Geolnformatica (2021) 25:397-416
https://doi.org/10.1007/s10707-021-00433-2

®

Check for
updates

Query the trajectory based on the precise
track: a Bloom filter-based approach

Zengjie Wang, et al. [full author details at the end of the article]

Received: 20 March 2020 /Revised: 6 January 2021/ Accepted: 18 February 2021/
Published online: 15 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Fast and precise querying in a given set of trajectory points is an important issue
of trajectory query. Typically, there are massive trajectory data in the database,
yet the query sets only have a few points, which is a challenge for the superior
performance of trajectory querying. The current trajectory query methods com-
monly use the tree-based index structure and the signature-based method to
classify, simplify, and filter the trajectory to improve the performance. However,
the unstructured essence and the spatiotemporal heterogeneity of the trajectory-
sequence lead these methods to a high degree of spatial overlap, frequent I/O,
and high memory occupation. Thus, they are not suitable for the time-critical
tasks of trajectory big data. In this paper, a query method of trajectory is
developed on the Bloom Filter. Based on the gridded space and geocoding, the
spatial trajectory sequences (tracks) query is transformed into the query of the
text string. The geospace was regularly divided by the geographic grid, and each
cell was assigned an independent geocode, converting the high-dimensional irreg-
ular space trajectory query into a one-dimensional string query. The point in each
cell is regarded as a signature, which forms a mapping to the bit-array of the
Bloom Filter. This conversion effectively eliminates the high degree of overlap
and instability of query performance. Meanwhile, the independent coding ensures
the uniqueness of the whole tracks. In this method, there is no need for additional
I/O on the raw trajectory data when the track is queried. Compared to the
original data, the memory occupied by this method is negligible. Based on
Beijing Taxi and Shenzhen bus trajectory data, an experiment using this method
was constructed, and random queries under a variety of conditions boundaries
were constructed. The results verified that the performance and stability of our
method, compared to R*tree index, have been improved by 2000 to 4000 times,
based on one million to tens of millions of trajectory data. And the Bloom Filter-
based query method is hardly affected by grid size, original data size, and length
of tracks. With such a time advantage, our method is suitable for time-critical
spatial computation tasks, such as anti-terrorism, public safety, epidemic preven-
tion, and control, etc.

Keywords Fast trajectory query - Geography big data - The Bloom filter - Track query

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-021-00433-2&domain=pdf

398 Geolnformatica (2021) 25:397-416

1 Introduction

With the widespread use of sensors and GPS, a massive number of trajectory data are
accumulated every day, such as taxi trajectory data, bus trajectory data, and other moving
objects’ trajectory data. In some important applications, such as anti-terrorism, infectious
disease prevention, suspect tracking, etc., tracks queries often require high timeliness and
accuracy. However, the given query point set is small (several points to thousands), but the
trajectory database is massive (millions of trajectory points to billion-level), so it is hard to
obtain precise tracks in a short time. Therefore, how to efficiently query the track from the
trajectory big data is an important issue in the trajectory retrieval field.

At present, the main methods to solve the efficiency problem of trajectory query
are divided into two major aspects: tree-based spatial index and signature-based
methods. The tree-based spatial index method uses the spatial index mechanism to
improve trajectory retrieval efficiency. This mechanism divides the geo-space regularly
and then uses the tree structure to organize the trajectory data hierarchically. Howev-
er, the unstructured essence and the spatiotemporal heterogeneity of the trajectory
cause the tree-based structure to have a high overlap of search region, lowerings
query performance. The signature-based method uses the signature and storage struc-
ture of the trajectory to simplify and filter the trajectory. Because all the trajectory
signatures are scanned and filtered before accessed, a large number of disk accesses
are reduced. This type of method has certain advantages in trajectory organization and
storage, and can better achieve the fuzzy matching and similarity measurement of
trajectories, however, its problems such as difficulty in structure embedding and high
complexity of signature calculation, would cause the inefficient trajectory search.
These two methods both have improved the query performance to a certain extent,
but they are far from the high efficiency, and their memory occupation and query
time increase shapely when facing the trajectory big data. These two methods always
have a bottleneck in efficiency while querying the trajectory based on the single
point, and there is no research to search the trajectory based on the independent tracks
(the subsequence of the trajectory).

The general trajectory retrieval takes the point as the minimum search object,
instead of the point sequence (trajectory-subsequence, track). In fact, the essence of
the track is a sequence of position records of moving objects in space and time [1],
and the long time series trajectory consists of many tracks. A track is composed of a
series of points, which could be regarded as a single independent object for the input
condition of the query process. In this method, we attempt to deconstruct the
trajectory into the independent tracks for the query.

The trajectory points are high-dimensional and disordered in time and space.
However, when they are regarded as a track, they can be regarded as point stream
data, which are very similar to text stream data in structure and semantics. Both
stream data are composed of a series of points/characters, and the text string and the
track as a whole both have special meanings. Therefore, we try to convert the
irregular and disordered trajectory subsequence into a track string, and the gridded
space and geocoding provide convenience for the mapping of tracks to strings. The
geo-space is divided into regular cells by grid and each grid is given a unique
independent geocode. The points located in the same cell would be regarded and
simplified at the same point, thereby eliminating the random distribution of trajectory

@ Springer



Geolnformatica (2021) 25:397-416 399

points in each grid. The combination of grids makes irregular trajectory point se-
quence turn into regular encoded track strings and maintains the uniqueness after each
track encoding process. After gridded and encoded, the track can be mapped into the
bit-array of the Bloom Filter.

The Bloom Filter [2] has great advantages in string retrieval, and it represents a specific
string through the combination of several bits, allowing the memory to be utilized efficiently.
The query of the Bloom Filter is implemented with some independent hash functions, and the
time complexity is closed to O(1)and this query is not affected by the length of the string. This
advantage is particularly obvious when dealing with big data. The characteristics of the Bloom
Filter provide the convenience of processing the massive encoded tracks. Therefore, it is
possible to use the Bloom Filter to query trajectory big data, quickly and precisely.

