Bond University
Research Repository

UNIVERSITY

A review of procedures to evolve quantum algorithms

Gepp, Adrian; Stocks, Philip

Published in:
Genetic Programming and Evolvable Machines

DOI:
10.1007/s10710-009-9080-7

Licence:
Other

Link to output in Bond University research repository.

Recommended citation(APA):
Gepp, A., & Stocks, P. (2009). A review of procedures to evolve quantum algorithms. Genetic Programming and
Evolvable Machines, 10(2), 181-228. https://doi.org/10.1007/s10710-009-9080-7

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository
coordinator.

Download date: 20 Apr 2024

https://doi.org/10.1007/s10710-009-9080-7
https://research.bond.edu.au/en/publications/e5519ac3-fb0d-4ecc-84a9-5614c89f7ce5
https://doi.org/10.1007/s10710-009-9080-7

A Review of Procedures to
Evolve Quantum Algorithms

Adrian Gepp and Phil Stocks
School of Information Technology
Bond University
Queensland, Australia
{adgepp,pstocks}@bond.edu.au

May 29, 2008

Abstract

There exist quantum algorithms that are more efficient than their classical counter-
parts; such algorithms were invented by Shor in 1994 and then Grover in 1996. A lack of
invention since Grover’s algorithm has been commonly attributed to the non-intuitive
nature of quantum algorithms to the classically trained person. Thus, the idea of us-
ing computers to automatically generate quantum algorithms based on an evolutionary
model emerged. A limitation of this approach is that quantum computers do not yet
exist and quantum simulation on a classical machine has an exponential order overhead.
Nevertheless, early research into evolving quantum algorithms has shown promise.

This paper provides an introduction into quantum and evolutionary algorithms for
the computer scientist not familiar with these fields. The exciting field of using evolu-
tionary algorithms to evolve quantum algorithms is then reviewed.

1 Introduction and Overview

Quantum algorithms and evolutionary algorithms are two increasingly popular research
fields. Although still relatively new areas of research, there is a large number of publi-
cations in both areas. The idea of using evolutionary algorithms to produce quantum
algorithms, known as evolving quantum algorithms, has not been pursued to the same
extent as research in the two fields independently. This new field of evolving quantum
algorithms is in an interesting development stage with the potential to dramatically
change the area of quantum computing.

This is a review paper in the field of evolving quantum algorithms using genetic
programming. The objectives of this paper are to

e provide a detailed introduction to the field of quantum computing,

e introduce the concept of evolutionary algorithms, specifically genetic program-
ming, and

e discuss the application of genetic programming to quantum algorithms, including
a comprehensive summary of work in this new field.

These objectives will be addressed in order; this paper is directed at readers with general
knowledge of computer science, but not necessarily of quantum computing or evolution-
ary algorithms.

2 Introduction to Quantum Computing

Since Feynman’s famous speech delivered in December 1959 in which he mentioned
the possibility that “sub-microscopic” computers could be built [20], the world has
seen great advances in computing power and computer miniaturization, especially in
the last two decades'. Nonetheless, there are limits to computer miniaturisation with
current microchip technology [50] and we still, as yet, have not realised Feynman’s sub-
microscopic prediction. The desire for “sub-microscopic” computers is fueled by the
appeal of the ability to significantly increases the efficiency of storing, copying, trans-
mitting and processing information using a computer that will not occupy significant
physical space.

The two major approaches that have been proposed for sub-microscopic computing
are quantum computing and DNA computing, which have been widely discussed the-
oretically and are the subject of a large number of theoretical and empirical studies.
DNA or molecular computing, not to be confused with evolutionary or genetic algo-
rithms, essentially involves using DNA molecules instead of microchips. This allows
the information-processing capabilities of organic molecules to replace digital switching
primitives and achieve this sub-microscopic size [50]. As this section of this paper only
introduces quantum computing, more information on DNA computing is contained in
the excellent book by Paun, Rozenberg and Salomaa [51] or the shorter article by Grof§
[28].

