorGML standard.We drive the discussion on modeling issues that have been overlooked
so far and illustrate them with a real-world case study concerning the Louvre Museum, in
an effort to provide a pragmatic view of what the proposed model represents and how. We
also present experimental results based on Louvre’s visiting data showcasing how state-of-
the-art mining algorithms can be applied on trajectory data represented according to the
proposed model, and outline their advantages and limitations. Finally, we provide a formal
outline of a new sequential pattern mining algorithm and how it can be used for extracting
interesting trajectory patterns.
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1 Introduction

It has long been of paramount importance for museums to know their visitors, meaning to
study and understand their motivations, expectations, engagement, and satisfaction. In this
regard, mobile devices offering location-based services (e.g. way-finding, contextualized
content delivery) are becoming an invaluable tool for museums, since they provide them
with access to an unprecedented wealth of visitors’ movement data. Similar opportunities
have appeared in other domains of indoor human mobility such as shopping malls, sports
and concert arenas, hospitals, airports, universities [30]. For big museums in particular, the
collected visit datasets can be very large, due to the daily tracking of tens of thousands
of visitors. Moreover, depending on the implemented system, contextual/semantic data and
indoor environment-related data can be gathered in addition to the positional data. What
is more, in many cases the localisation process may suffer from imprecision, as it is being
altered by the museum’s architecture, especially when it has not been originally designed
for housing art collections. This places the movement analysis problem in the field of Big
Trajectory Data analytics.

So far, trajectory-based human mobility data analytics research has mainly focused
on outdoor trajectories, driven by the fact that Geographic Information Science (GIS)
has traditionally only supported outdoor spatial information. This type of research differs
considerably in indoor environments, mainly due to interior architectural components con-
straining (or otherwise affecting) the way people move. For example, an indoor trajectory
model has to consider multiple ways of entering a room, floor changes, specific locations
of building entrances/exits, sensor coverage gaps due to obstacles, sensor detection area
overlaps due to different floors, movement data of varying spatial granularity, and other
challenges. In addition, indoor trajectory analytics may gain from avoiding cumbersome
calculations over geometric representations of space and objects within it, that are typical of
outdoor environments. Instead, operations such as intersection, containment, and proximity
can be simplified in order to prioritize the non-geometric aspects of movement [28], instead
of metric aspects typically focused on Euclidean distances from potential targets.

Moreover, in order to reason about movement in information-rich domains, a trajectory
model must also account for multiple types of contextual and semantic information. As
identified by Peuquet in [47] and further explored in [5, 6], there are three fundamental sets
pertinent to movement, representing the where (set of locations), when (set of instants or
intervals), and what (set of objects) of spatiotemporal data. This is true across applications
as well as across application domains. Distinguishing between semantics of time, semantics
of places, and semantics of moving objects (MOs), in addition to the semantics of movement
itself, could empower a synergistic interplay between different types of semantics. Such
semantic information can be derived either from the MO’s environment or from external
data sources. It can then be used to add a meaningful dimension to raw Big Trajectory Data.
Unfortunately, semantic trajectory models have - to a large extent - targeted outdoor settings.

This has resulted in an emphasis on the enrichment of GPS data, the identification of
stops and moves, the identification of transportation means, and other conceptual modeling
issues that are, either not interesting or not transferable, in indoor settings. For example, a
MO does not traverse as long traveling distances, nor does it reach as high speeds, when
indoors. Therefore, a museum visitor might still be visiting, whether standing in front of
a particular painting or steadily walking across a hall full of paintings, and a shopping
mall client might still be shopping, whether standing in front of a specific product stand or
steadily walking across retail corridors. Thus, the distinction between walking and standing
still is not nearly as useful as the distinction between stops and moves typically found in
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outdoor trajectories. On the other hand, the adoption of some modeling approaches, such as
the segmentation of trajectories into episodes and the use of semantic annotations, seems to
be promising for indoor environments as well.

Identifying proper trajectory modeling aspects for enabling advanced museum visitor
mobility analytics depends a lot on the specific goals of the analysis. These goals mainly
concern the improvement of the visitor experience, the managerial decision making, and
the visitor crowd management processes. For all three types however, the indoor context
and the semantic aspect of movement remain key modeling elements. By intertwining the
model of visitor trajectories with a model of the museum space, an individual visitor may
enjoy personalized location-based services such as a dynamic itinerary update based on
the congestion levels in the exhibition spaces. At the same time, the museum management
may optimize emergency evacuation routes, taking into account each visitor’s profile (e.g.
reduced mobility). Such goals can only be achieved if the trajectory model is actually aware
of the indoor network topology as well as aware of the contextual information regarding the
space (e.g. congestion level, function), the visitor (e.g. demographics, guide usage), and the
movement itself (e.g. resting, being lost).

In this paper, we present a new model for spatiotemporal indoor trajectories enriched
with semantic annotations, called Semantic Indoor Trajectory Model (SITM). The pro-
posed model makes use of a standardized indoor space modeling framework, instead of
modeling space on a 2D coordinate reference system, as is typically the case. It integrates
semantic annotations at different levels in order to allow a detailed description of the move-
ments. Moreover, the model is developed with the Big Trajectory Data mining and analysis
task support in mind. To achieve this, we first run existing pattern mining algorithms
on trajectory data following a SITM-based formalism, and we identify their advantages
and limits with respect to the expressiveness of SITM. Finally, we propose corresponding
improvements to be integrated in new trajectory pattern mining algorithms.

The main contributions of the paper are:

1. A newmodel for spatiotemporal indoor trajectories enriched with semantic annotations,
called SITM.

2. A validation of the proposed model by its instantiation on real data.
3. A study of how current mining algorithms can be applied on trajectory data expressed

under SITM.
4. A formalization of the problem of mining the semantic indoor trajectories expressed

under SITM.

The rest of this paper is divided as follows: Section 2 presents an overview of the related
work and its limitations. Section 3 introduces SITM. Section 4 introduces the Louvre case
study and the corresponding model instantiation. Section 5 explains how existing pattern
mining algorithms can be applied on trajectories represented by SITM and provides insight
for designing a new family of such algorithms. Finally, Section 6 concludes with the key
issues addressed in this work.

2 Related work and background

In this section, we describe the state-of-the-art in modeling indoor spaces and (outdoor)
semantic trajectories.
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2.1 Indoor spacemodels

In order to represent movement phenomena in terms of trajectories, first a formal spatial
model is needed to provide an abstraction of their physical environment. Every trajec-
tory model proposed in the literature, either explicitly or more usually implicitly, uses a
certain model of location and therefore space. In this regard, a fundamental distinction
exists between quantitative and qualitative spatial representation approaches. The former
are preferable when precise spatial information is important, while the latter when it is
unnecessary or unavailable [13].

A qualitative spatial representation formalism, coupled with qualitative relations between
spatial objects and qualitative reasoning about spatial knowledge, constitutes what is known
as Qualitative Spatial Reasoning (QSR) [53]. Two of the most widespread qualitative spatial
calculi are RCC (Region Connection Calculus) [14] and n-intersection [20].

RCC theory, in particular, considers spatial regions as its primary spatial primitive and the
reflexive and symmetric is connected to dyadic relation as its primitive relation [16]. Based
on it, various constraint languages have been defined. For example, RCC-8 defines eight
JEPD (Joint Exhaustive and Pairwise Disjoint) relations: is disconnected from, is externally
connected with, partially overlaps, equals, is a tangential proper part of and its inverse, is
a non-tangential proper part of and its inverse.

Alternatively, n-intersection theory is based on point-set topological theory and considers
a spatial region as a 2D point set x embedded inR2, related to its interior, its boundary, and
its exterior [21]. In particular, the 4-intersection formalism ignores the exterior, and based
on the intersection combinations of the interiors and boundaries of two regions, results in
eight binary topological relations: disjoint, touch (meet), overlap, contains, insideOf, covers,
coveredBy, equal [22], equivalent to those of RCC-8.

From a more applied perspective, most indoor spatial data models can be classified into
geometric ones and symbolic ones [1]. The former focus on representing the geometry of
indoor features using primitives such as points, lines, areas, and volumes. The latter focus
on representing the ontological aspects of spatial units and the topological relationships
between them, maintaining a more abstract view of indoor space [2]. Symbolic indoor space
models in particular, are typically either set-based or graph-based (when capturing topologi-
cal information). Hybrid models represent both symbolic concepts and geometric properties.
Geometric and symbolic indoor space models largely correspond to the aforementioned
quantitative and qualitative approaches of representing space in general, but focus on the
conceptual data structures that hold the spatial information rather than on its mathematical
formalism.

Furthermore, a line of research works on indoor space modeling ([8, 11, 29, 36, 57], etc.)
has culminated into the development of IndoorGML [37, 38], an OGC standard aimed at
representing and allowing the exchange of geoinformation for indoor navigational systems.
Its core module considers an indoor space as a set of non-overlapping cells that represent
its smallest organizational/structural units: S = {c1, c2, ..., cn}, ci ∩ cj = ∅. Technically,
IndoorGML describes a hybrid indoor space model since it captures the topological infor-
mation of cells as well as an optional quantitative description of their spatial characteristics.
The cell space and the topological relationships among its objects are represented by one
or more Node-Relation Graphs (NRGs), simplifying complex spatial relationships based on
graph theory concepts [36] and the Poincaré duality in particular. More specifically, a cell
(e.g. room) becomes a node and a cell boundary (e.g. a thin wall) becomes an edge. If cell
boundary semantics are also taken into account (e.g. doors, walls, ramps) then a connec-
tivity and/or an accessibility NRG may be derived as well. Connectivity suggests that there
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exists an opening in the common boundary of two cells. Accessibility additionally suggests
that the opening can be crossed by the MO.

Moreover, IndoorGML’s Multi-Layered Space Model (MLSM) is the description of mul-
tiple interpretations of the same physical indoor space, through the instantiation of multiple
cell decompositions and corresponding NRGs. Each NRG is treated as a separate graph
layer. Nodes belonging to different layers are connected via inter-layer joint edges. While
intra-layer edges represent either adjacency, connectivity, or accessibility relations between
non-overlapping cells, joint edges denote potential locations where a physical object might
actually reside. Therefore, given that a physical object may be in only one cell of each layer
at any given point in time (called the active state), joint edges express all the valid active state
combinations (called overall states) and are derived by pairwise cell intersection. Equiva-
lently, a joint edge represents any of the eight binary topological relationships derived by
the n-intersection model [20], except for disjoint and meet, because a physical object can
not simultaneously coexist in two cells that are completely disjoint or simply touch each
other. In Fig. 1 for example, if a visitor is inside the hall represented as node 5 in layer i+1,
then the joint edges suggest that he can only be in either 5a, or 5b, or 5c in layer i.

As illustrated in Fig. 1, the MLSM can be used to represent spatial hierarchies. In [31],
the authors define an IndoorGML hierarchical graph as a direct adaptation of the hierar-
chical graph definition of [58]. The overlap relation is excluded from the joint edges of a
hierarchical graph, which are explicitly mentioned to represent equal, coveredBy and inside
relations. For instance, in Fig. 1, nodes 1, 2, and 3 in layer i+1 would be assumed to connect
via three joint equal edges to their counterparts in layer i, while nodes 4 and 5 would be
assumed to connect to nodes 4a, 4b and 5a, 5b, 5c respectively, via joint coveredBy edges.
However, the authors only provide some general partitioning criteria for how to properly
choose which hierarchical levels to include in the model, such as splitting cells that have
multiple properties or that are too big. On the same matter, in [18] the authors recognize that
spatial cell subdivision may be driven both by the architectural structure of the building and
by the function of space. They propose a categorization of specific criteria to automate this

Fig. 1 Structured (left) or ad-hoc (right) representation of a hierarchical space
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procedure: geometry-driven criteria (e.g. split if some cell dimension surpasses a certain
value), topology-driven criteria (e.g. split depending on which cells a cell is connected to
before/after the split), semantics-driven criteria (e.g. split depending on what type of cells a
cell is connected to) and navigation-driven criteria (e.g. split if a cell has both walkable and
non-walkable parts). Despite the fact that they focus on furnished 3D indoor spaces, their
categorization can also be useful for 2D representations of space, but the specific splitting
mechanism may differ considerably from case to case.