In this paper, we try to use the Bloom Filter to construct a track query method, combining
geographic grid, trajectory encoding, hash mapping, etc. to achieve a fast and precise query of
massive trajectory data. This track query method mainly involves the construction of the
geographical grid, the tracks encoding, the creation of the Bloom Filter, and the query of
tracks, as shown in Fig. 1.

The contributions of this paper are shown as follows:

We have proposed a new fast retrieval method for trajectory data, called the BF-based track
query method, which can quickly retrieve target track from massive trajectory big data in time
complexity O(1).

We use the track as the smallest unit of the query, rather than a single trajectory point,
allowing spatial trajectory query to be converted into a string query.

We conduct extensive experiments study based on different vehicle trajectory datasets, to
test the effectiveness, efficiency, stability, and robustness of our method. The time and
efficiency of our method under different data volumes are compared. The experiment results
demonstrate the effectiveness and efficiency of our method.

Trajectory Input [.]
DataSet Tracks —

User
Input Query
| Geo-Grid |
l Coding
/ Trajectory String List / Coding
Insert

Hash1;Hash2;Hash3...  Filter = Hashl;Hash2;Hash3...

Map .. Map o1 0/1 .. Yes/No

!

011/0]{0|0|1{0|0[L{0[{0|0[0]1{O[1

Bit-Array

Fig. 1 The process of query method based on the Bloom Filter

@ Springer



400 Geolnformatica (2021) 25:397-416

2 Related work

To the best of our knowledge, previous studies of the tree-based index for improving trajectory
query efficiency, mainly focus on the geo-space partition, minimizing coverage of retrieval
region, and reducing search region. Most of these index structures are based on the develop-
ment and evolution of the R-tree and its variants, and the core of their index is the tree-based
structure.

Geo-space partition Geo-space partition uses the grid to divide the whole space region
regularly, including SETI [3], SEB-Tree [4], etc. The SETI (Scalable and Efficient Trajectory
Index) structure [3] proposed by V. Prasad Chakka et al. defines that geo-space is partitioned
into non-overlapping regions, and each region builds a specific index: the R-Tree [5]. But in
each sub-region, R-Tree will bring retrieval region overlap. SEB-Tree index structure tries to
represent trajectory segments by their start and ends timestamp within a spatial grid. Although
geo-space partition has reduced query time and has a good performance for regular spatial
data, it is hard to process the irregular and random massive trajectory data.

Minimizing coverage of retrieval space The main access methods for minimizing coverage
of retrieval space are R-Tree and its variants [5—7]. The R-tree index structure [5], proposed by
Guttman, uses quadratics and linear algorithms to split spatial objects, but the tree-based index
structures have a heave MBR (minimum bounding rectangle) overlap. Greene’s [8] split
method, proposed by Greene, has much fewer pages overlap than Guttman’s strategy. R*Tree
[6], proposed by Beckmann, uses the topological split algorithm to reduce page overlap, and
the reinsertions further optimize the performance of the tree for the index of spatial points.
Bulk loaded R*Tree using Sort-Tile-Recursive (STR) [7]., the leaf pages do not overlap at all,
but it is hard to process the point sequence (the track) and the trajectory data required to be
known beforehand. R-Tree and its variants do not use index trajectory directly, but most index
structures make them a core and important part.

Reducing search region The trajectory is randomly distributed in the whole Euclidean space
in principle, but most vehicles or moving objects usually move on geo-networks(road), instead
of on the whole geo-space. Researchers have proposed many index structures based on fixed
geo-networks. For objects constrained to move on fixed networks, Frentzos [9] proposed
FNR-Tree (Fixed Network R-Tree), which is to construct a 1-dimensional R-trees on top of a
2-dimensional R-Tree to index trajectory segments. Li Guohui and Zhong Xiya [10] proposed
an index structure called IMTFN (Indexing Moving objects Trajectories on Fixed Networks),
which is based on the FNR-Tree and improves it. Victor Teixeira De Almeida and Ralf
Hartmut Giiting [11] proposed MON-Tree(Moving Objects in Networks Tree) index structure,
which uses the top-level two-dimensional R-tree and a hash table structure to index the road
sections in the traffic network. The index based on the fixed network can reduce the overlap of
index space and redundancy to some extent. However, the trajectory index based on the fixed-
network still has the problem of index coverage, because most index structures have to
maintain an R-Tree as their core part.

Signature-based methods On the other hand, many researchers try to solve the bottleneck of

track query performance from the aspects of trajectory signature and storage structure. Chang J
et al. [12] proposed a signature-based trajectory indexing scheme for moving the object’s

@ Springer



Geolnformatica (2021) 25:397-416 401

trajectory, which has better performance than the TB-tree and FNR-tree. Shim et al. [13]
introduced a new signature-based indexing scheme that supports similar sub-trajectory retriev-
al. Scanning and filtering all signatures before accessing the trajectory data reduces a large
number of disk accesses thus achieving better performance. PIST [14], introduced by Botea
et al., tries to partition points set into a variable-sized grid and then uses the quad-tree to query
the data. But it does not adapt to new data being added dynamically, and it focuses on indexing
points rather than trajectories. The TrajStore [15], introduced by Philippe et al., proposes a new
adaptive storage system that indexes the trajectory data based on the quad-tree index and
clustering methods. Same as PIST, it partitions points rather than trajectories, and it hard to deal
with the long-sequence trajectory and trajectory big data. The SharkDB [16] attempts to use in-
memory storage to achieve the purpose of fast track retrieval and no I/O cost, but the memory
would overload when the SharkDB faces the big data of trajectory. Although researchers have
done a lot of research on the storage structure and storage modes of the trajectory, no method is
found to meet the rapid and precise query of the fast-growing massive trajectory data.