2.1 Brief History of Quantum Computing

Quantum computing is derived from a link between quantum mechanics, computer
science and classical information theory [39]. Essentially quantum quantum computing
can be viewed as developing algorithms that will run on quantum computers, which
are based on quantum mechanics. In the 1920s, the theory of quantum mechanics
was proposed: the well-known major contributors were Born, Dirac, Heisenberg, and
Schrédinger [39]. However, it wasn’t until 1980 that the area of quantum computing
truly began, when Benioff [6] presented his quantum Turing machine. It proved that
quantum systems could coherently perform computation to solve problems.

Two years later in 1982, Feynman [19] observed that quantum computing could not
always be simulated efficiently on a classical computer, which lead to speculation that
quantum computing could be more efficient than classical computing in some cases.
In 1985, Deutsch [14] further developed Benioff’s quantum Turing machine and sug-
gested that quantum computers might be able to solve problems that had no efficient
solution on a classical or probabilistic Turing machine. He also presented an example
oracle problem?, now known as Deutsch’s problem, that was solved more efficiently
on a quantum computer than by any classical algorithm. In addition, four years later
Deutsch [15] developed another, more popular, model for quantum computing known
as the quantum circuit model. Nevertheless, neither Deutsch’s problem nor its latter
developed generalisation Deutsch-Jozsa’s problem [16] proved to be practically useful,
so the field continued to develop slowly.

Peter Shor [57] shocked the computing world in 1994 when he presented two effi-
cient quantum algorithms, for factoring integers and the ‘discrete-log’ problem, for which
there was, and still is, no efficient classical counterpart. Researchers had been searching
for an efficient factoring algorithm for over 20 years, and most people were confident
that this algorithm did not exist as the most efficient classical algorithm discovered is
the number field sieve [41] that requires exponential time. In contrast, Shor’s factoring
algorithm requires only polynomial time. Shor’s algorithm was also the first non-oracle

' A more detailed and structured account of Feynman’s idea was given in his book [21].

2An oracle problem is such that some properties of a function are trying to be discovered, whereby that
function is given as a black box. The code of a black box function is unknown, but the function’s results for
given inputs can be calculated.

quantum algorithm produced. Shor’s algorithm was inspired by Simon’s quadratic-time
quantum algorithm [60] that solves an oracle problem, which requires exponential time
on a classical computer?. Nevertheless, all the focus was on Shor’s factoring algorithm,
because of its extremely important applications in cryptography. All classical cryptog-
raphy techniques, such as RSA, would be easily breakable with a quantum computer
running Shor’s algorithm. Therefore, it was this algorithm that spurred much interest
and research in quantum computing.

Even with this increase in research as a consequence of Shor’s breakthrough, the
only breakthrough since then has been Grover’s search algorithm [29] developed in
1996. Grover’s algorithm searches an n-element unstructured list in O(y/n), compared
to the classical O(n). Thus, Grover’s algorithm only provides a quadratic speed-up,
but it is a major breakthrough due to its wide-spread application in search problems.
Since 1996, the only new quantum algorithms have been variants of Shor’s and Grover’s
algorithms. Possible reasons for the slow discovery of quantum algorithms are presented
in Section 2.4.3.

2.2 Preliminaries

Depending on the reader’s knowledge of linear algebra, computer science and quantum
computing, some of the topics introduced in this section may already be familiar to the
reader. Therefore, as these topics can be read independently, it is possible to just refer
to those topics of personal interest.

2.2.1 Dirac Notation

Quantum states can be described as vectors, which are by convention expressed in the
notation invented by Paul Dirac in 1958 [18]. The basic two elements of the Dirac
notation are called bras and kets. Standard column vectors in a Hilbert Space? are rep-
resented by kets, such as |v) for a column vector v. The matching bra is a row vector,
denoted (v|, which represents the conjugate transpose, or dual, of v. The conjugate
transpose of v is defined as the transpose of the vector, in which each element is the
complex conjugate of the corresponding element in v. These single vector representa-
tions can then be combined to represent such operations as the inner and outer product
of vectors; for example, the inner and outer product of v and ¢ are written as (v|¢)
and |v)(1| respectively.