2.2 Semantic trajectory models

In the last decade, accounting for the semantics of movement has received a lot of attention
in the trajectory data modeling and analytics literature. Pivotal to this, has been viewing
a trajectory as “the user-defined record of spatiotemporal evolvement of the position of a
MO, during a given time interval of its lifespan, and in order to achieve a certain goal” [55]:
[tbegin, tend ] → space. In the same work, a purposefully generic way of semantically seg-
menting a trajectory into stops and moves was also established, leaving its implementation
to be specified at the application level. For example, Alvares et al adopted in [3] the previous
model and defined stops based on temporal stay value thresholds. Similarly, Bogorny et al
adopted in [9] the conceptual trajectory model from [55] and associated stops with impor-
tant visited places, before extending it with fundamental data mining concepts (in the form
of classes, attributes, methods) in order to support the tasks of frequent patterns, sequen-
tial patterns, and association rules. Thus, it defined a semantic trajectory as a sequence
< I1, I2, ..., In> where each Ik represents a stop or a move having a spatial and a temporal
dimension.

More recently, in [5, 6], Adrienko et al propose a general conceptual modeling frame-
work aimed at connecting the analysis of movement data with its spatiotemporal context,
which is defined as the physical space and time where movement takes place, together with
the objects and events that co-exist in it. Their framework exhaustively categorizes the types
of information that can be represented by movement data. First, it breaks movement down
to its most essential elements: the set of locations S (space), the set of time units T (time
instants or intervals), and the set of objects O (physical and abstract entities). The elements
of these sets may have properties represented as spatial, temporal, or thematic attribute
values, which in turn may involve other elements of S, T , O. Within this framework, move-
ment in general can be seen as a collection of spatial events, represented by the mapping
τ : T → S (single mover) or μ : O × T → S (multiple movers). Semantic modeling is
however not addressed, apart from dynamic thematic attributes which represent any attribute
available in the movement data or “any other existing or conceivable thing”. These can be
thought of as the equivalent of semantic annotations in other semantic trajectory models.

In [62, 64], the authors propose a modeling and computing platform for inferring
semantic concepts (similar to the ones introduced in [55, 61]) from raw GPS data. The
platform includes a hybrid trajectory model comprised of three (sub)models. The raw
data model encapsulates a low-level representation of trajectories derived from the char-
acteristics of raw mobility data, based on temporal (e.g. hourly/daily/monthly) or spatial
(e.g. geofenced) trajectory division points. The conceptual model encapsulates a mid-level
semantic abstraction of trajectories as series of episodes. The semantic model encapsulates
the spatiosemantic behavior of trajectories via semantic annotations of them or of their
episodes.

SeMiTri [63] is an application-independent framework for the semantic enrichment of
raw GPS trajectories in the form of annotations based on spatial and temporal properties of
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raw data streams. The enrichment happens either at a low level via the notion of a semantic
place

spi ∈ P = Pregion ∪ Pline ∪ Ppoint

which represents a meaningful geographic object (with a Region Of Interest (ROI), a Line
Of Interest (LOI), or a Point Of Interest (POI) as its extent), or at a high level via the notion
of an episode, which abstracts a subsequence of the spatiotemporal trajectory’s points that
are highly correlated with respect to some identifiable spatiotemporal feature (e.g. velocity,
time interval).

The conceptual semantic trajectory model proposed by Spaccapietra and Parent in [54]
and refined in [45] is similarly structured as a sequence of potentially annotated times-
tamped coordinate positions or episodes. An annotation is defined as any additional data
(captured or inferred) that enrich the knowledge about a trajectory or any part thereof. It
can be an attribute value, a link to an object, or a complex value composed of both. More
specifically, the trajectory model mainly consists of the following tuple:
(trajectoryID,
movingObjectID,
trajectoryAnnotations,
trace: LISTOF position (instant, point, δ, positionAnnotations),
semanticGaps: LISTOF gap (t1, t2),
segmentations: SETOF segmentation (segmentationID, episodes: LISTOF episode (t3, t4,
definingAnnotation, episodeAnnotations)))
where an episode is defined in [63] as “a maximal subsequence of a semantic trajectory, such
that all its spatiotemporal positions comply with a given predicate, bearing on the spatiotem-
poral characteristics of the positions”. Also, positionAnnotations, episodeAnnotations, and
trajectoryAnnotations are the sets of annotations associated to the three corresponding gran-
ularity levels of semantic enrichment. Lastly, temporal gaps in the movement track greater
than the sampling rate of raw data, are said to be either accidental (holes) or intentional
(semantic gaps), in which case their list makes part of the main trajectory model.

CONSTAnT [10] is a conceptual semantic trajectory model that resembles the model
in [45], but supports more strictly defined types of trajectory semantics. A trajectory T is
defined as an ordered list of timestamped (x, y) coordinate points. Enriched with contextual
information, a semantic trajectory is defined as the tuple ST = (tid, oid, S, g, d) where:

– t id is the trajectory’s identifier
– oid is the moving object’s identifier
– S is the non-empty list of semantic subtrajectories
– g is the required general goal of the trajectory (i.e. the reason/objective of the

movement)
– d is the device that generated the trajectory

Moreover, a semantic subtrajectory s ⊂ ST is defined as a list of consecutive semantic
points, that corresponds to at least a goal, or a means of transportation, or a behavior, if not
to multiple ones. Lastly, a semantic point p ∈ s is defined as a coordinate point, annotated
with a set of so-called environments related to where it was collected and/or with a set of
places where it is located.

More recently, MASTER [43] is a conceptual semantic trajectory model which has
been converted to a logical RDF Schema and implemented using a middleware that stores
RDF data into multiple NoSQL databases. It focuses on the heterogeneity of the semantic
information of trajectories with particular attention being paid in the relationships between
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moving objects. More specifically, it introduces the notion of aspects to represent real-world
facts relevant to the trajectory data analysis, and the notion of aspect types to characterize
them with a description and properties, akin to a semantic taxonomy. This gives rise to the
notion of semantic meanings, the associations between aspects and their types i.e. context. In
MASTER, a multiple aspect trajectory is defined as a tuple mat = (P, S LT A,mo, desc)

where:

– P =< p1, p2, ..., pn> is a sequence of timestamped (x, y) coordinate points
– S LT A = {SMlta} is a set of long term (i.e. not changing) aspects
– mo is the moving object
– desc is an aspect description

Apart from the geometric nature of the trajectory data, MASTER is actually compatible
with the model we propose in this work, because it focuses on the modeling of the relations
between moving objects and a handful of other concepts such as events, that we leave largely
unspecified, whereas it does not consider data at multiple granularity levels and therefore
could be implemented at the lowest granularity level in parallel to our model.

Finally, [60] provides the outline of a moving objects database system, aimed at inte-
grating multiple movement data models (e.g. road network models, region-based outdoor
models, indoor models) paying attention to the support of semantics and multiple descriptive
attributes. A data type called mpoint is defined for representing spatiotemporal trajectories
having m attributes A1, ..., Am. The system is intended to also include a pre-processing tool
for the detection and reparation of GPS data error, a supervised-learning classifier for han-
dling natural language queries, and a prediction model for indicating the 3D R-tree’s leaf
where nodes are stored. This goes to show that semantic trajectories are gradually starting
to be supported at the lowest system levels.

More generally, in the earlier semantic trajectory modeling literature, semantics were
largely exhausted in the names and types of the geographic places of interest related to the
MO’s physical stops. Whereas other types of contextual information, or topological and
geographical relations between places, were rarely taken into account. Efforts have since
been undertaken to integrate movement ontologies, linked open data, information extracted
from social network platforms, or complementary case-specific datasets, with spatiotempo-
ral trajectory data. Even the basic concept of episodes can be viewed as a generalization
from stop-move segments to more diverse and heterogeneous semantics. In addition, such
semantics have largely concerned outdoor contexts, as made evident by the terminology
(e.g. traveling objects [55]) and definitions introduced. On the contrary, a model for seman-
tic trajectories in indoor environments needs to at least consider the building’s topology
and space semantics. The interior of buildings is typically divided into clearly delimited
spatial entities such as rooms, halls, corridors, floors. This physical segmentation already
holds a considerable amount of semantic information. Naturally, more types of semantics
can be expected to become relevant given the increasing interest in context-aware location
based services and applications (e.g. context-aware museum guidance [34]). As a result, Big
Trajectory Data are characterized by their variety and not just volume.

With this in mind, it is safe to argue that in the near future, many applications will benefit
from a trajectory model oriented both towards indoor environments and towards the seman-
tic aspects of movement. [15] is one of the very few such works, proposing a geographic
ontology-based conceptual trajectory model called STriDE, which focuses on the represen-
tation of moving objects and dynamically changing environments. STriDE actually extends
the Continuum model [27], which represents dynamic entities using ephemeral timeslices
composed of an object identity, a set of object properties, a geometric spatial representation,
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and the timeslice’s valid period. Filiation relationships between consecutive timeslices asso-
ciated with the same entity, are used to represent the entity’s spatial or semantic evolution.
In STriDE, a semantic trajectory is defined as a set of timeslices having a starting and an
ending spatiotemporal point.

Furthermore, for most semantic trajectory models, the sole spatial primitive is a 2D coor-
dinate position relative to the GPS’s or to the specific application’s coordinate reference
system. But, raw indoor movement tracks are often collected in symbolic form, either due
to indoor positioning technologies being better suited for compartmentalized tracking (e.g.
proximity sensor readings), or due to data compression needs. The latter is particularly
important in the context of Big Trajectory Data, because the indoor topology can be used
to reduce the massive storage needs, in a way much similar to a road network [52]. At the
same time, knowing in advance the spatial entities that the MO could find itself in (e.g.
a list of rooms) makes encoding them as symbols conceptually and computationally more
practical. Therefore, symbolic and hybrid indoor space models become more attractive than
geometric ones for modeling movement in indoor environments.

3 Semantic indoor trajectory model

In this section, we define a new model for semantic trajectories in indoor environments,
named Semantic Indoor Trajectory Model (SITM), aimed at supporting:

– all types of indoor settings;
– both human and inanimate MOs;
– mining and analysis applications using statistical and reasoning approaches in order to

provide insight both at the individual and collective level.

More particularly, SITM needs to support spatiotemporal types of analysis and
semantics-based types of analysis, at multiple levels of spatiosemantic granularity, for mul-
tiple MOs, and at the same time account for trajectory data quality and uncertainty issues.
Therefore, it consists of a semantically enriched representation of indoor space, and a
semantically enriched sequence representing an individual MO’s spatiotemporal presence.

The semantically enriched representation of indoor space that we propose is a layered
multigraph. Its nodes symbolically represent indoor spatial regions, and its edges represent
topological relationship information between those regions. Static semantic information
about the regions is represented through node classes and attributes as well as node-edge
grouping into layers. The proposed representation is compatible with OGC’s IndoorGML
standard and can be viewed as an extension of it. It is described in Section 3.1.

The semantically enriched representation of an individual MO’s trajectory that we pro-
pose is a couple consisting of a trace of consecutive presence intervals inside the indoor
regions represented by the graph’s nodes, and a set of semantic annotations describing
the trajectory in its entirety. It uses the aforementioned indoor space representation and is
described in Section 3.2.