The Bloom filter The typical Bloom Filter was put forward by Burton Howard Bloom [2] in
1970, but it does not support some operations, such as the delete, insert, and other operations.
To solve these problems, researchers introduced a series of Bloom Filter variants based on
Burton’s work. For delete and insert operations, the Counting Bloom filters [17] proposed by
Fan et al., provide an operation that can delete and insert elements without having to re-create a
new filter. Almeida et al. proposed Scalable Bloom filters [18], which dynamically insert
elements while ensuring a false positive rate (FPR). The Bloom Filter can also be used for the
spatial query. The Spatial Bloom filters, proposed by Palmieri et al. [19] aim to store location
information, especially when the location is confidential. For performance improvement, the
Parallel Partitioned Bloom Filters [20] can perform parallel hash calculations for insertion and
query; the Distributed Bloom filters [21] support parallel processing of elements. The data
structure proposed by Kiss et al. [22] can exclude not only false negatives but also false
positives, which is extremely important for those FPR intolerable scene applications. At
present, the Bloom Filter has perfected the complete system of queries or indexes for the
specific goals and scenarios. And the retrieval method based on the Bloom Filter, which is
different from the index of the tree-based structure, is a Boolean decision, not a logical
judgment. It will help to improve retrieval efficiency.

In short, the tree-based index structure design satisfies the spatial relationship among spatial
geometry objects. It has certain advantages for the regular distribution of spatial objects and
spatial relationship queries, but it is not suitable for Spatio-temporal trajectory data, especially
the long trajectory. Also, the research on the storage and organization of trajectory data has
improved the query efficiency of trajectories to a certain extent, but when massive trajectory
big data are processed, there are still excessive memory usage and frequent I/O. Therefore, it is
particularly important to develop a BF-based trajectory query method.

3 Method
3.1 Problem definition

Figure 2 gives an illustration of a GPS trajectory. The trajectory, which consists of plenty of
points, is the path of a body as the path travels through space. The track is the record left by

@ Springer



402 Geolnformatica (2021) 25:397-416

End
Start . L
® " po Pmtl ... Pmtk --- Pn
P1
CarID Time Latitude longitude
P1: Cl T1 Latl lonl
Pn: Cn Tn Latn lonn

Fig. 2 GPS trajectory and corresponding subsequence

something that has passed along, such as the track of a ship or the track of a car. That is to say,
a trajectory is made of a track or points sequence. For the original vehicle trajectory data, we
can extract a series of independent tracks, each of which can be represented as a single track, as
depicted in the top part of Fig. 2.

Let p; denote the start of the trajectory, and p,, denote the end time of the trajectory. The track of
a GPS trajectory is a sequence of points between the point p,, and the pointp,, , ;. Put formally,

= {pmv"ﬂperk} (1)

The given GPS trajectory data are defined as 7, where the track is represented as the
sequencel = {p,, ..., pm+is Of the trajectory point: prepresents a single trajectory point,
represented by the tuple p; = (id, timestamp, latitude, longitude), where id represents car’s ID,
timestamp represents the time of the trajectory point p; records, latitude represents the latitude
coordinate of p; coordinate, and longitude represents the longitude coordinate of p;, as depicted
in the bottom part of Fig. 2. The track Q to be queried is represented as O = {q1, ¢2, - .-, ¢n}-
The geographical grid is defined as G, and the range is represented as T},,, where minX,
minY, maxX maxY is the minimum spatial range of the coordinates of all trajectory points in the
trajectory set 7, and the cell size in the geographic grid is represented as Gg,,in meters. The
grid is divided into longitude direction and latitude direction from the beginning of the upper

. . Lo X1,X2, +vs X,
right corner of the grid, which is represented as Code = {yl ’y2’ ’y” . For example, based
15025 +2Vn
Pum,....Pm+k 1 2 3 n Si Map 0
. — \PH n — Codin - — 1
3 Q
o ~al
Pm,... Pm+tk 2 % P(n.Z) : E (])
. Si , Z
N P — Codin Si = \5 1
Pum, ..., Pmtk 3 . Q / 0
Pu3) = 1
fey P23 , ) e /
Pm,... Pmtk 23 Sn-2 Z a 0
. (0]
P, Ptk > 1 // \S‘j/ — Coding™| Sn-1 g 1
Pm Ptk P(I,n) P P Sn .
Track dateset Geo- space Encoded track Bit Array

Fig. 3 Schematic diagram of geographical grid representation of the trajectory

@ Springer



Geolnformatica (2021) 25:397-416 403

on the trajectory path represented by the geographical grid, Fig. 3 shows how to map the
trajectory sequence to the Bloom Filter.S; represents a track, each of which contains several
trajectory points. For example, the trajectoryS; would be encoded as
Code(s,) = id—112232n3nn (Table 1).

Definition 1 (track). The track is a subsequence of trajectory, which is a subset of massive
vehicle trajectory dataset, represented by /, continuous in time and space, and has a certain
linguistic significance. In this paper, the track represents the spatial path of the vehicle in a
period. Given a trajectory data set 7, we can construct a series of tracks according to the
original irregular trajectory points.

l: {plap27 --.7pn}’ lQT, T= Z:Ol

Definition 2 (geo-grid) The geo-grid, represented by G,,,, is the geographic grid, which is
mainly used for regularizing geographic space and track coding. Given a trajectory dataset 7,
the geo-grid will be constructed based on 7°s minimum bounding extent 7,,,and the single
grid size g;,., and every single grid has an independent geocode, as shown in Fig. 3 left part.

GgeO = { Twsr, & Size}

Definition 3 (geocoding). Geocoding is the process of mapping the tracks to the encoded
tracks. The intersection of the trajectory data and the geo-grid can get the encoded trajectory

n
set Y. S;, as shown in Fig. 3 middle part.
i=0

1

S,‘ = Gng Z /
=0 i=0

Table 1 Table of notations

Symbols Description
Di the trajectory point
/ a sequence of points, track
n
31 all tracks set
i=0
Tonsr the minimum spatial range of all trajectory points
a track to be queried
Siize the cell size of geo-grid
S; a track after encoded
T the trajectory data
FPR false-positive rate
Geo the geo-grid
i s, a set of the encoded track
1
i=0
BF the Bloom Filter
hf the hash function of the Bloom Filter
By, the bit array of the Bloom Filter
Irr the trajectory index based on Bloom Filter

@ Springer



404 Geolnformatica (2021) 25:397-416

Definition 4 (the Bloom Filter retrieval) The retrieval based on the Bloom Filter, represented
bylrgr, is an indexing structure constructed on hash functions and bit-array of the Bloom Filter.
The Bloom Filter generates m hash values based on each encoded track and maps hash values
one by one into the bit-array, as shown in Fig. 3 right part.