2.2.2 Tensors and Tensor Products

In essence, a tensor is a geometrical identity that is the generalisation of n-dimensional
vectors with their associated linear operators. Tensors can also be represented as multi-
dimensional arrays. However, from a quantum computing standpoint, the tensor prod-
uct is the most important operation that can be performed on tensors: the tensor
product of v and v is denoted v ® 1.

The tensor product is the most general bilinear operation: it is a generalisation of
the matrix product operation, whereby all values contained in an operand are multiplied
independently with all values in the other operand. Thus, the result of v ® v has the
following properties:

Rank(A® B) = Rank(A)+ Rank(B)
Dimension(A® B) = Dimension(A) x Dimension(B)

3Simon’s algorithm, like Deutsch’s, lacks practical application.
*Chapter 16 of Hardy and Steeb’s book [32] contains a good introduction to Hilbert Space.

The actual operation of the ® operator is more clearly described by the following ex-

ample:
a b Axa Axb
A®<c d>_<A><c Axd)
A complete treatment of the mathematics of tensor products is unnecessary here con-
sidering the scope of this paper; for a more complete treatment of tensor products refer

to Hungerford’s book [34]. The application of tensor products in quantum computing
is discussed in Section 2.2.4 and 2.2.5.

2.2.3 Quantum Bit

A quantum bit, commonly referred to as a qubit, is the basic unit of information in
quantum computing: it is analogous to the bit in classical computation. Similar to
a classical bit, a qubit has two computational basis states, sometimes referred to as
eigenstates, usually represented as |0) and |1), that correspond to a bit’s 0 and 1 states
respectively. However, unlike a classical bit, a qubit can be in a superposition of these
two basis states. Due to this superpositional nature of a qubit it can be thought of as a
2-dimensional vector (in complex vector space) of length one with the above two basis
states as orthonormal vectors:
1
0 - (o)

= (1)

Thus, a qubit in a superposition of basis states can be described as being a unit vector
that lies between the two basis states. A qubit in an arbitrary state is therefore expressed
as a linear combination of basis states:

al0) + B|1) or (g)
where a, 3 are complex numbers and |a|? + B> =1

Nevertheless, just like a classical bit, a quantum bit can be read to get its value, which
can only be one of the basis states. However, the outcome is not deterministic as in
classical computing, but rather probabilistic. Given the above expression for a qubit,
the probability of the qubit being measured in each basis state is determined by the
values of a and 3, which are referred to as amplitudes or probability amplitudes. The
actual probability of the qubit being measured in a basis state is the square of the
corresponding amplitude; for example, the probability of the qubit being measured as
a |0) is |a|?>. Hence, the need for the condition |a|? + |3]? = 1.

As the two amplitudes of a quibit in a basis state are 1 and 0 (order irrevelant) it
will have 100% probability of being measured in the state it is in and 0% probability of
being measured in the alternative basis state; that is, a qubit in a basis state is mea-
sured deterministically. On the other hand, measurement of a qubit in a superposition
of basis states changes the qubit into the basis state in which it is measured. The ram-
ifications of this are that subsequent measurements of a qubit initially in superposition
are deterministic and will yield the same outcome with 100% probability. Therefore, a
qubit in a basis state can be thought of as a classical resource; in contrast, a qubit in a
superposition of basis states can be thought of as a purely quantum resource [74].

2.2.4 Multiple Qubits

Individual bits in classical computation combine through cartesian product, but quan-
tum bits combine through tensor product [54]. Taking the simplest case of multiple

qubits, two qubits, we can find the possible basis states as the tensor product of the
two individual sets of basis states:

{10), 1)} ®{[0),[1)}
={|0)®10),]0) ®[1),]1) ®]0),|1)®|1)} or more concisely :
{/00),]01),]10),]11)}
The final concise version represents an extension of Dirac notation whereby |gog; - . - qn)

represents the basis for qubits qg -..q,. Thus, with k written as a binary number, a
two-qubit quantum system can be described as:

do
3 5 3
Z O |k) or 51 , where &, are complex numbers and Z |6k]> =1
k=0 62 k=0
3

Thus, an n-qubit quantum system can be written as Ei:gl Or|k), where Ei:gl |0k]? =
1 and |0x|? is the probability of the system being measured in the basis state |k). It is
possible to measure a sub-set of the qubits in a multi-qubit system. It is also possible
to determine such information as whether two qubits are equal without learning their
value; however, these more complex measurements are equivalent to a transformation of
the quantum system followed by a standard measurement to determine the basis state
of each qubit [54], and consequently it is common practise to also refer to standard
measurements.