3.1 Indoor spacemodeling

Based on the modeling framework provided by the IndoorGML standard and in particular its
Multi-Layered Space Model (MLSM), we represent a 2D multiple floor (i.e. 2.5D) indoor
space as follows:
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Definition 1 (2D multiple floor indoor space) A 2D multiple floor indoor space is
represented as a layered multigraph G = (V ,E) where

V =
m⋃

i=0

Vi (1)

and
E = Etop ∪

m⋃

i=0

Eacc
i (2)

Each Gi = (Vi, E
acc
i ), 0 ≤ i ≤ m, constitutes an accessibility Node-Relation Graph

(NRG), and Etop represents binary topological relationships between two cells of different
layers.

The graph G is composed of m+ 1 different layers of nodes and edges, each represented
by a NRG Gi and corresponding to a different decomposition of the indoor space. On the
one hand, node v ∈ Vi represents a cell belonging to the i-th layer and an edge e ∈ Eacc

i ⊆
Vi × Vi represents the accessibility between two cells of the i-th layer. On the other hand,
a joint edge e′ ∈ Etop ⊆ Vi × Vj represents a binary topological relationship between two
cells of different layers (i �= j ). Figure 2 illustrates an example of such an indoor space
graph representation consisting of five hierarchical layers: Region of Interest, Room, Floor,
Building, Building Complex, detailed in Section 4 but in general G does not need to be
hierarchical.

In the proposed indoor space model, we adopt IndoorGML’s implicit assumption that

each node belongs to a single layer (
m⋂

i=0
Vi = ∅). If a node is relevant to multiple layers,

then it is essentially replicated in each one and all the copies are connected to each other via
equal joint edges. Moreover, given that cells represent the physical reality of planar space
(instead of a conceptual space) and that same-layer cells do not overlap at all, an intra-layer
edge e ∈ Eacc

i actually presupposes the meet relation between its two cells, because they
need to share a common surface for theMO to be able to physically transition between them.

At the same time, as explained in Section 2, in IndoorGML, a joint edge e′ ∈ Etop

signifies that either one of the overlap, contains, insideOf, covers, coveredBy, or equal topo-
logical relations holds between the two cells that it connects. Thus, intra-layer edges and
inter-layer edges are always of a different type, and therefore G can be considered as an
edge-coloured multigraph which can be mapped to a multilayer network [32].

Fig. 2 A 2D multiple floor hierarchical indoor space representation
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For the indoor space representation, an important modeling decision is whether G is
directed or not. Although IndoorGML does not explicitly assume either case, it consid-
ers undirected edges in all of its examples. As far as intra-layer edges go, we can think
of adjacency and connectivity as being symmetric relations. However, accessibility is not
symmetric since often indoor movement is only unidirectionally possible due to technical,
safety or other limitations. In Fig. 1 for example, Room4 (Salle des États) houses theMona
Lisa and accommodates a vast number of visitors on a daily basis. To facilitate their flow,
entering it from Room2 is often prohibited by the museum personnel while exiting it that
way is allowed. Therefore, we assume directed accessibility NRGs. As far as joint edges
go, while overlap and equal can be thought of as symmetric binary relations, contains and
covers can not. Therefore, we also assume directed joint edges (as can be seen in Fig. 2). If
we wanted to simply model intersection non-emptiness, instead of the specific nature of the
relation, then undirected joint edges would suffice.

In our model, we define a layer hierarchy as k+1 ordered layersGi (0 ≤ i ≤ k, k ≥ 2) of
G that are only consecutively connected by joint edges. Similar to [31], we exclude overlap
relations from layer hierarchies, but contrary to it, we also exclude equal relations to prohibit
node repetition and instead favor a proper hierarchy. Instead of [31]’s inside and coveredBy,
we assume contains, covers, and a corresponding top to bottom joint edge direction.

Furthermore, we account for the fact that virtually any indoor environment is character-
ized by a basic three-layer hierarchy consisting of: a Building layer, a Floor layer, and a
Room layer. The latter is loosely named as it may actually contain any type of room-level
navigable spatial cell, such as rooms, chambers, halls, lobbies, cellars, terraces, corridors,
hallways, big staircases. Therefore, G includes 3 layers representing static hierarchical lev-
els of spatiosemantic granularity. Other layers are optional and may also integrate with this
core layer hierarchy, in which case k > 2.

It is thus evident that there can be layer hierarchies that comprise either topographic
layers, or semantic layers, or both. Our core hierarchy is basically a topographic one. The
Building and Floor layers are spatially defined, since the architectural structure alone is
mostly enough to determine which space constitutes a building and which space consti-
tutes a floor. The Room layer is also predicated spatially, but in a looser way since it may
on occasion contain cells whose boundaries are not necessarily physical (e.g. functionally
independent subspaces of a big hall or of a great room).

Additionally, two optional layers are proposed for typical cases, as presented in Fig. 2: a
Building Complex root layer and a Region of Interest (RoI) leaf layer. We define the Building
Complex layer to represent the indoor space of a site comprised of multiple buildings, such
as a hospital spanning multiple attached wings or a university campus spanning multiple
independent edifices. We define the RoI layer to represent navigable sub-room level spatial
cells of application-specific interest, such as “you-are-here”map installations in a shopping
mall or individual exhibit displays in a museum (as detailed in Section 4.2 and Fig. 7). The
Building Complex and RoI layers are only relevant per case, and can be properly integrated
into the core layer hierarchy: Building Complex → Building → Floor → Room → RoI. In
that case, a Floor object in Fig. 2 describes a single building’s floor level (e.g. F loorA1 �=
F loorB1).

A static predefined layer hierarchy, like the one presented in Fig. 2, as opposed to local
ad-hoc node subdivisioning, allows a structured reasoning about the trajectories at multiple
levels of granularity. By only allowing proper part types of relationships, we allow infer-
ence of a MO’s location at all levels of granularity above the detection data level. This in
turn allows developing reasoning mechanisms to cope with missing or uncertain location
information. It also enables the identification of certain types of movement patterns at the
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Room level for instance, and at the same time of other types of patterns at the Floor level, all
from the same trajectory dataset. Furthermore, a standard layer hierarchy makes the model
generalizable to different tracking technologies and infrastructures, thus enabling the fusion
of heterogeneous Big Trajectory Data.

In addition, a static predefined layer hierarchy approach simplifies the indoor space
model in case more than one hierarchical interpretations are needed. In specific, multiple
layer hierarchies may be defined in parallel to each other via parallel joint edges that can
additionally represent the equal and overlap relations. In that case, thanks to the transitiv-
ity of parthood (isomorphic to set inclusion) in classical mereology, each layer hierarchy
only needs to connect to other layers or layer hierarchies at the lowest possible level, since
an equal or overlap relation between two nodes means that an overlap relation also holds
between any two of their respective predecessors. Related to this, our graph representa-
tion assumes that the indoor area designated by each node is fully covered by the areas
represented by its child nodes, discussed in more detail in Section 4.2.

Finally, our SITM follows an entrance/exit node convention: only entrances may gener-
ate MOs and only exits may consumeMOs. All other nodes are assumed to have equal input
and output flows at the end of each day, which can serve for correcting tracking errors in the
data. IndoorGML uses the concept of anchor nodes, to bidirectionally connect indoor and
outdoor, and to contain information for transforming between the respective coordinate ref-
erence systems. Entrance and exit nodes can be viewed as specializations of anchor nodes
and are meaningful even when the outdoor environment is not considered.

3.2 Semantic indoor trajectory modeling

Automatically collected raw movement data typically consist of spatiotemporal records, out
of which individual trajectories can be extracted. Depending on the application and on the
type of MO, only the evolution of its representative location may be relevant (e.g. museum
visit analysis) or perhaps also its shape and parts’ movements (e.g. sports performance anal-
ysis). In the former case, a trajectory is typically represented as a sequence of timestamped
spatial points. Due to a building’s clearly separated spaces however, we consider regions
(instead of points) as our primary primitive spatial entities, in the spirit of Qualitative Spa-
tial Representation [14] and IndoorGML’s cellular space [38], and according to the indoor
space model proposed in Section 3.1.

In the following, we present the proposed model of semantic trajectories taking place in
an indoor environment. We start by providing the formal definition of a semantic trajectory.

Definition 2 (semantic trajectory) A semantic trajectory is defined as the couple of its
spatiotemporal trace and the set Atraj of semantic annotations:

TIDmo,tstart ,tend
= (traceIDmo,tstart ,tend

, Atraj )

where IDmo is the identifier of the moving object, tstart and tend are the trajectory’s start-
ing and ending timestamps, traceIDmo,tstart ,tend

is a semantic trajectory trace representing
the spatiotemporal aspect of the trajectory as a sequence of timestamped semantically anno-
tated presence periods/intervals, and Atraj is a set of semantic annotations describing the
trajectory in its entirety.

Assuming that no moving object can be in two different places at the same time, we
use its identifier along with two limit-case timestamps, to identify each of its trajectories
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TIDmo,tstart ,tend
, whose first element traceIDmo,tstart ,tend

will be more thoroughly described
in the following definition.

The trajectory’s second element Atraj is a non-empty set of semantic annotations atraj ∈
Atraj characterizing the trajectory in its entirety. Trajectory annotations are not confined
within specific types of information, but would typically be chosen to represent an activity,
a behavior, or a goal showcased by the complete trajectory. These terms are often ambigu-
ously used in trajectory literature. In our model, we consider the following main types of
semantic annotations:

– an activity concerning more targeted/conscious actions; for example:
atraj = “visit temporary exhibition”

– a behavior concerning less intentional actions or reactions; for example:
atraj = “f ollow ′Masterpieces′ guided tour”

– a goal concerning motivations which affect the actions; for example:
atraj = “visit Mona Lisa”

The first two types describe the actuality of movement, whereas the third one instead
describes the potentiality of movement. For example, many trajectories in the Louvre
Museum are greatly affected by the visitor’s intention to see the Mona Lisa, irrespective of
whether this goal will eventually be accomplished or disrupted due to overcrowding. Natu-
rally, an entire trajectory may well be characterized by multiple types of semantics, as for
example:

Atraj = {behaviors : [“f ollow ′Masterpieces′ guided tour”],
goals : [“visit Mona Lisa”]}

Definition 3 (semantic trajectory trace) Let us consider a 2D multiple floor indoor space
represented as a layered multigraph G = (V ,E) where

V =
m⋃

i=0
Vi and E = Etop ∪

m⋃
i=0

Eacc
i .

A semantic trajectory trace is defined as:

traceIDmo,tstart ,tend
= (ek, vk, t

start
k , tend

k , Ak)k∈[1,n]
where vk is the state where the MO IDmo finds itself from t start

k until tend
k , ek =

(vk−1, vk) ∈
m⋃

i=0
Eacc

i is the transition i.e. boundary crossed that led the MO from state vk−1

to state vk (e.g. which door, staircase, or elevator was used), and Ak is a potentially empty
set of semantic annotations describing that specific stay.

As an example of a semantic trajectory and its corresponding semantic trajectory trace,
let us consider a visitor’s 2-hour morning visit to the Louvre:

Tvis0042,11:30:00,13:30:00 = (tracevis0042,11:30:00,13:30:00,
{goals : [“visit temporary exhibition”]})

tracevis0042,11:30:00,13:30:00 = {
(entrance01, “PH”, 11:30:00, 11:32:30, ∅),
(ticketcontrol02, “TE”, 11:32:30, 13:00:00, {mo : [“home ticket”]}),
(ticketcontrol02, “PH”, 13:00:00, 13:02:00, ∅),
(opening02, “MS”, 13:04:00, 13:28:30, {activity : [“shopping”]}),
(opening01, “IPH”, 13:28:30, 13:30:00, ∅)}
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The above semantic trajectory represents the movement of visitor vis0042 in the Louvre
in order to visit the temporary exhibition. The visitor moves through 4 different zones, first
appearing in and passing twice from the Pyramid Hall, then going to the Temporary Exhi-
bition zone where he/she stays for a long time, and then going back again in the Pyramid
Hall, before entering theMuseum Shop area and exiting from the Inverse Pyramid Hall.