Ipr = {Z Si, > hfaBarr}
=0 j=0

3.2 Bloom filter

Since the Bloom Filter was put forward by Burton Howard Bloom [2] in 1970, it has been
widely used in big data queries to improve query efficiency and reduce memory overload. The
query time of Bloom Filter is under a constant range and the cost of storage space is small, so it
has good practical value. It is mainly used in the data dictionary, data judgment, collection, and
intersection, such as dictionary query [23], Spam Filtering system [24], and so on.

The essence of Bloom Filter is to use several bits to represent the elements in the bit-array.
The essence of this paper is to map the string elements in the collection into a bit array through
k independent hash functions. As depicted in the right part in Fig. 4, S; represents the string set.
The string obtains multiple addresses in the bit-array through multiple hash operations and sets
the corresponding value on the address to 1.

3.3 Framework

In this section, we will present our framework of this method based on the Bloom Filter. Our
framework consists of geo-grid construction, tracks encoding, and querying track. Algorithm 1
outlines the construction process. In the first phase, we obtain the minimum spatial range (7},,5,.)
based on the trajectory data, and then use 7, and gj;,, to create a geographic grid and assign a
specific code. Finally, we get an encoded geo-grid G,,,. The second phase aims to perform
n
trajectory encoding. Through geo-grid, each independent track is encoded to S;, and a set ), S;
i=0
is formed. In the third phase, we construct the Bloom Filter /7z7 whoes elements are the
encoded tracks. We create the Bloom Filter based on the size of ) S; and FPR. Then
i=0
according to the results obtained in the first two phases, the /75 will be constructed.

{ 1,2, 3}

Hash Funcl Hash Func2

[0joj1rfofo

Fig. 4 An example of the Bloom filter

Lj1jrjofojofoj1]ofo]

@ Springer



Geolnformatica (2021) 25:397-416 405

When we have a track Q to be queried, the O needs to be encoded first. Then the Q will be
input to I7gr. After a series of processing I7pr can judge whether the track Q exists in the
trajectory dataset. The specific details will be discussed further in the following two sections.

3.4 The geographic grid and geocoding

The geographic grid (geo-grid, Gg,) is a unified and simple geospatial partitioning and
positioning reference system. According to unified rules, the area is continuously divided
according to distance or latitude and longitude to form regular or irregular polygons. Each
polygon is called a grid or cell (a unit grid/cell) and is given a unique code. The geo-grid used
in this paper is regular and decided by distance. Other forms of the grid (irregular grid,
Voronoi, etc.) can also be used, depending on specific geospatial applications. The grid size of
the geo-grid and the study areas are decided by the real problem and user selection. When the
geo-grid is created, each grid is given a unique code, and each track will get a unique code.
Each of these tracks includes the vehicle ID and the points, ensuring that each track is unique.
The trajectory geocoding process is shown in Fig. 4.

3.5 Track insert and query process

Unlike the traditional index structure, the index table of the Bloom Filter is represented by a bit
array. The Bloom Filter initial bit array is set to 0. The number of a hash function is decided by
the data size of Trajectory instead of the user set. An element (track) calculated by hash
functions only occupies several bits of the bit-array. And a bit can also be shared by multiple
elements, as shown in Fig. 4. The creation of the Bloom Filter is mainly to construct bit array
and hash functions, and its elements from the string set of trajectory point sequence are formed
by geo-coding. After the k hash operations of each track string, which will be mapped to the bit
array randomly, the Bloom Filter of the track will be constructed.

The query process of the track—to judge whether the input track exists in the set of the
current trajectory dataset—is based on Bloom Filter Because the input is a sequence of
coordinate points, it is necessary to use the geo-grid to encode these points, the same as the
construction process. The results are mapped to the bit array one by one, and it is judged that if
the result of the hash operation has one bit different from the bit array, it can be concluded that
the input track does not exist in the trajectory set, and if it is all the same as the bit array, it can
be judged that the path is most likely to exist in the trajectory set. The whole method
construction and query process are shown in Fig. 1.

4 Experiments and results
4.1 Experiment data description

The data used in this study come from the T-drive taxi trajectory data set provided by
Microsoft Research Institute [25, 26] and Shenzhen City bus trajectory data, as shown
in Fig. 5. Because each taxi and bus trajectory is a long period of space-time point
sequence, to facilitate experiments and performance testing, the data will be segment-
ed to simulate the independent tracks of the vehicle. According to the topological
relationship, time threshold, or other segmentation methods, the tracks are formed by

@ Springer



406 Geolnformatica (2021) 25:397-416

Beijing City Downtown arca

40.10

40.05

39.94

39.92

39.90

1162 1163 1164 1165 116.6 11632 11634 11636 11638 11640 11642 11644 11646
Shenzhen City FuTian District

22.56

254 1

226

252

22.50
138 139 1140 1141 1142 1143 1144 113.98 114.00 114.02 114.04 114.06 114.08 114.10

Fig. 5 Trajectory data overview of the study area (Beijing City and its Downtown area; Shenzhen City and its
FuTian District)

several points of one trajectory. The segmented points sequence will constitute the
vehicle track set.

The experimental platform is Windows 10, the processor is Intel (R) Core (TM) i7-9750H
CPU 2.60 GHz, running memory 16GB, and the compiler version is MS VC++ 12.0. The
third-party library of the Bloom Filter is ArashPartow/bloom [27]. The R*Tree index is
Boost.Geometry.Index [28]. The experimental data are the 2008 Beijing taxi trajectory data
[25, 26] and the 2014 Shenzhen city bus trajectory data, Guangdong Province, China.

4.2 Results

In this paper, we conducted experiments on taxi trajectory data and bus trajectory data, the
conclusions drawn are the same. As shown in Fig. 6, the first line shows the result of the taxi
trajectory data, and the second line is the buses’.