2.2.5 Entangled States

A suprising and non-intuitive aspect of quantum computing is that there are quantum
states that can not be described in terms of their individual component qubits. These
states are known as entangled states, and the individual qubits within entangled states
are known as entangled particles. The reason for the use of the term ‘entangled’ should
become obvious in the next paragraph.

We established in the previous section that single qubits combine using the tensor
product operator. Therefore, two qubits in superposition combine as follows:

lg1) @ |g2) = (a1|0) + B1[1)) @ (a2|0) + Ba|1))
= a1a2|00) + a1[32|01) +042ﬂ1|].0) +ﬂ1ﬂ2|11>

However, there are entangled states that can not be described by the above formula.
The canonical examples are the Bell states:

|1/}00> — |00)+]11) |1/101> — [01)4+]10)

72
|,(/} > — [00)—|11) |¢ > — |01>—2‘10>
10 V2 11 V2

In order to write 1o in terms of the above two-qubit equation aj/s must equal 0.
This subsequently implies that either ayas = 0 or 5152 = 0; however, it is clear that
neither of these terms are zero. Thus, 1 is an entangled state (the other Bell states
are shown to be entangled with similar reasoning). An example of how a non-entangled

state can be expressed in terms of its component qubits is the state —=— (|10) + |11)) =

sqrt2
1) ® 525 (10) + 1))

Another way of viewing entangled states is that measurement of one qubit has an
effect on the other qubits. Take 1go as an example again, if the first qubit is measured
as |0) then we know that the second qubit will also be measured as |0). In contrast,
measurement of the first and second qubit in our non-entangled state will always yield
|0) for the first and a fifty-fifty chance of either basis state for the second, regardless
of the measurement of the measurement order. Some famous research explaining this

observation includes that of Einstein, Podolsky and Rosen: an accurate and concise
summary of this work is given by Rieffel and Polak [54]. It is clear that there is no
classical counterpart of entangled states. However in quantum computing, it is impor-
tant to realise that entangled states are treated no differently from any other quantum
states. Nevertheless, they are extremely important and some very interesting applica-
tions of entangled state have been found such as dense coding, quantum teleportation
(see Section 2.7.1) and secure quantum key distribution, which are discussed by Rieffel
and Polak [54]. A detailed analysis of entangled states, their importance and a C++
implementation, is provided by Hardy and Steeb [31].

2.3 Quantum Computers

Quantum computers still remain abstract machines despite the large amount of money
and time that has been invested into building them. Quantum computers with a few
qubits have been developed; however, a scalable general-purpose quantum computer
is yet to be built. The largest quantum computer developed thus far consists of seven
qubits [69], which was built by a group of scientists from Stanford University. It was con-
structed using Nuclear Magnetic Resonance (NMR) and tested using Shor’s factoring
algorithm [75]. In February 2007, the Canadian company D-Wave publicly demon-
strated ‘Orion’, which they claim is a 16-qubit quantum computer. However, details of
Orion’s inner workings are unknown as no academic papers have been published about
Orion®. Thus, there is academic speculation about whether Orion is truly a quantum
computer. There have been many other approaches to building a quantum computer,
including optical photon spins, quantum dots, cavity quantum electrodynamics and ion
traps. NMR and ion traps are the most advanced approaches to date; however, all of
these techniques have had scaling problems. Therefore, it is commonly argued whether
or not quantum computers of a significant scale (greater than 100 qubits) will ever be
practically realised. Pellizzari [48] presents a general overview of the requirement for
building a quantum computer, including its challenges, various approaches and future
outlook; however, this article was published in 1998 and consequently does not include
the new NMR approach. Hardy and Steeb [32] provide a concise summary of NMR,
and Nielsen and Chuang [47] provide a more detailed look at all of the above mentioned
approaches.