Not surprisingly, while in the Museum Shop the visitor did some shopping. It is not the
trajectory model’s goal to show how to obtain such semantic aspects from the spatiotempo-
ral context (they may even be simply provided), but rather to represent them in a way that
enables and facilitates both their extraction and usage for analysis purposes.

To accommodate for trajectory holes and semantic gaps [54] as well as detection data
uncertainty issues in general, the spatiotemporal trace is allowed to contain temporal gaps
where the presence of the MO is unknown. This is the case in the above example when the
visitor disappeared for a couple of minutes before entering theMuseum Shop. Allowing for
such gaps enables the design of analysis mechanisms [67] treating the uncertainty that is
prevalent in Big Trajectory Data, especially those in raw form.

Next, we define a semantic subtrajectory as being for all practical purposes a semantic
trajectory - similar to how a mathematical subsequence is itself a sequence - but necessarily
referable to some other main semantic trajectory.

Definition 4 (semantic subtrajectory) Given a semantic trajectory

TIDmo,tstart ,tend
= (traceIDmo,tstart ,tend

, Atraj )

a semantic subtrajectory of it is defined as:

T ′
IDmo,t

′
start ,t

′
end

= (trace′
IDmo,t

′
start ,t

′
end

, A′
traj )

iff trace′ is a proper subsequence of trace:
tstart ≤ t ′start < t ′end < tend or tstart < t ′start < t ′end ≤ tend .

A subtrajectory’s set of semantic annotations A′
traj may or may not be the same as that of

its main trajectoryAtraj , contrary for example to [10] where they are enriched with different
types of semantic information. Moreover, let us consider the previous example, as well as
another visitor’s semantic trajectory:

Tvis0043,13:00:00,13:33:00 = (tracevis0043,13:00:00,13:33:00,
{goals : [“visit temporary exhibition”]})

tracevis0043,13:00:00,13:33:00 = {
(entrance01, “PH”, 13:00:00, 13:02:00, ∅),
(opening02, “MS”, 13:04:00, 13:28:30, {activity : [“shopping”]}),
(opening01, “IPH”, 13:28:30, 13:33:00, ∅)}

This represents a more casual type of Louvre visitor who is simply shopping in its
stores where a ticket is not required. According to a strict interpretation of Definition 4,
the semantic trajectory of visitor vis0043 is not a subtrajectory of the semantic trajec-
tory of visitor vis0042, because even though they share the same 3-zone pattern of visit
“PH” → “MS” → “IPH”, vis0043 arrives at “PH” via a different edge and stays in
“IPH” a little longer than vis0042.

Therefore in practice, depending on the application case, we need to mathematically
relax the proper subsequence requirement according to a realistic interpretation of trace
similarity. For instance, if we ignore the traversed edges and allow a temporal deviation of 5
minutes in the timestamps of each presence interval, then Tvis0043,13:00:00,13:33:00 is indeed a
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semantic subtrajectory of Tvis0042,11:30:00,13:30:00, because their last timestamps differ only
by 3 minutes.

Below we define an episode of a semantic trajectory as any particularly meaningful part
of it.

Definition 5 (episode) Given a semantic trajectory

TIDmo,tstart ,tend
= (traceIDmo,tstart ,tend

, Atraj )

an episode of it is defined as:

T ′
IDmo,t

′
start ,t

′
end

= (trace′
IDmo,t

′
start ,t

′
end

, A′
traj )

iff

(1) T ′
IDmo,t

′
start ,t

′
end

is a semantic subtrajectory of TIDmo,tstart ,tend

(2) A′
traj �= Atraj

(3) T ′
IDmo,t

′
start ,t

′
end

satisfies a domain-dependent and user-defined spatiotemporal and/or

semantic predicate Pep : T ′
IDmo,t

′
start ,t

′
end

→ {true, f alse}

Moreover, an episodic segmentation of a semantic trajectory is simply any subset of
its episodes that covers it time-wise. Contrary to typical literature practice, we allow an
episodic segmentation to contain episodes that overlap in time, since the exact same move-
ment part may have multiple meanings depending on the broader context or on the scale at
which it is examined.

If we consider the previous semantic trajectory example, the following is a non-
overlapping activity-based episodic segmentation of it:

episodeseg = {
episode1 (arrival):

Tvis0042,11:30:00,11:32:30 = (tracevis0042,11:30:00,11:32:30,
{activities : [“arrive Louvre”]})

tracevis0042,11:30:00,11:32:30 = {(entrance01, “PH”, 11:30:00, 11:32:30,∅)}
episode2 (temporary exhibition visit):

Tvis0042,11:32:30,13:00:00 = (tracevis0042,11:32:30,13:00:00,
{activities : [“visit temporary exhibition”],
goals : [“visit Salvator Mundi”]})

tracevis0042,11:32:30,13:00:00 = {
(ticketcontrol02, “TE”, 11:32:30, 13:00:00, {mo:[“home ticket”]}) }

episode3 (departure):
Tvis0042,13:00:00,13:30:00 = (tracevis0042,13:00:00,13:30:00,

{activities : [“shopping”, “exit Louvre”]})
tracevis0042,13:00:00,13:30:00 = {

(ticketcontrol02, “PH”, 13:00:00, 13:02:00, ∅),
(opening02, “MS”, 13:04:00, 13:28:30, {activity :[“shopping”]}),
(opening01, “IPH”, 13:28:30, 13:30:00, ∅)}

}
Finally, even though it describes temporally continuous movement phenomena, SITM is

still an event-based model: only a change of the spatial cell that the MO is located in, or a
change of the semantic information regarding the MO’s presence in that cell, requires a new
tuple. Hence, each tuple’s begin and end timestamps denote the natural time interval that
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corresponds to the MO’s physical presence given stable semantics. Such a representation
suits most raw indoor mobility datasets, typically consisting of individual sensor detections.

4 The louvre case study

In this section, we present a compelling trajectory dataset from the world’s most frequented
museum, the Louvre Museum.

4.1 Visitor movement dataset

In July 2016, the Louvre launched its officialMy Visit to the Louvre smartphone application,
which takes advantage of a large Bluetooth Low Energy (BLE) beacon infrastructure1 and
the smartphone’s accelerometer and compass, in order to estimate the visitor’s precise posi-
tion - in our case a (lat, long) coordinate pair - within the museum. This is accomplished via
BLE Received Signal Strength Indicator (RSSI)-based trilateration, extended Kalman and
particle filtering techniques. The app visualizes the position over a locally stored version of
the museum map for navigation purposes. The Louvre has already been the object of visi-
tor mobility research in the past leading to interesting conclusions [65, 66], but the current
beacon infrastructure offers improved tracking coverage and continuity.

In the obtained dataset, raw geometric positions have already been spatially aggregated
into 52 non-overlapping zones. Each zone corresponds to a large polygonal area of the
museum, as detailed later in Fig. 4, specified by the museum administration in such a way
so as to reflect a single exhibition theme (e.g. Italian paintings) but also only extend within
a single floor.

Big museums can be a vast source of Big Trajectory Data, especially in terms of their
volume and variety. The conceptual trajectory model presented in Section 3 aims at support-
ing the development of analysis techniques making use of such large datasets, produced on
a daily basis by thousands of visitors. However, the results presented in this work are based
on a dataset consisting of 4,945 visits, continuously collected from 19-01-2017 to 29-05-
2017, each consisting of a sequence of timestamped zone detections i.e. detections of the
visitor’s smartphone inside a certain zone. The duration of a visit ranges from 0 sec (con-
sidered as an error) to 7 hours 41 min and 37 sec, whereas the duration of a zone detection
ranges from 0 sec (considered as an error) to 5 hours 39 min and 20 sec. The visits were
performed by 3228 different visitors using both the iPhone and Android versions of the
application. Out of those, 1,227 were returning visitors who made 1,717 second/third visits,
although not necessarily on different days. The dataset includes 20,245 zone detections and
15,300 (intra-visit) zone transitions in total.

Unfortunately, only 30 out of the 52 zones appear in the movement dataset, with the -1
floor completely missing. Additional factors leading to a sparse movement dataset (both at
the individual and collective level) may include the following: a visitor may launch and/or
close the application mid-visit (due to battery depletion, sporadic navigation-only usage,
etc.) resulting in its partial recording2, 10.55% of the zone detections have a zero valued
duration forcing us to filter them out as detection errors, the period of data collection3 results

11800 beacons were installed across all five floors of the museum.
2This is supported by the fact that most of the frequent visits in the dataset do not satisfy the constraint of
beginning in an entry zone and ending in an exit zone.
3Coincides with the start of the beacon infrastructure operation.
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Fig. 3 Bar chart illustrating the dataset’s distribution of visit length

in lower adoption rates and potentially transitory phenomena. The sparsity of the data is
partly illustrated in the power law distribution of the length of visit presented in Fig. 3, where
it can be seen that 53.55% of the visits actually degenerate into a single zone detection. Out
of that percentage, only 2.61% is due to erroneous detections of zero duration, therefore
practically one out of every two visits has a length of only 1.

4.2 SITMmodel instantiation

Indoor space representation In order to instantiate the SITM presented in Section 3.2
for the Louvre case study, we need first to represent the museum’s indoor spaces accord-
ing to the graph-based structure of Fig. 2. Although the Louvre’s multi-layered graph is
prohibitively large to be shown, we hereafter specify its correspondence to Fig. 2 in a
top-to-bottom fashion:

– Layer 4 is instantiated as the whole Louvre Museum: it represents a level above any
specific building, denoting presence in the museum in general.

– Layer 3 is instantiated as the museum’s three wings (Richelieu, Denon, and Sully) as
well as the Napoleon area that they surround (contains the glass pyramid): it represents
the museum’s main structural parts as separate buildings, given that their spaces and
usage are practically equivalent to those of a typical building.

– Layer 2 is instantiated as a wing’s five different floors (-2, -1, 0, +1, +2).
– Layer 1 is instantiated as a floor’s rooms and halls (hundreds in total).
– Layer 0 is instantiated as a room’s most important exhibits in the form of Regions of

Interest (several hundreds in total): it represents predefined fully-navigable (no holes)
spatial areas of engagement with each exhibit, outside of which a visitor is certain not
to be paying attention to it.
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Moreover, we add a semantic layer that happens to fall right between Layer 2 and Layer
1, representing the thematic zones of our dataset. Both intra-floor (e.g. door, ramp) and inter-
floor (e.g. staircases, elevators) zone accessibility topology was extracted on site (Fig. 4)
and used to derive the zone layer NRG (Fig. 5). It does not however include zones missing
from the data, nor any additional indoor areas needed to completely cover the navigable
space.

This brings forth an interesting space modeling decision concerning whether or not to
assume that the spatial region represented by a node in layer i+1 is fully covered by the

Fig. 4 Thematic zones of the Louvre Museum’s five floors
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Fig. 5 Based on the chain topology of zones (denoted by alphanumeric IDs), a visitor’s presence in the blue
zone can be inferred, even when undetected

union of the spatial regions represented by its child nodes in layer i. For example, is a floor
fully covered by the rooms it contains? Similarly, is a room fully covered by the RoIs it con-
tains, or are there coverage gaps as in Fig. 1? Although not explicitly stated, the IndoorGML
standard and related works (e.g. [31]) adhere to a full space coverage assumption. We con-
sider the same to be true in our model. This has the advantage that accessibility relations
need only be captured at the lowest possible level of the hierarchy, from where they can
be exhaustively inferred for the higher levels. For example, if we assume that each Louvre
wing’s floor (parent node) is fully covered by its zones (child nodes), then the zone-level
accessibility topology is enough to automatically deduce the floor-level one. The reason
is that, if two floors contain no zones that are directly accessible one from the other, then
neither can these floors be reciprocally directly accessible.