Compared with the R*Tree index, the query efficiency of this method is verified. For the
precise query, the query time based on Bloom Filter is much shorter than that based on the
R*Tree index. Figure 6a shows the comparison of the query time of R*Tree and the Bloom
Filter with different numbers of data. The horizontal axis represents the number of points and
the vertical axis represents 2000 query times. The number of points on each track is more than
5. Although the data sources are different, we can see that the query time based on R*Tree is
much longer than that based on the Bloom Filter, more than 1000 times according to the
experiments. For the R*Tree index, the query time complexity is O(log n) [5], and the query
mode of Bloom Filter is based on the hash function, and its time complexity is O(1), which
also directly illustrates that the index based on Bloom Filter is negligible in terms of query

@ Springer



Geolnformatica (2021) 25:397-416 407

Taxi(a) Taxi(b) Taxi(c) Taxi(d)

g
H

\
H

x X
N v
A

¥ R'Tree
10001/ —4— Bloom Filter

¥ ReTree =
~4— Bloom Filter

¥ ReTree
~4— Bloom Filter

=y

H

¥

¥ ReTree
~4— Bloom Filter

S
<

¥

. *
¥ ¥
200 _ A o S

2000 Queri Time (/s)_
Construction Time(/s)
g
\
2000 Query Time (/s)
>
%
Constructi;: Time(/s)
/

s 8
<

| e S S, s, s, s, s,

02 04 06 08 02 04 06 08 ) 0 2 P P 80 100

Number of point in each track 17 Amount of trajectory data <7 Amount of trajectory data Number of point in each track
Bus(a) Bus(b) Bus(c) Bus(d)

“ e mm—— ] X

> il

100

¥ ReTree

p ¥ ReTree
—4— Bloom Filter e

¥ RTree A ¥
\ —4— Bloom Filter

—4— Bloom Filter v

H
H

H
H
H

2000 Query Time (/s)
g
X
Construction Time(/s)

P
-
o
ol
P
v

z

¥ ReTree
» 4~ Bloom Filter

H
H
«

*
Y
~¥—¥y

H
:
H

2000 Query Time (/s)
Construction Time(/s)

05 10 s 20 25 05 10 15 20 25 ) 40 60 0 2 ) P 50

17 17
Number of point in each track” Amount of trajectory data Amount of trajectory data Number of point in each track

Fig. 6 Query and construction time of the Bloom Filter and R*Tree index

time. Similarly, there is a large disparity in the time consumed by the construction of these two
methods. The time consumed by the R*tree-based method increases linearly with the increase
of data. However, the time changes of the Bloom Filter is negligible. Also, the time consump-
tion of the two methods is no longer on the same level. As shown in Fig. 6b, the horizontal axis
represents the number of total points, and the vertical axis represents the cost time of
constructing the method.

In the case of the same trajectory data, we tested the impact of a different number of points
included in each track during the query and construction. The test results are as follows: The
number of points included in each track does not affect the Bloom Filter. With the increase of
the number of points in the track, the R*Tree index has an overall upward trend, although it
fluctuates, as shown in Fig. 6¢c. The horizontal axis represents the number of points in each
track, and the vertical axis represents 2000 query times. Figure 6d shows the time consumed
when the indexes were constructed, in which the two kinds of indexes have the same total
number of track points, and the number of track points in each track is different. Also, although
the two lines are slowly approaching, they still differ by several orders of magnitude in time
consumption.

To further confirm the performance advantage of Bloom Filter for massive trajectories in
other aspects, the following tests were performed in this paper:

The experimental result shows that the Bloom Filter has great advantages in memory
consumption by using its bit-array, as shown in Fig. 7 and Table 2. Figure 7 shows the
memory occupation of the Bloom Filter, including the memory occupied by the bit array, the
encoded track set, and the original trajectory data. The transverse axis represents the number of
points, and the longitudinal axis represents the amount of memory occupied, in KB. From the
table and graph, we can conclude that compared with the original data, the memory consump-
tion of the bit array is much smaller than the original data. With the increase of the number of
the original data, the memory consumption of the bit-array increases linearly and slowly.

For the query efficiency of this method, the experimental results are as follows: in Fig. 8a,
the transverse axis represents the number of points contained in each track, and the longitu-
dinal axis represents the time consumed for 10,000 times of repeated query of the same tracks
in seconds. The number of points in every single track has little effect on the query time.
Moreover, the number of points in the different original trajectory set (4,073,886, 8,415,326,
12,871,223) has little effect on the retrieval time, which also satisfies the conclusion explained
above, that is, the query time of Bloom Filter is determined by hash functions, and the time

@ Springer



408 Geolnformatica (2021) 25:397-416

200000 4 |——] Bloom Filter —
) [ Encoded Track
% 150000 - [ Original Data .
=]
'; —
[
=
-
S 100000 -
(=}
&
=}
£ 50000 -
=

0

T T T T
4073886 8415326 12871223 17240992
Number of trajectory point

Fig. 7 The memory occupied Comparison of different amount of trajectory data

complexity is about (1) . Also, the influence of grid size of geo-grid on query time is tested in
this paper, such as shown in Fig. 8b: transverse axis represents the number of query points
each time, longitudinal axis represents the time consumed for 10,000 query times in seconds,
and the five curves represent the time consumed to retrieval track based on different grid sizes
(100*100, 500%500,1000*1 000,3000%3000,8000%8000, in meters). Through experiments, we
can conclude that the grid size has little effect on the query efficiency of tracks with different
lengths.

5 Discussion
5.1 FPR influence

For the Bloom Filter, the only weakness is that it has a certain false-positive rate, which means
the Bloom Filter may misjudge elements that do not exist in the dataset, but those elements that
exist in the set will not be misjudged as not belonging to the set, so we call it false positive

k
instead of a mistake. Formula p = (1—/%) [2] represents the calculating method of the false

positive rate. n denotes the number of input elements, £ is the number of hash functions, m is
the size of bit-array, andp is the false positive rate. In the experiment, the false positive rate is
set to a certain value, which means that the overall false-positive rate needs to be less than this
value. After many tests on the two data-sets, the false positive rate is far less than the set value.
The tracks to be queried in the experiment are randomly generated, and the results are shown

Table 2 Comparison of memory occupied by different trajectory data size

Number of Trajectories Bloom Filter(KB) Encoded String (KB) Original Trajectory (KB)
4,073,886 1909 29,830 47,741