The full space coverage assumption is closely related to a stronger full movement detec-
tion assumption, which requires that, not only does the indoor space representation (i.e. our
graph model) completely cover the areas where the MO may find itself in, but also that
each of those areas is observable with respect to the detection data acquisition mechanism.
In our model, we do not make this often unrealistic (e.g. for proximity detection devices
[42]) assumption. Simply put, if at some point the MO is not detected anywhere, then its
position is considered to be unknown and open to further estimation. A complete indoor
space topology is enough to repair the trajectory data, by inferring the presence of the MO
in non-observable areas (Fig. 6), or by filtering out impossible transitions.
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Fig. 6 Taking into account non-observable areas can help obtain trajectories that are more faithful to the
actual real-world movement

Similarly but at a lower level of granularity, assuming that some RoIs represent the dis-
played exhibits (Fig. 9), then those will typically not completely cover the surface of the
room they belong to. Therefore, when a visitor transitions from the Beatrice d’Este RoI to
the Battle Scene RoI (Fig. 7), his/her trace is briefly lost, because the two regions are dis-
joint and thus not directly accessible from each other. If deemed necessary to address this,
a complement node representing the spatial area of the room excluding the areas of all its
RoI children nodes, may be added to the RoI NRG. It is then up to the application-level

Fig. 7 Indicative RoIs contained within two ground floor thematic zones
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logic to infer whether the visitor is in the remaining area of the room or if for a while he
left the room altogether. Obviously, the RoI topology can play a critical role in determining
this. An alternative approach would be to simply switch to a geometric representation at the
intra-room level and encode the RoIs’ surfaces in it, effectively adopting a hybrid indoor
space representation [1]. Despite its advantage of increased precision, this approach would
need to rely on a correspondingly precise data acquisition infrastructure. Which of the two
approaches is preferable depends highly on the particular case. It may well be enough even
to simply assume the visitor’s presence in the room containing the last known RoI detection,
until further re-appearance in another RoI.

Semantic indoor trajectories representation. Having instantiated the Louvre’s indoor
space representation, the SITM is used to extract from the zone detection dataset, the visit
trajectories as sequences of presence intervals in the museum’s thematic zones. For exam-
ple, a complete one hour visit trajectory spanning three floors in the museum (Fig. 10) can
be encoded as the couple TIDvis ,12:00:00,13:00:00 = (traceIDvis ,12:00:00,13:00:00,∅) whose trace
is the following sequence of 19 presence intervals:
traceIDvis ,12:00:00,13:00:00 = {
(01) (pyramid control, “N-2:P”, 12:00:00, 12:03:00, ∅),
(02) (door001, “N-2:B”, 12:03:00, 12:08:00, ∅),
(03) (door001, “N-2:P”, 12:08:00, 12:09:00, ∅),
(04) (D electric stairs, “N-1:P”, 12:09:00, 12:10:00, ∅),
(05) (D ticket control, “D-1:EH”, 12:10:00, 12:12:00, ∅),
(06) (opening001, “D-1:APOE”, 12:12:00, 12:16:00, ∅),
(07) (door002, “D-1:AI”, 12:16:00, 12:20:00, ∅),
(08) (door003, “D-1:AG”, 12:20:00, 12:30:00, ∅),
(09) (opening002, “D-1:DS”, 12:30:00, 12:01:30, ∅),
(10) (Daru stairs -1 0, “D0:DS”, 12:31:30, 12:33:00, ∅),
(11) (opening003, “D0:AIE”, 12:33:00, 12:36:00, ∅),
(12) (opening004, “S0:AG”, 12:36:00, 12:40:00, ∅),
(13) (opening004, “S0:HIIS”, 12:40:00, 12:41:00, ∅),
(14) (HenryII stairs -1 0, “S-1:HIIS”, 12:41:00, 12:42:00, ∅),
(15) (opening004, “S-1:EH”, 12:42:00, 12:44:00, ∅),
(16) (opening005, “N-1:E”, 12:44:00, 12:45:00, ∅),
(17) (S ticket control, “N-1:P”, 12:45:00, 13:46:00, ∅),
(18) (S electric stairs, “N-2:P”, 12:46:00, 13:47:00, ∅),
(19) (opening006, “N-2:LB”, 12:47:00, 13:00:00, ∅) }

The zones comprising this short visit trajectory are detailed in Table 1. It can be noticed
that the beacon infrastructure does not cover all of them: tuples 5, 9, 10, 13, 14, and 15
represent inferred (rather than directly observed) visitor presence in the corresponding areas.
Inferred tuples are derived thanks to the topology of indoor space. Alternatively, we can limit
the representation to the actual observation data, in which case the trajectory will contain
temporal gaps in their place.

In the above trajectory example, only its spatial and temporal dimensions were taken into
account.4 However, the semantics of places also offer us valuable insight about the visitor’s
trajectory. For instance, we know that the visit beginning in zone “N-2:P” is normal because
this is one of the Louvre’s entrance zones (either through the glass pyramid or through the

4Timestamps are rounded for illustrative purposes
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Table 1 Zone information with regards to the trajectory example of Fig. 10

Abbrev. Thematic zone Wing Floor Obs. Adm. Tuples

“N-2:P” Pyramide Napoleon −2 Yes Free 1, 3, 18

“N-2:B” Billetterie Napoleon −2 Yes Free 2

“N-1:P” Pyramide Napoleon −1 Yes Free 4, 17

“D-1:EH” Entrance Hall Denon −1 No Ticket 5

“D-1:APOE” Art du Proche Orient et de l’Egypte Denon −1 Yes Ticket 6

“D-1:AI” Art de l’Islam Denon −1 Yes Ticket 7

“D-1:AG” Antiquités Grecques Denon −1 Yes Ticket 8

“D-1:DS” Daru Staircase Denon −1 No Ticket 9

“D0:DS” Daru Staircase Denon 0 No Ticket 10

“D0:AIE” Antiquités Italiques et Étrusques Denon 0 Yes Ticket 11

“S0:AG” Antiquités Grecques Sully 0 Yes Ticket 12

“S0:HIIS” Henry II Staircase Sully 0 No Ticket 13

“S-1:HIIS” Henry II Staircase Sully −1 No Ticket 14

“S-1:EH” Entrance Hall Sully −1 No Ticket 15

“N-1:E” Exhibition Napoleon −1 Yes Ticket 16

“N-2:LB” Librairie, Boutiques Napoleon −2 Yes Ticket 19

Richelieu passage). In general, validation against entrance/exit nodes allows us to distin-
guish truncated visits from complete visits. This can be represented as an entrance class of
nodes. As another example, zones “D-1:DS” and “D0:DS” represent the bigDaru staircase
which also serves as a resting place for visitors [65]. This can be semantically represented
as a particular staircase class of nodes. Therefore, what might seem as an inexplicably long
time spent transitioning from one floor to another, can now be appropriately interpreted and
treated. More generally, the Louvre contains numerous eponymous staircases which can
even be appreciated as artworks by themselves (e.g. HenryII, HenryIV, Lefuel, Mollien, du
Midi, de la Colonnade). These can be spatially captured as nodes in the zone-layer NRG,
instead of as edges (appropriate for smaller or less significant ones).

Another type of space semantics, zone admissibility, can function as a criterion for
dividing the example’s main trajectory into three episodes:

– arrival (tuples 1 − 4): presence in freely accessible zones
– main visit (tuples 5 − 16): presence in zones requiring a ticket
– departure (tuples 17 − 19): presence in freely accessible zones

Just like every semantic subtrajectory, an episode is assigned a semantic annotation set that
reflects its overall meaning.

– the arrival episode could be enriched with:
A′

traj = {activities : [“buy ticket”, “enter permanent exhibition”]}
– the main visit episode could be enriched with:

A′′
traj = {activities : [“visit greek antiquities”], goals : [“visit Nike”]}

– the departure episode could be enriched with:
A′′′

traj = {goals : [“leave Louvre”]}
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Such semantics may be either explicitly given in the form of additional data, or derived
from the spatiotemporal movement data. For example, we may explicitly know that the
visitor bought a normal ticket, or we may derive it from the fact that he entered the per-
manent but not the temporary exhibition, which is hosted in zone “N-2:E” and requires
a separate ticket. Similarly, we may explicitly know the visitor’s interest in ancient Greek
art as stated in the mobile application’s profile section, or we may infer it from the
proportionally larger amount of time spent in the respective zones.

It is now more apparent why our SITM allows for overlapping episodes instead of
requiring mutually exclusive episode predicates (e.g. [62]). Firstly, given the multiple spa-
tiotemporal granularity levels at which movement can be characterized, the essence of any
movement segment may be quite different if examined at a macroscopic or at a microscopic
level. For instance, in the trajectory example of Fig. 10, the segment consisting of tuples 1-
5 corresponds to entering the Louvre’s permanent exhibition space. However, the part of it
consisting of tuples 1-3, corresponds more specifically to buying a ticket, and can therefore
also meaningfully stand on its own. More generally, we may wish to model situations where
one or more episodes (e.g. “buy ticket”) are contained within a broader episode (e.g. “enter
exhibition”), in turn taking place within an overarching episode (e.g. “see Mona Lisa”).
There may even be multiple such containment instances within the same trajectory, as in
the example of Fig. 10, where tuples 17-19 correspond to “exiting the museum” premises,
whereas tuple 19 alone corresponds to “shopping” for gifts and souvenirs.

Secondly, by allowing semantic hierarchies potentially independent from each other, we
can model cases where an episode defined on the basis of one semantic dimension over-
laps with an episode defined on the basis of another semantic dimension. For instance, in
the example of Fig. 8, the visit starts with the visitor spending very little time in highly
congested rooms housing Italian Renaissance paintings (tuples 1-2), whereas next the vis-
itor stays a lot longer in rooms housing Ancient Greek artworks (tuples 4 and 6). Thus, if
we take into account both semantic dimensions (i.e. congestion level and artwork theme) as
well as the temporal dimension (i.e. period of stay in each room), we reasonably infer that a
crowd-avoidance behavior was driving the visit at first, followed by a particular interest in
Ancient Greek artworks.

Let us now look more closely at the trace of the example visit:
tracevis0058,16:00:00,16:45:00 = {
(01) (door010, “Room710”, 16:00:00, 16:01:00, {“high-congestion”}),
(02) (door011, “Room709”, 16:01:00, 16:02:00, {“high-congestion”}),
(03) (door012, “D1:DS”, 16:02:00, 16:05:00, {“low-congestion”}),
(04) (door013, “Room703”, 16:05:00, 16:20:00, {“low-congestion”}),
(05) (door014, “Room704”, 16:20:00, 16:23:00, {“high-congestion”}),
(06) (door015, “Room661”, 16:23:00, 16:45:00, {“high-congestion”}) }

In specific, the first two transitions “Room710” → “Room709” → “D1:DS” can be
assigned to a “crowd avoidance” episode, since the visitor quickly passes through large
crowds visiting Italian Renaissance paintings, and the last two transitions “Room703” →
“Room704” → “Room661” can be assigned to a “visit Ancient Greek sculptures” episode,
since the visitor now slowly strolls through rooms filled with Ancient Greek marble art-
works, despite the congestion. However, it is not apparent exactly at which point the former
behavior gave its place to the latter: the transition “D1:DS” → “Room703” may well have
been due to the visitor finding “Room703” to be both less occupied and at the same time
more interesting (thematically) than the equally accessible “Room706” and “Room702”.
Therefore, it applies to both types of episodes, as the two behaviors coexist for a certain
amount of time.
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Fig. 8 Tvis0058,16:00:00,16:45:00 = (tracevis0058,16:00:00,16:45:00,∅) is a subtrajectory example composed of 6
presence intervals in several rooms of the Louvre. Green rooms house Italian Renaissance paintings. Cyan
rooms house Ancient Greek sculptures

More generally, any part of a MO’s trajectory might correspond to multiple episodes,
goal-related or other. The main analytical advantage of allowing overlapping episodes is the
quality of the produced results. For example, we can now distinguish between three different
trajectory segments:

(crowd-avoidance) → (crowd-avoidance, visit Greek art) → (visit Greek art),
instead of just two, therefore enabling a more subtle interpretation of the visitor’s mobil-

ity data. Such distinctions can make a big difference for museum curators who are more
interested in a qualitative interpretation of experimental results. The disadvantage in doing
so is that the order of the episodes is no longer assured by the model, in contrast to the
order of the MO’s physical presence in space, and it is up to the analysis method (e.g. the
particular pattern mining algorithm) to deal with the additional complexity.