8,415,326 3944 61,744 98,617

12,871,223 6032 94,975 150,835

17,240,992 8080 127,300 202,043

@ Springer



Geolnformatica (2021) 25:397-416 409

(@) (b)
61 (— 4073886 61 (— 100%100
Z  ||— 8415326 2 ||—— 500%500
@ <@
E 4 ]| 12871223 £ 4|~ 1000%1000
£ & —— 3000%3000
s s 8000*8000
=4 =4
= 24 = 24
= =3
=3 >
= =
04 04
CEENDOINDEAANDAD L C OO AN ESANIAN
NN GN NNS AN S NGNS N NNS AN S
VESISETETISSES VECIETETISEE S
Number of point in each track Number of point in each track

Fig. 8 Comparison of the influence of querying different track points on retrieval efficiency

Table 3 FPR of Beijing Taxi Trajectory (NTaxi means the number of taxi trajectory points)

NTaxi 250 K 500 K 750 K 1000 K
FPR

0.00001 0 0 0 0
0.00005 1 1 1 1
0.0001 1 1 2 2
0.0005 7 14 16 20
0.001 4 12 21 61
0.005 337 385 479 569

in Tables 3 and 4, and Fig. 9. Figure 9 shows the comparison between the experimental value
and the set value of the FPR, where FPR is the set value, exp Taxi is the experimental FPR of
the taxi trajectory data, and exp Bus is the bus trajectory. The horizontal axis of Fig. 9
represents the number of different trajectory points in the two trajectory data sets, and the
vertical axis represents FPR. Tables 3 and 4 give specific experimental values. In this paper,
we tested FPR under different data volumes, but for the different scenarios, FPR could be
different, which needs further study.

5.2 Drawbacks and future work
At present, there are many shortcomings in this method, and a lot of work is needed to

complete this method. This work only distinguishes the tracks in the way of precise matching
and does not further verify the fuzzy query. The tracks are simulated by segmented taxi and

Table 4 FPR of Shenzhen Taxi Trajectory (NBus means the number of bus trajectory points)

NBus 1000 K 2000 K 3000 K 4000 K
FPR

0.00001 0 0 0 0
0.00005 1 3 3 3
0.0001 2 4 7 12
0.0005 13 27 53 90
0.001 35 159 219 294
0.005 1055 1679 2165 2807

@ Springer



410 Geolnformatica (2021) 25:397-416

(0.00001) (0.00005) (0.0001)
0.000010 3% 0.00005 {X———d———d6—X 0.00010 Pe——d———r6—X
‘:‘7‘ 0.000008 - % 0.00004 g 0.00008
] & P & P
£ 0.000006 - — FPR £ 0.00003 - —¢ FPR £ 0.00006 - = FPR
=z ~¥— exp_Taxi =z ~¥— exp_Taxi E ~¥— exp_Taxi
5.: 0.000004 exp_Bus § 0.00002 - exp_Bus § 0.00004 - exp_Bus |
E 0.000002 - E 0.00001 A 'E 0.00002
L —— —— 0.00000 {X——¥— %% 0.00000 {=—F—F—%
(‘ Q\“ g‘(‘ N Q" \~ " Q\L Q\L
e%“ o ““ e“‘ S o Qmw "“% o ms““ o @
\ "
Amount of Trajectory Amount of]rajcclory Amount of Trajectory
(0.0005) (0.001) (0.005)
0.0005 P ——d———r6—X 0.0010 63— 0.005 P————d6———6—X|
£ 0.0004 4 £ 0.0008 £ 0.004
4 — & (e 14 —
£ 0.0003 - = FPR £ 0.0006 = FPR £ 0.003 - = FPR
z ~¥— exp_Taxi z ~¥— exp_Taxi z ~¥— exp_Taxi
= = o
& 0.0002 4 exp_Bus & 0.0004 exp_Bus & 0.002 A exp_Bus |
£ 0.0001 £ 0.0002 2 o001 4
0.0000 I L e e — T e
\%gg\‘ .L“““(” \“@‘5 w@v \ \‘ ‘L \L ‘5““%“ m%g(‘ \ \L ‘L (‘ \QQQV %QQV~
PP \“@\ AT T \Q@\ B MEPOULGIPG R N
Amount of Trajectory Amount of Trajectory Amount of Trajectory

Fig. 9 False positive rate of set valves and experience values

bus trajectory, and there is no further processing of the merging, deletion, and simplification of
the points in the real tracks. For more effective geocoding, the geographical grid also needs to
be further studied according to the spatial distribution of the points.

Although this work is only the first step to verify the use of the Bloom Filter to query tracks,
it is an important step. If we want to complete the construction of the Bloom Filter-based
trajectory query method, an in-depth research is needed in the insertion, update, deletion
operation, and other aspects. For later research, we plan to use the Counting Bloom Filters [17]
to improve update and delete operations and use the structure proposed by Kiss et al. [22] to
study the efficiency and performance of trajectory query without FPR.

6 Conclusion

This method verifies that the Bloom Filter has a great advantage of querying trajectory point
sequence, in terms of both time efficiency and memory occupancy. Moreover, the point
sequence, instead of querying every single point, is regarded as the minimum retrieval
granularity in this method, which can convert the track query into a string query. Also, this
method has robust stability, and the retrieval efficiency is hardly affected by the length of the
input tracks, the size of the geo-grid, and data size. In the process of querying, to judge the
existence of a certain track only needs to compare the hash results one by one, and the
comparison is the IO operations on bit-array instead of the original data. The most important is
that this method can effectively avoid a low recognition rate of traditional tree-oriented index
structure and index overlapping.

@ Springer



Geolnformatica (2021) 25:397-416 41

Big data contain a great deal of information and are widely used. A suitable query method
should be constructed according to the different applications of big data. In the application of
trajectory big data, our method provides a new model for the fast retrieval of tracks and also
provides a new idea for querying spatial trajectory data. Therefore, our method could be
applied to criminal suspect trajectory retrieval, epidemic prevention and control, and so on.
When the suspects escape, they will inevitably leave their trajectory, even if it is discrete track
points. Based on the method in this paper, the points are combined into tracks and quickly
retrieved in trajectory big data to obtain tracks that match the suspects’ trajectory in the same
period. Even if the trajectory is not of the suspects’, it may be the witnesses’, which can
quickly provide clues for the investigation of the case. For those who come in contact with the
2019-nCoV or other infectious diseases patients, their trajectories can be collected as input
tracks. Based on these tracks of infected persons, searching for the same or related tracks in the
trajectory big data can find close contacts with the infected persons in a short time.

Acknowledgments This work was supported in part by the National Natural Science Foundation of China
under Grant 41625004, 41971404 and the Key Projects of Research and Development under Grant
2016YFB0502301.

References

1. Li X, Han J, Kim S, Gonzalez H (2007) ROAM: rule- and motif-based anomaly detection in massive
moving object data sets. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp
273-284. https://doi.org/10.1137/1.9781611972771.25

2. Bloom BH (1970) Space/time trade-offs in hash coding with allowable errors. Commun ACM 13:422-426.
https://doi.org/10.1145/362686.362692

3. Prasad V, Adam C, Everspaugh C, Patel JM (2002) Indexing large trajectory data sets with SETIL
Conference on Innovative Data Systems Research

4. Song Z, Roussopoulos N (2003) SEB-tree: an approach to index continuously moving objects. In: Chen M-
S, Chrysanthis PK, Sloman M, Zaslavsky A (eds) Mobile Data Management. Springer, Berlin Heidelberg,
Berlin, Heidelberg, pp 340-344

5. Guttman A (1984) R-trees: a dynamic index structure for sparial searching. ACM Sigmod Record 14(2):47—
57. https://doi.org/10.1007/978-3-319-23519-6_1151-2

6. Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The R*-tree: An efficient and robust access
method for points and rectangles. In: Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data. ACM, New York, pp 322-331. https://doi.org/10.1145/93605.98741

7. Leutenegger ST, Lopez MA, Edgington J (1997) STR: a simple and efficient algorithm for R-tree packing.
In: Proceedings 13th International Conference on Data Engineering. Soc. Press, IEEE Comput, pp 497-506.
https://doi.org/10.1109/ICDE.1997.582015

8. Greene D (1989) An implementation and performance analysis of spatial data access methods. In: [1989]
Proceedings. Fifth International Conference on Data Engineering, pp 606—615. https://doi.org/10.1109/
ICDE.1989.47268

9. Frentzos E (2003) Indexing objects moving on fixed networks. In: Hadzilacos T, Manolopoulos Y, Roddick
J, Theodoridis Y (eds) Advances in spatial and temporal databases. Springer, Berlin Heidelberg, Berlin,
Heidelberg, pp 289-305

10. Li G (2006) Indexing Moving Objects Trajectories on Fixed Networks J Comput Res Dev 43:. https://doi.
org/10.1360/crad20060509

11. Brunette W (2017) Extended abstract: building mobile application frameworks for disconnected data
management. In: Proceedings of the 2017 workshop on MobiSys 2017 Ph.D. forum, co-located with
MobiSys 2017. pp 15-16. https://doi.org/10.1145/3086467.3086475

@ Springer


https://doi.org/10.1145/362686.362692
https://doi.org/10.1360/crad20060509
https://doi.org/10.1360/crad20060509

412

Geolnformatica (2021) 25:397-416

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

Chang J, Um J, Kim Y (2008) A new signature-based indexing scheme for trajectories of moving objects on
spatial networks. In: Bubak M, van Albada GD, Dongarra J, Sloot PMA (eds) Computational science —
ICCS 2008. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 731-740

Shim C-B, Chang J-W (2004) Signature-based indexing scheme for similar sub-trajectory retrieval of
moving objects. KIPS Trans 11D:247-258. https://doi.org/10.3745/KIPSTD.2004.11D.2.247

Botea V, Mallett D, Nascimento M, Sander J (2008) PIST: an efficient and practical indexing technique for
historical Spatio-temporal point data. Geoinformatica 12:143-168. https://doi.org/10.1007/s10707-007-
0030-3

Cudre-Mauroux P, Wu E, Madden S (2010) TrajStore: an adaptive storage system for very large trajectory
data sets. Proc - Int Conf Data Eng 109—120. https://doi.org/10.1109/ICDE.2010.5447829

Wang H, Zheng K, Xu J, et al (2014) SharkDB: an in-memory column-oriented trajectory storage. CIKM
2014 - Proc 2014 ACM Int Conf Inf Knowl Manag 1409—1418. https://doi.org/10.1145/2661829.2661878
Fan L, Cao P, Almeida J, Broder AZ (2000) Summary cache: a scalable wide-area web cache sharing
protocol. IEEE/ACM Trans Netw 8:281-293. https://doi.org/10.1109/90.851975

. Deng F, Rafiei D (2006) Approximately detecting duplicates for streaming data using stable bloom filters.

Proc ACM SIGMOD Int Conf Manag Data 25-36. https://doi.org/10.1145/1142473.1142477

Lin D, Yung M, Zhou J (2015) Information security and cryptology: 10th international conference, Inscrypt
2014 Beijing, China, December 13—15, 2014 revised selected papers. Lect Notes Comput Sci (including
Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 8957:3—4. https://doi.org/10.1007/978-3-319-
16745-9

Vu VH, Wang K (2014) Random weighted projections, random eigenvectors. Random Struct algorithms 1—
30. https://doi.org/10.1002/rsa

Sanders P, Schlag S, Muller I (2013) Communication efficient algorithms for fundamental big data
problems. Proc - 2013 IEEE Int Conf big data. Big Data 2013:15-23. https://doi.org/10.1109/BigData.
2013.6691549

Kiss SZ, Hosszu E, Tapolcai J, et al (2018) Bloom Filter with a False Positive Free Zone. Proc - IEEE
INFOCOM 2018-April:1412-1420. https://doi.org/10.1109/INFOCOM.2018.8486415

Bender MA, Farach-Colton M, Goswami M et al (2018) Bloom filters, adaptivity, and the dictionary
problem. Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp 182—
193. https://doi.org/10.1109/FOCS.2018.00026