As detailed in Section 3.2, individual presence intervals can also be enriched with seman-
tic annotations. For example, the “buy souvenir” tag specifically characterizes tuple 19
in Fig. 10. Similarly, based on the specific zone (i.e. ticket office), on the time spent in
it (i.e. 5 minutes), and on the zones that follow it (i.e. permanent exhibition), we could
infer the visitor’s activity and enrich tuple 2 with the annotation set A2 = {activities :
[“buy ticket”]}.

Naturally, semantics of individual tuples can potentially be the ones that give rise to
semantics of (sub)sequences. For example, if the visited rooms are highly congested (e.g.
based on specific threshold values) over a long period of time, then a significant part of,
or even the whole visit may be characterized by the average congestion levels. Similarly,
if a zone subsequence contains numerous Italian Renaissance-themed zones, then it may
be characterized as a “visit Italian art” episode. Such semantics typically characterize the
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Fig. 9 A simple 2-level domain-specific instantiation of CIDOC concepts maps the RoIs to exhibits
providing structure to the interpretation of indoor space

movement itself, but possibly even the MO (e.g. visitor tiredness level), the spatial entities
i.e. nodes (e.g. room congestion level), the connections between spatial entities i.e. edges
(e.g. zone closure), etc.

Finally, application domain semantics can be matched to the indoor space hierarchy and
to the trajectory elements. In general, there are various advantages in using ontologies for
context modeling [59] such as their hierarchical structure and their enabling of inferring
new information. In [59], the authors propose an ontology-based method which combines
cross-domain behavior primitives (activities, locations, emotions) referred to as low-level
contexts, in order to infer more complex and abstract human high-level contexts that need
low-level ones in order to be identified. Activity context needs to be specialized according to
the particular application domain: museums, shopping malls, subway stations, etc. Related
to the museum domain in particular, besides activity semantics, the CIDOC Conceptual
Reference Model (CRM) [35] is an ISO standard that provides a semantic framework for
describing concepts and relationships used in cultural heritage documentation. It can be used
to implement an ontological hierarchy that structures the semantic content of the museum
space, as illustrated in Fig. 9. In specific, we adopt the E18 Physical Thing concept which
comprises “all persistent physical items with a relatively stable form, man-made or natural”
in order to represent the area of engagement with individual exhibits as a RoI. We also
adopt the E4 Period concept which is often used to describe prehistoric or historic periods
such as the Neolithic Period, the Ming Dynasty or the McCarthy Era, in order to model the
historical context and style of the artworks, and from that, of the groupings of artworks as
well, such as at the level of rooms (Fig. 8) or zones (Fig. 10).

4.3 Analysis and standardmining

As part of exploring the movement dataset, Fig. 11 visualizes the Louvre’s thematic zones,
each shaded in proportion to the absolute number of times a visitor was detected in it, based
on the dataset described in Section 4.1. The whole -1 floor is omitted and any other zone
missing from the dataset is displayed as striped.

It can be noted that the most frequented zone is unsurprisingly the main Pyramid hall
(“N-2:P”) of the -2 floor, located right under the glass pyramid. Moreover, the zones in the
southern part of the Louvre (Denon wing and southern half of Sully wing) are more fre-
quented than the ones in the northern part. An exception is the Arts Décoratifs Européens
zone (“R+1:ADE”) on the +1 floor of the Richelieu wing being the second most visited
zone, but at the same time much larger than most others. Finally, as evident from its light
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color in Fig. 11, the +2 floor is considerably less visited than the rest. This spatial imbal-
ance of visitor attendance during the first half of 2017 may still be relevant today. After a
record-breaking attendance of 10.2 million visitors in 2018 [39], the Louvre Museum imple-
mented an online time-slot booking system which helped spread its 9.6 million visitors in
2019 [40] throughout the day, but not throughout the exhibition spaces. For instance, the
Leonardo da Vinci temporary exhibition has recently managed to attract over a period of
four months more than 1 million visitors [41] in zone “N-2:E ” alone. Therefore, in light of
the COVID-19 pandemic and as museums resume operation post-containment, an attempt
at re-balancing the attractiveness of the different areas could be envisaged, although more
direct measures such as, limiting the daily number of visitors, modifying visitor reception
processes, and regulating more heavily the visitor flow, are certainly easier to implement in
the short term and expected to produce more controllable results.

Moving beyond aggregate statistical analyses, once the zone detection data are structured
in the form of individual visitor trajectories according to SITM, traditional itemset and
sequential pattern mining algorithms may be applied. After filtering out visits of length 1,
we are left with 2,297 visits on which we apply two conventional pattern mining algorithms,
namely FPGrowth [26] for zone co-occurence mining and GSP [56] for zone sequence
mining. Table 2 contains the support values of the most frequent patterns. Noticeably, there

Fig. 10 UI action logs (right) can in principle enrich trajectory data (left)
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Fig. 11 Choropleth map of the Louvre’s zones (-1 floor missing from the data)

is no 3-zone (or longer) sequence that is more frequent than either of the ten most frequent
2-zone sequences (i.e. transitions).

While it is naturally expected for shorter sequences to populate the output of the mining
process, the extent to which it happens here suggests that the visits quickly diverge. We
can still however obtain an emerging dominant visitor flow as illustrated in Fig. 12. It is
evident that the general movement trend is going upwards which is not surprising: visitors
are more prone to be using their smartphones while entering deeper into the museum’s
exhibition spaces, whereas once they decide to leave, they might close the application before
starting to descend. Of course, this hypothesis can neither be proved or disproved without a
corresponding observational experiment.

In addition, there is a dominant right-to-left flow at the 0 floor and a dominant left-to-
right flow at the +1 floor of the Denon wing. Unfortunately, the neighboring Peintures Salle
Joconde and Peintures Italie Est zones are missing from the data, which makes deriving
any conclusions risky. It seems however to be the case that visitors who arrive at the Daru
staircase at the 0 floor, coming from the Sully wing, tend to continue all the way until the
Mollien staircase, instead of directly visiting the Winged Victory of Samothrace.

Table 2 Ten most frequent Louvre zone co-occurences and zone transitions

Zone co-occurence Support Zone transition Support

“S0:AG”, “D0:AIE” 19.98% “S0:AG” → “D0:AIE” 6.40%

“D0:AIE”, “D0:AR” 18.46% “D0:AR” → “D+1:PF” 5.27%

“D0:AIE”, “D+1:S” 17.07% “D0:AIE” → “D+1:S” 4.61%

“D0:AR”, “D+1:PF” 16.33% “D0:SE” → “D+1:PF” 4.53%

“D+1:S”, “S+1:AGR” 14.80% “D0:AIE” → “D0:AR” 3.79%

“D+1:PF”, “D0:AIE” 13.93% “D0:AR” → “D0:SE” 3.79%

“S+1:AGR”, “S0:AG” 13.80% “N-2:E” → “N-2:P” 3.70%

“D+1:S”, “D0:AR” 13.76% “S0:AG” → “S+1:AGR” 3.57%

“S+1:AGR”, “D0:AIE” 13.71% “D0:AR” → “D+1:S” 3.48%

“D0:SE”, “D0:AR” 13.67% “D+1:S” → “S+1:AGR” 3.48%
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Fig. 12 The most frequent zone transitions are localized in the southern part of the Louvre

5 SITM-based trajectory mining

In this section, we study how our proposed conceptual model for the representation of
semantic indoor trajectories supports the process of trajectory mining. To this end, we
first evaluate two pattern mining approaches, namely Multi-Dimensional Sequential (MDS)
pattern mining and Temporally Annotated Sequential (TAS) pattern mining, identify their
limitations, and detail the elements that make their combination a promising approach for
extracting even more interesting patterns.

5.1 SITM-basedmultidimensional sequential patternmining

In Section 4, we derived interesting visiting patterns in the Louvre Museum by using
standard pattern mining algorithms. While these algorithms were used with trajectories rep-
resented according to SITM, they do not take advantage of its full expressiveness (e.g.
trajectory semantics, contextual information, indoor topology), since they rely exclusively
on the presence or sequence of the detection records. However, SITM contains extra infor-
mation that can be used by more advanced mining methods, or even inspire the design
of new ones. With regards to the former, MDS pattern mining methods are especially
interesting because they benefit from the integration of contextual information.

In [48], the authors proposed several pattern mining methods, where the multi-
dimensional part is independent from the typical sequential part and is actually appended to
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it as a special element, as follows: (α1, ..., αm, s) where αi ∈ (Ai ∪ {∗}) are the dimension
values and s =< s1, s2, ..., sl> is the actual sequence of itemsets that they extend.

The same type of method can be applied over SITM. For instace, if static visitor informa-
tion (e.g. profile settings) is retrieved from the mobile guide application (Fig. 10), then the
trajectory example from Section 3.2 can be enriched by adding more semantic annotations
in Atraj describing each individual visitor’s declared interests and time availability:

Tvis0042,11:30:00,13:30:00 = (tracevis0042,11:30:00,13:30:00, Atraj )

Atraj = {goals : [“visit temporary exhibition”], regularity : “First−
T imer”, subjects : [“Antiquities”, “Sculptures”], time : [“ > 2hours”]}

This allows us to find frequent visiting patterns of particular types of visitors, instead of
just all visitors.

In [49], the authors generalized the above approach to account for multiple dimensions
within the sequence itself. Data are stored in a relational table T as a finite set of tuples t =
(d1, ..., dn) whose values belong to the domain of several data dimensions di ∈ dom(Di),
i = 1, ..., n. Those dimensions are grouped into three sets: 1) a time dimension associated
with a totally ordered domain according to which sequences are constructed, 2) the anal-
ysis dimensions whose values appear in the frequent patterns’ items and 3) the reference
dimensions used to partition the table into blocks to be used for calculating the support
of the sequences. In this way, a sequence takes the form of an ordered list <i1, ..., il>
of multidimensional items ij , each taking its values from the analysis dimensions
DA.

The same or similar methods can be applied over SITM. For example, assuming that
dynamic visitor information (e.g. access records of the application’s educational content)
are available, then we can use them to annotate each presence record independently. More
concretely, a particular interval of presence in spatial area vj together with its corresponding
annotations Aj can combine for a multidimensional item ij , and the application of such
methods becomes straightforward.