Yan J, Cho PL (2006) Enhancing collaborative spam detection with Bloom filters. In: 2006 22nd Annual
Computer Security Applications Conference (ACSAC’06), pp 414-428. https://doi.org/10.1109/ACSAC.
2006.26

Zheng Y, Xie X, Ma W-Y (2009) Mining interesting locations and travel sequences from GPS trajectories.
In: Proceedings of International Conference on World Wide Web 2009, Proceeding. https://doi.org/10.1145/
1526709.1526816

Yuan J, Zheng Y, Zhang C et al (2010) T-drive: driving directions based on taxi trajectories. In: Proceedings
of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems.
ACM, New York, NY, USA, pp 99-108. https://doi.org/10.1145/1869790.1869807

Partow A (2018) bloom. https://github.com/ArashPartow/bloom

boost::geometry::index::rtree. https://www.boost.org/doc/libs/1_65_1/libs/geometry/doc/html/geometry/
reference/spatial_indexes/boost _geometry _index _rtree.html

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://doi.org/10.3745/KIPSTD.2004.11D.2.247
https://doi.org/10.1007/s10707-007-0030-3
https://doi.org/10.1007/s10707-007-0030-3
https://doi.org/10.1109/ICDE.2010.5447829
https://doi.org/10.1145/2661829.2661878
https://doi.org/10.1109/90.851975
https://doi.org/10.1145/1142473.1142477
https://doi.org/10.1007/978-3-319-16745-9
https://doi.org/10.1007/978-3-319-16745-9
https://doi.org/10.1002/rsa
https://doi.org/10.1109/BigData.2013.6691549
https://doi.org/10.1109/BigData.2013.6691549
https://doi.org/10.1109/INFOCOM.2018.8486415
https://github.com/ArashPartow/bloom
https://www.boost.org/doc/libs/1_65_1/libs/geometry/doc/html/geometry/reference/spatial_indexes/boost__geometry__index__rtree.html
https://www.boost.org/doc/libs/1_65_1/libs/geometry/doc/html/geometry/reference/spatial_indexes/boost__geometry__index__rtree.html

Geolnformatica (2021) 25:397-416 413

Zengjie Wang was born in Chuzhou, Anhui, China, in 1994. He received the B.S. degree in Geographic
information science from Shandong University of Technology, in 2018. He is currently pursuing the M.S. degree
in cartography and geographic information system with the School of Geography, Nanjing Normal University.
His research interests include data analysis, spatial analysis and geometric algebra GIS.

Wen Luo received the B.S. degree in geography science from Hubei University, Wuhan, China, in 2008, the
M.S. degree in geographical information system from Nanjing Normal University, Nanjing, China, where he has
been working toward the Ph.D. degrees since 2011 and majored in the field of geographical information system.
His research interests are geographical information system, geometric algebra and computer algorithms. He
managed one national science funding projects as the principle investigator, also participated in more than four
other national science funding projects.

@ Springer



414 Geolnformatica (2021) 25:397-416

Linwang Yuan received the B.S. degree in geography science, the M.S. degree and the Ph.D. degree in
geographical information system from Nanjing Normal University, Nanjing, China, in 1995, 1998 and 2001,
respectively. He is currently a Professor of the Key Laboratory of VGE, Ministry of Education. His research
interests include geographic information science and geographical modeling. He managed five national science
funding projects as the principle investigator, including the National Science Fund for Distinguished Young
Scholars.

Hong Gao was bormn in Tianshui, Gansu, China, in 1993. He received the B.S.degree in School of Geography,
NanJing Normal University, in 2015. He received the M.S. degree in University of Chinese Academy of Sciences
in 2018. He is currently pursuing the Ph.D. degree in Geographic Information System from School of
Geography, NanJing Normal University. His main research interest is spatio-temporal data analysis with spatial
statistics, time series model, machine learning and other mathematical method, including spatial predictive
mapping and traffic flow prediction.

@ Springer



Geolnformatica (2021) 25:397-416 415

Fan Wu was born in Huaihua, Hunan, China. He received the B.S. degree in geographical information system
from Sun Yat-sen University, Guangzhou, China in 2015. Then, he has been working for his M.S. degree since
2018 and majored in the field of Cartography and geographical information system in Nanjing Normal
University, Nanjing, China. His research interests involve geographical information science, semantic GIS and
geometric algebra.

Xu Hu received the bachelor’s degree in Geographic Information Science from Southwest Petroleum University,
Chengdu, China. He is currently pursuing the master’s degree with the school of geography and science, Nanjing
Normal University, China. He is currently involved in expressway traffic flow simulation, especially on the
simulation of expressway traffic flow by quantum random walk

@ Springer



416 Geolnformatica (2021) 25:397-416

Zhaoyuan Yu received the B.S. degree in geography science, and Ph.D. degrees in GIS and Cartography from
Nanjing Normal University, Nanjing, China, in 2005 and 2011, respectively. He is currently an Associate
Professor of the Geography Department of Nanjing Normal University, Nanjing, China. His research interests
include geographic information system, geographical modeling and geometric algebra. He managed four national
science funding projects as the principle investigator, also participated in more than ten other national science
funding projects. He has got the First Prize of Natural Science of Ministry of Education of China, 2017, the First
Chinese Science and Technology Progress Award in the field of Geographic Information Science. China
Association in GIS, 2017, and the Excellent Young Scholars Award of Jiangsu Province in the field of remote
sensing and geographical information science, 2016.

Affiliations

Zengjie Wang' - Wen Luo >3 « Linwang Yuan'?3 . Hong Gao' - Fan Wu' « Xu Hu" -
Zhaoyuan Yu'??3

P4 Zhaoyuan Yu
yuzhaoyuan @njnu.edu.cn

Ministry of Education, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University),
Nanjing, China

State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province),
Nanjing, China

Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and
Application, Nanjing, China

@ Springer


mailto:yuzhaoyuan@njnu.edu.cn

	Query the trajectory based on the precise track: a Bloom filter-based approach
	Abstract
	Introduction
	Related work
	Method
	Problem definition
	Bloom filter
	Framework
	The geographic grid and geocoding
	Track insert and query process

	Experiments and results
	Experiment data description
	Results

	Discussion
	FPR influence
	Drawbacks and future work

	Conclusion
	References