For instance, in the example provided in Section 3.2, we may enrich the 4th tuple of the
trajectory based on the audio description playback that the visitor listened to, and the textual
description that he read, while being detected in the Inverse Pyramid Hall:

(opening002, “IPH”, 13:28:30, 13:30:00, {audio : [“Fountainhead” :
03′15′′, “Lady of Auxerre” : 00′32′′], text : [“Al Mughira′s Pyxis”]})

In [50, 51], the previous approach was evolved to allow for several hierarchical levels to
be mixed within the same sequence, and the extracted patterns to be automatically associ-
ated to the most adequate levels. To achieve this, a new type of hierarchical pattern inclusion
was defined which for instance considers <{(F rance,wine)}, {(Germany, beer)}> to be
a subsequence of

<{(F rance, Alcoholic drinks), (USA, drinks)}, {(EU,Alcoholic drinks)}>.
The developed M3SP algorithm is based on the notion of item specificity �I :
α=(d1, ..., dm) �I α′=(d ′

1, ..., d
′
m) iff ∀1≤i≤l : di ∈ d

↓
i (specializations of di)

SITM’s trajectory representation enables the application of such hierarchical pattern min-
ing methods, by using annotations that belong to multiple levels of a semantic taxonomy.
For instance, we may change the previous presence interval to have the consumed textual
description information at the level of artwork-type, but keep the audio description playback
information at the lower level of specific artworks:

(“opening002”, “IPH”, 13:28:30, 13:30:00, {audio : [“Fountainhead” :
03′15′′, “Lady of Auxerre” : 00′32′′], text : [“Sculptures”]})
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In this way, the methods of [50, 51] can be applied in order to extract semantic trajectory
patterns formulated as multidimensional and at the same time multigranular sequences:

... → (“IPH”, “low-congestion”, “Spanish Islamic”) →
(“AG”, “high-congestion”, “Classical Greece”, “Sculptures”) → (“SE”, “normal-

congestion”, “Mona Lisa”) →...
Extracting such patterns can have great value for museum professionals because it brings

some of the qualitative elements of traditional observation studies into the realm of Big Data
analytics.

5.2 SITM-based temporally annotated sequential patternmining

All mining approaches described in Section 5.1 completely ignore the temporal aspect of
movement data and only account for their sequential nature. In contrast, a Temporally Anno-
tated Sequence (TAS) is defined in [24] as a form of sequential pattern that takes into
account typical transition times between events, as follows:

(S,A) = s0
α1−→ s1

α2−→ ...
αn−→ sn

where A =< α1, α2, ..., αn > are the temporal annotations corresponding to the sequence
of discrete elements S =< s0, s1, ..., sn >.

MiSTA mining algorithm description MiSTA is the main algorithm proposed by [24] for
calculating the most frequent TAS patterns given an input TAS dataset. Whereas the MiSTA
algorithm lacks any multidimensional (semantic, context, indoor, etc.) pattern mining abil-
ity, in contrast to the approaches described in Section 5.1, it takes time into account, which
is of paramount importance in the case of mobility data.

In [25], the elements of the TAS sequence S constitute coordinate pairs, thus defining a
trajectory pattern mining problem, and the authors introduce the t-patterns algorithm. This
essentially consists of the MiSTA algorithm preceded by a transformation step grouping the
spatial data into regions, based on a neighborhood function, in order to transform raw data
in symbolic data that can be managed by MiSTA.

For this work, given that our conceptual model requires symbolic location data (as avail-
able in the Louvre case study) and not geometric data, we solely focus on the MiSTA
algorithm and not on the t-patterns algorithm.

In terms of its function, MiSTA accepts two parameters: a typical minimum support value
suppmin, and a time threshold value τ which specifies the maximally allowed temporal
annotation difference for determining whether a TAS pattern occurs in each input TAS or
not. More formally, an n-long TAS T1 is τ -contained in another m-long TAS T2 (n ≤ m)
(T1(s1, α1) �τ T2(s2, α2)) iff ∃ 0 ≤ i0 < ... < in ≤ m such that:

1. ∀0≤k≤n: s1,k ⊆ s2,ik
2. ∀1≤k≤n: |αk − α∗,k| ≤ τ where α∗,k = ∑

ik−1<j≤ik
α2,j

Thanks to the sum operation in the condition 2, a single annotation of T1 may match multiple
annotations of T2 added together. The additional temporal similarity criterion described by
this condition gives rise to the notion of a TAS pattern’s τ -support, which represents the
percentage of input TASs containing it within the temporal limits imposed by τ .

In terms of its algorithmic process, MiSTA extends the prefix-projection-based method
of PrefixSpan [46]. More specifically, it initializes an evolving set of projections in the form
of so-called T-sequences. These carry complete information about all useful occurrences of
a prefix in the projected sequence. Then, MiSTA recursively performs either enlargement
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(i.e. adding a new element to the last item of the prefix) or extension (i.e. adding a new ele-
ment to the prefix) projections. The actual temporal annotations of the input TASs (called
dataset points) are used to build corresponding hyper-cubical influence areas in the annota-
tion space. Since τ essentially represents the allowed level of temporal similarity relaxation,
the influence areas have an edge equal to 2τ . Next, they are merged and partitioned into
disjoint hyper-rectangles, which allows all prefix occurrences whose corresponding dataset
points do not contribute to any dense region to be deleted before any new projection. Con-
sequently, if a T-sequence contains no useful prefix occurrence, it can be deleted as well.
Finally, the projection process itself stops when less than suppmin T-sequences remain.

In order to be able to apply MiSTA’ mining process on SITM’s trajectories, we need to
make the following two assumptions:

– MiSTA only considers sequences of itemsets and their corresponding duration anno-
tations, and cannot integrate in the mining process other elements. Thus, we need to
restrict the SITM-based trajectories to the following elements:

– We restrict MiSTA’s input data to consist solely of sequences of items rather than
sequences of itemsets, because SITM assumes that a MO can not be present in multiple
symbolic spatial entities at the same time. As a consequence, only extension projections
will take place during MiSTA’s execution, and not enlargement ones. This assumption
does not induce any changes in the MiSTA algorithm itself.

– Instead of attributing each temporal annotation to the transition between two consecu-
tive items, we attribute it to the duration of stay in the first item, which represents the
spatial entity of departure. This assumption simply serves to correct the interpretation
of TASs according to the SITM.

Under these three assumptions, a short trajectory part, composed of tuples 4, 5, and 6 of
the trajectory trace example used in Section 4.2, is transformed into the following TAS part:

S = < ..., “N-1:P”, “D-1:EH”, “D-1:APOE”, ...>
A = <..., 60, 120, 240, ...>
where temporal annotations in A are expressed in seconds.

For τ=20, the above TAS (S,A) = 60
“N-1:P” → 120

“D-1:EH” → 240
“D-1:APOE” τ -

contains the TAS pattern (S1, A1) = 130
“D-1:EH” → 255

“D-1:APOE”, but not the TAS pattern

(S2, A2) = 150
“D-1:EH” → 240

“D-1:APOE”, because their corresponding annotations differ by
more than 20 seconds in at least one case.

Extracting Louvre visitor trajectory patterns Before the actual mining process, we need
to first pre-process the original trajectory dataset and tranform it into TAS form. First, we
filter out any zone detection record with duration equal to 0. This leads to the deletion of
2,135 out a total of 20,245 records. Secondly, in 1,080 of those cases, the previous and the
subsequent (to the deleted one) zones actually coincide, which constitutes further indication
that the deleted zones are indeed errors. We merge those into a single zone in order to avoid
any identical items appearing consecutively in the input TASs. Thirdly, we filter out all tra-
jectories containing less than 3 zones. We opt for a low threshold value, taking into account
the coarse spatiotemporal granularity of the available trajectory data, as well as their length
distribution being left-skewed (Fig. 3). Finally, even though SITM can represent temporal
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Fig. 13 Normal distribution of the Louvre visitors’ duration of stay in each zone, under two different
interpretations of the detection gaps

gaps in the trajectories, MiSTA does not allow for gaps in the sequences. Therefore, we
need to either erase all periods of visitor non-detection, or assume that the visitor is actu-
ally continuously located in the last known zone until he is re-detected in a different one.
Given that the duration values are on the low side of what would normally be expected for
a museum, we adopt the second approach as more realistic.

Next, in order to choose a proper τ parameter value, we calculate the normal distribution
of the zone detection duration value. As expected and confirmed by the curve’s push to
the right (Fig. 13), taking into account the detection gaps in the original trajectory dataset
increases the values of the temporal annotations in MiSTA’s input TAS dataset. After trying
out lower (i.e. stricter) and higher (i.e. more relaxed) values, we opted for τ=117 sec, equal
to the median zone stay duration value. In practice, this means that MiSTA will count a
projected pattern’s occurrence in the input TAS data only as long as all of the corresponding
annotations differ by less than 2 minutes.

Table 3 contains the frequent TAS patterns of length equal to 3, enabling us to derive
additional insight compared to the purely sequential approach of Section 4.3. Interestingly,
all four patterns involve two types of movement taking place in two different parts of
the museum, both characterized by a floor-switching back and forth type of behavior. In
addition, they do not take place in the busiest parts of the museum like the ones identi-
fied in Section 4.3, which means that their support values are not much higher than their
τ -support values. However, due to the fact that MiSTA involves a lossy step of merging fre-
quent annotation intervals, we do not report any specific τ -support values because there is
no approximation guarantee other than their being higher than suppmin=5%. Instead, we
include the contiguous sequence support which corresponds to requiring direct transitions
only. We notice that the two patterns in the Arts décoratifs européens and Sculptures France
Marly zones of the Richelieu wing (“R+1:ADE” and “R0:SFM”) are almost always con-
tiguous, whereas the two patterns in the Antiquités Égyptiennes zones of the Sully wing
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Table 3 The four frequent Louvre TAS patterns of length 3, for suppmin=5% and τ=117sec

Temporally annotated zone Cont. support Support

α1
(“S+1:AE”) →

α2
(“S0:AE”) → (“S+1:AE”) 7.15% 8.01%

(α1, α2):
([50,50],[89,104]),([51,55],[39,120]),([56,72],[29,121]),
([73,73],[17,123]),([74,82],[14,124]),([83,99],[0,125]),
([100,100],[0,126]),([101,121],[0,127]),([122,122],[0,126]),
([123,125],[0,125]),([126,127],[0,124]),([128,128],[17,123]),
([129,131],[29,122]),([133,134],[89,121])

α1
(“S0:AE”) →

α2
(“S+1:AE”) → (“S0:AE”) 7.02% 8.23%

(α1, α2):
([29,31],[89,101]),([32,47],[50,120]),([48,65],[48,121]),
([66,69],[31,122]),([70,81],[19,122]),([82,91],[15,122]),
([92,118],[9,124]),([119,119],[19,122]),([120,121],[60,120]),
([122,124],[89,101])

α1
(“R+1:ADE”) →

α2
(“R0:SFM”) → (“R+1:ADE”) 7.15% 7.66%

(α1, α2):
([67,85],[116,118]),([86,91],[110,121]),
([92,118],[94,122]),([119,120],[110,121]),([121,122],[116,118])

α1
(“R0:SFM”) →

α2
(“R+1:ADE”) → (“R0:SFM”) 6.06% 6.25%

(α1, α2):
([42,59],[126,129]),([60,61],[124,130]),
([62,64],[101,130]),([65,84],[77,131]),([85,85],[77,134]),
([86,119],[59,134]),([120,122],[101,131]),([123,127],[126,130]),
([128,128],[126,129]),([129,130],[128,129])

(“S0:AE” and “S+1:AE”) more often include intermediate transitions. Also interestingly,
the former two patterns contain more restricted duration intervals than the latter two, which
suggests that visitors spend a more specific amount of time in that part of the Richelieu wing.
Further interpretation of the reported time intervals is outside the scope of this illustrative
experiment.

Finally, we report on a few important implementation details. First, MiSTA counts each
TAS pattern only once per input TAS, even when it appears multiple times in the same
input TAS. In some application cases, this may not be the most desired way to calculate
τ -support, particularly true for datasets containing long episodic trajectories. Secondly, as
already explained, due to how τ -containment is defined [24], the TAS patterns reported by
MiSTA are not necessarily contiguous. In such case, the corresponding annotation describes
how long the visitor stayed in all of the zones combined, leading up to the next zone in the
pattern. Again, a contiguous variation may be interesting depending on the case. Thirdly,
since MiSTA’s annotations were originally designed to describe the transitions and the last
item of each TAS is not followed by any transition, the duration of stay in the last zone of
any trajectory is lost during its transformation to an input TAS. Technically, this issue can
be easily solved by adding an “EXIT” item at the end of each TAS. This does not alter the
mining output, apart from adding any frequent trajectory-ending patterns that contain the
newly included interval.
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5.3 Towards a SITM-basedmultidimensional temporally annotated sequential
patternmining algorithm

Different Big Data sources can be used to enrich trajectories with complex and hetero-
geneous semantic information [33]. In such cases, a sequential pattern mining problem
becomes multidimensional, as illustrated in Section 5.1 for the case of semantic indoor tra-
jectories. The few existing MDS pattern mining algorithms [12] all share a major limitation
with respect to mobility data applications: they ignore the temporal dimension of the data.

On the other hand, as illustrated in Section 5.2, MiSTA is one of the few sequential
pattern mining algorithms that does take time into account, but it does not account for
multidimensional sequences.

Therefore, we detail hereafter several important characteristics of trajectories, as defined
by SITM in Section 3, that are ignored by existing pattern mining algorithms:

1. The semantic content: MiSTA does not consider multidimensional items or any other
type of contextual sequences, and therefore cannot use the semantic annotation sets
Atraj and Ai , i ∈ [1, n] representing the semantic information of the trajectories and
their parts.

2. The hierarchy of spatial regions: MiSTA does not consider any item hierarchy, and
therefore cannot use the layered multigraph G=(V, E) representing the hierarchical
indoor space.

3. The indoor space topology: MiSTA as well as all MDS pattern mining algorithms do
not consider any topological or other type of network, and therefore cannot use the
edges ei representing the connections traversed by the MO in the accessibility NRG
Gi=(Vi, Eacc,i) in any layer 0 ≤ i ≤ m of the hierarchy.

4. The starting time of each trajectory: MiSTA only considers time durations and not
absolute timestamps, and therefore does not consider any of the beginning or ending
timestamps t start

i , tend
i contained in each presence interval i ∈ [1, n] and representing

precisely when the MO entered/exited the spatial region.

The first two limitations can be addressed by combining MDS pattern mining with TAS
pattern mining. The other two limitations can only be addressed if additional modeling
elements are used within the mining process.

With respect to the first limitation, SITM can support the development of a combination
of the two algorithmic approaches, allowing the extraction of multidimensional trajectory
patterns. This provides a way to analyze the semantic aspects of trajectories as additional
item dimensions, and can be accomplished by combining the time-aware prefix-projection
generation mechanism of the MiSTA algorithm [24] with the multidimensional item genera-
tion mechanism of theM3SP algorithm [51] which is based on the notion of item specificity
as explained in Section 5.1. In this regard, SITM’s semantic annotation sets Ai , specific to
each presence interval i ∈ [1, n], can serve as analysis dimensionsDA [51] appearing in the
frequent patterns’ items and even being associated with semantic hierarchies as discussed
in Section 4.2. This is just one way of defining multidimensional trajectory pattern mining
algorithms. Alternatively, a different time restriction scheme could be implemented over an
existing MDS pattern mining method, thus providing proper temporal criteria for keeping
or pruning the candidate multidimensional sequences.

With respect to the second limitation and in close connection to the first one, the set
of cells V in SITM’s graph representation of the indoor space G=(V, E) can be set as the
primary analysis dimension of theM3SP algorithm [51]. This can readily enable the mining
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of multidimensional trajectory sequences containing several levels of spatial hierarchy (in
addition to any other semantic hierarchy).

With respect to the third limitation, SITM’s accessibility edges ei can be used as topolog-
ical restrictions for determining the validity (or plausibility) of candidate trajectory patterns.
Such mechanism can be based for instance on the calculation of a proximity measure, as in
the TP algorithm [17], which to our knowledge is the only sequential pattern mining algo-
rithm to consider topological information. Doing so is not only interesting in terms of output
quality, thanks to the resulting patterns respecting the indoor environment, but also as a
speed-up technique since it serves as an additional pruning criterion. This is very important
in a Big Data context, where large amounts of trajectories are quickly gathered and may
even need to be mined in real-time.

With respect to the fourth limitation, SITM’s absolute timestamps t start
i , tend

i specific to
each presence interval i ∈ [1, n] can be used to enrich the temporal context of trajectories,
and distinguish for example between the same visiting pattern occurring early in the day
rather than late at night, or on Monday rather than on Friday, etc. In practice, quantizing the
temporal dimension according to application needs and handling it as an additional analysis
dimension, is the simplest way to introduce this temporal context in the mining process of
multidimensional sequences.

As a first step to surmount the above limitations, we combine the approaches of MDS
pattern mining and TAS pattern mining. Thus, we define a multidimensional temporally
annotated sequence (MD-TAS) as a couple (s, α) consisting of two sequences:

1. An n-long sequence s =<s1, s2, ..., sn> of temporally ordered (according to a rela-
tion <t ) elementary vectors si = (ci,1, ci,2, ..., ci,m), i ∈ [1, n] whose components
are itemsets ci,j , j ∈ [1,m] composed of one or more items that respectively belong
to dimensions D = {D1,D2, ...,Dm} in a specific position within their respective
domain’s hierarchyH = {H1, H2, ..., Hm}.

2. An n-long sequence α =<α1, α2, ..., αn> of real-valued temporal annotations,
representing the duration of the respective vectors of s.

Hence, a MD-TAS can be represented as: (s, α) = α1
s1 → α2

s2 → ... → αn
sn

Moreover, an n-long MD-TAS T1 = (s, α) is mdτ -contained (i.e. multidimensionally
τ -contained) within another n′-long MD-TAS T2 = (s′, α′), n ≤ n′ (T1 �mdτ T2) iff
∃ 0 ≤ i0 < ... < in ≤ n′ such that:

1. ∀0≤k≤n: sk ≤H s′
ik

⇔ ck,1 ≤H1 c′
ik,1

, ck,2 ≤H2 c′
ik,2

, ..., ck,m ≤Hm c′
ik ,m

2. ∀0≤k≤n: |αk − α′∗k| ≤ τ where α′∗k =
ik∑

j=ik−1

α′
j

Simply put, T1 �mdτ T2 holds when there is a (potentially non-contiguous) subse-
quence of T2, whose itemsets correspond to all the itemsets of T1 but are more general than
them (condition 1), and whose annotations all differ by at most τ (condition 2) from the
corresponding annotations in T1.

Consequently, we define the multidimensional temporally annotated sequential (MD-
TAS) pattern mining problem as follows: given as input a set of MD-TASs Din, a minimum
support value minsup, and a temporal relaxation value τ , return as output all frequent MD-
TAS patterns that are mdτ -contained in Din with a frequency higher than minsup.

Based on the previous problem definition and our proposed conceptual trajectory model
defined in Section 3, we define the semantic indoor trajectory (SIT) pattern mining problem
as follows: given as input a set of SITs Tin defined according to SITM, a minimum support
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value minsup, and a temporal relaxation value τ , return as output all frequent SIT patterns
that are mdτ -contained in Tin with a frequency higher than minsup.

In this context, a SIT TIDmo,tstart ,tend
= (traceIDmo,tstart ,tend

, Atraj ) with
traceIDmo,tstart ,tend

= (ei, vi, t
start
i , tend

i , Ai)i∈[1,n] can be formulated as a MD-TAS (s, α)

where:

– the set of dimensions D = {Dspace, Dsemantics} contains a spatial dimension Dspace

which takes its values from the active domain of the edge-node couples (ei, vi) present
in the indoor space graph G, and one or more semantic dimensions Dsemantics =
{Dsem1 ,Dsem2 , ...,Dsemm} which take their values from the case-specific sets Atraj of
whole-trajectory semantic annotations and from the sets Ai of trajectory-part semantic
annotations.

– the corresponding set of hierarchies H = {G(V,E), Hsemantics} contains a spatial
hierarchy which is the indoor space graph, and one or more semantic taxonomies.

– the elementary vectors si = (ei, vi, Ai,1, ..., Ai,m), i ∈ [1, n] contain the follow-
ing items: a tuple (ei, vi), where the edge ei represents the transition from node
vi−1 to node vi , and one or more items that respectively belong to dimensions
Dsemantics = {Dsem1 ,Dsem2 , ...,Dsemm} in a specific position within the respective
semantic hierarchy Hsemantics = {Hsem1 , Hsem2 , ..., Hsemm}.

– the annotation sequence α =< (tend1 − tbegin1), (tend2 − tbegin2), ..., (tendn − tbeginn)> is
extracted from subtracting the real-valued timestamps representing the start and finish
of the corresponding elementary vectors of s.

– the absolute timestamps t start
i , tend

i can (optionally) be used in one of the m semantic
dimensions, called Dsemtemp , to represent the temporal context.

Finally, there exist parallel pattern mining techniques for managing large volumes of data
[4, 7, 44]. If trajectories are represented using SITM or any other sequence-based model,
then a subset of those techniques relevant to sequential pattern mining [23] becomes partic-
ularly interesting in the Big Trajectory Data context. Typically, such techniques distribute
the dataset in order to perform the counting step in parallel, although the candidate search
space may also be split instead [7]. It actually depends on the specific dataset and the spe-
cific computing framework, which approach is most suitable, due to factors such as load
balancing and communication costs. Even the type of method plays an important role as
for example pattern growth methods have smaller memory footprints than candidate gener-
ation methods [4]. For example, sub-datasets of very different structure may be formed and
cause some of the locally executed pattern mining methods to suffer in terms of compu-
tational cost. For instance, the MiSTA algorithm [24] used in Section 5.2 is very sensitive
with respect to the length of the input TASs, which is why the trajectory dataset needs to
be carefully split. Alternatively, the search space can be split thanks to the prefix-projection
exploration mechanism.

6 Conclusions and future work

In this work, we introduced a new model for representing semantic trajectories in
indoor environments, SITM, based on an indoor space representation compatible with the
IndoorGML standard [38] and using a hierarchical graph structure similar to [31]. Our
indoor space representation differs mainly in that it requires a static hierarchy of three basic
layers (building, floor, room) and proposes two more typical layers (building complex,
intra-room region of interest), thus avoiding ad-hoc subdivisions of space. Over this space
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representation, we introduced a semantic indoor trajectory model called SITM, by cou-
pling each visitor’s sequences of presence intervals in symbolic indoor areas, with semantic
annotations and flexible concept definitions.

Motivated by our case study involving a mobility dataset of Louvre visitors, composed of
spatially aggregated timestamped detections, we instantiated the model and offered trajec-
tory examples illustrating how its expressiveness can be exploited. We also ran experiments
using existing standard and advanced pattern mining methods, in order to qualitatively study
them, but also to illustrate how new trajectory pattern mining methods can combine multiple
data dimensions with a temporal dimension, and provided a formalization for the problem
of trajectory mining represented under SITM.

As future work, it would be interesting to integrate more thoroughly the indoor space
representation with formal ontologies of cultural heritage information (e.g. CIDOC Con-
ceptual Reference Model [19]). Also, modeling virtual instead of physical trajectories could
be compelling in the museum domain, where an attention-based interpretation of visitor
movement can be even more important than one based on physical presence. Furthermore,
with respect to the analysis of semantic trajectories, we plan to implement our proposal of
combining the temporal and multidimensional aspects of sequential pattern mining meth-
ods, also adding topological information in the mining process, in order to derive interesting
indoor mobility behaviors. Also, we plan to test parallel versions of our algorithms in order
to scale up the analysis. With regards to the Louvre case in particular, it is interesting to
account for the problem of data sparsity by restructuring longer indicative visits from the
actual fragmented zone sequences.
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