There are certain characteristics that an operational quantum computer must have
regardless of the approach adopted for its construction. Different publications outline
various characteristics that are somewhat similar [32, 42, 47]. These characteristics have
been combined and summarised below:

Qubit Representation There must be a representation of a qubit (dynamic two-state
object) such as the up and down spins of a proton.

State Preparation The system must reliably start in a known initial state. It is
sufficient and common to start with all qubits in the same state (conventionally
|0)); thus, this requirement has not been a major issue.

State Transformation There must be a mechanism to efficiently transform a quan-
tum system into other states following the rules of quantum mechanics. The most
common way this has been implemented is by the use of quantum gates, which
will be discussed in Section 2.6.1.

Measurement There must be an efficient and reliable way to measure qubits in the
system.

System Isolation The system must be isolated from the environment to prevent the
superposition of states from decaying quickly in the common environment, which
is a phenomenon known as decoherence or quantum noise. This is a problem as

®One of many news articles about Orion can be viewed at
http://arstechnica.com/articles/paedia/hardware/quantum.ars.

algorithms may not be able to be applied in time if the states decay too quickly.
This issue of decoherence is a major hurdle for the actualisation of a quantum
computer [54, 37, 59]. Zurek [84] provides a comprehensive and simple discussion
of decoherence.

It is almost inevitable that complete isolation will not occur and there will be some
decoherence. As a partial solution, research is being undertaken on quantum error-
correcting codes (QECCs). Since the first 9-qubit QECC was presented by Shor
in 1995 [58] research and development in this area has been making noticeable
progress; the most recent work presents the most time-efficient QECC (although
not the most space-efficient) [23]. Despite progress being made in developing
quantum error-correcting code, this method will always come at a cost of extra
qubits, which consequently increases the number of qubits needed to implement
any given algorithm. This is the reason QECC is solution for only a small amount
of decoherence. Nielsen and Chuang [47] present a comprehensive section on the
area of quantum error-correction, which has been summarised by Landry [37].
Furthermore, Hardy and Steeb [32] discuss the latest algorithms for developing
quantum error-correcting code.

Whether a scalable quantum computer will ever be built obviously has huge im-
pacts for the field of quantum computing, as well as classical computing. Nevertheless,
quantum computing is currently a popular research field and this paper simply views
a quantum computer as an abstract machine. Furthermore, while this paper does not
discuss quantum mechanics directly, most of the basic postulates of quantum mechanics
will be discussed within Section 2 of this paper. For a structured coverage of the exact
postulates of quantum mechanics refer to Nielsen and Chuang’s book [47].

2.4 Power of Quantum Computing

After more than 50 years of using the classical physics paradigm (which the classical Tur-
ing machine embodies) to build a theory of (standard) computation, quantum physics
provides a different paradigm that is arguably more powerful than standard compu-
tation [4]. The possibility of harnessing the power of quantum parallelism (discussed
in the following section) and the identification of entangled states that are without a
classical counterpart (discussed in Section 2.2.5) were the first indications that quantum
computing could allow faster information processing than classical computing. Further-
more in 1985, Deutsch [14] proposed that his quantum Turing machine could not only
simulate quantum systems better than classical methods, but it may also be able to solve
classical problems significantly faster than classical, and possibly probabilistic, Turing
machines. This essentially suggested a violation in the strong Church-Turing thesis that
any algorithmic process can be simulated on a classical Turing machine (CTM) in at
worst a polynomial slowdown.

2.4.1 Quantum Parallelism

Quantum parallelism is the term used to describe the potential parallel computing power
of quantum computing. It is intuitive that an increase in time efficiency can be gained
by using parallel processors. Furthermore, in classical computation, an exponential
time efficiency increase requires an exponential increase in the number of processors or
physical space. However, as qubits can represent a superposition of two different states,
in quantum computation, a linear increase in physical space generates an exponential
increase in parallelism, and consequently an exponential increase in time efficiency. This
is what is known as quantum parallelism [16]. As shown in Section 2.2.3, a qubit can be
represented as a two-dimensional vector. In classical physics, n two-dimensional vector
objects form a 2n-dimension vector space. However due to quantum parallelism this
is not the case in quantum computing in which n qubits form a 2"-dimension vector

space. This exponential growth implies a possible exponential increase in the infor-
mation processing speed of quantum computers over classical computers. The concept
of how quantum parallelism is applied to create parallel computation is conveniently
thought of as shown below in a two-qubit example:

60 60 T

(51 61 ® T

5 | © r 6y T

(53 63 ® T
All Inputs ® One Transformation = All Outputs

A set of input qubits in a superposition of basis states essentially has all the possible
inputs encoded in them. Therefore, a single transformation can be applied to generate
a set of output qubits in a superposition of basis states, which represents all possible
outputs. Thus, all output states have been computed and assigned a probability of
measurement on a quantum computer in the same time it takes to compute the output
for a single input state on a classical computer.

Although all outputs can be produced using only one transformation, we know from
Sections 2.2.3 and 2.2.4 that only one output can be extracted upon measurement.
Furthermore, the particular output that will be extracted is unknown as measurement
is probabilistic. Thus, a quantum algorithm must manipulate quantum parallelism
so that the desired result is extracted when measured. This is a difficult and non-
intuitive task that no classical programming technique can solve. The two best—known
approaches are [54]

e Measure common properties of all the outputs. This approach is used in Shor’s
factoring algorithm whereby the period of the outputs is measured

e Increase the amplitudes of the basis states of interest to increase the probability
that they will be measured. This technique is used in Grover’s search algorithm.

In addition, there are other restrictions on quantum computing that are discussed in
the next section.

2.4.2 Unitary Restriction

With the exception of measurement, all transformations in a quantum system must be
unitary. This is specified in Schrodinger’s equation, which governs the dynamics of a
quantum system which is not being measured. To be precise, Schrédinger’s equation
enforces that quantum systems must change state in a way that preserves orthogonality®,
and the only transformations that maintain orthogonality in a complex vector space,
such as quantum systems, are unitary transformations. The transformation matrix
M is a unitary matrix if MM* = I, where M* is the conjugate transpose of M. A
unitary transformation can be thought of as a rotation in complex vector space [54]:
this makes sense as vector rotations will maintain the angles between all vectors and
preserve orthogonality.

An important consequence of quantum transformations being unitary is that they
must be reversible, as unitary matrices are invertible. For computing to be reversible,
the current state must uniquely determine the previous state, for all computational
states [7]. However, this is not a problem as Bennett [7] showed that all classical
computation can be transformed into reversible computation without a polynomial ex-
penditure in time or space. Another important consequence of unitary transformations
is that their linearity implies that quantum states can not be cloned, which is known as
the no-cloning theorem. An easily understandable version of the original proof of this
theorem by Wootters and Zurek [80] is given by Rieffel and Polak [54]. It is important

5To be orthogonal means to be linearly independent: a precise treatment of the orthogonality condition
is given by MathWorld [available at http://mathworld.wolfram.com/OrthogonalityCondition.html].

however to note that this theorem only applies to qubits in an unknown state: qubits in
a basis state or a known state of superposition” can be cloned, but qubits in an unknown
state can not be cloned as the information about their amplitudes will be lost.

2.4.3 The Potential

There is a well-established view that quantum computing will only yield an exponential
speedup in problems whose structure avoids the need to process exponentially many
cases [12]. That is, a brute force approach to NP-complete problems will not succeed
with the aid of quantum parallelism; Fortnow and Rogers [24] also firmly question
whether quantum computing is more powerful than classical computing, but they still
maintain it is a potentially powerful model of computation. However, whether quantum
computation can efficiently solve NP-complete problems in polynomial time remains an
open question [54]. With the discovery of a few quantum algorithms there is no doubt
that certain problems can be solved more efficiently on a quantum computer than on
a classical computer. The number and diversity of problems that can be solved more
efficiently on a quantum computer is still unknown and the subject of much current
research.

In reality, it is not extremely difficult to develop a working quantum algorithm.
However, quantum algorithms are only of interest if they are more efficient than their
classical counterparts. This is one of the main reasons that more quantum algorithms
have not been discovered. It is simple enough to simulate a classical algorithm on
a quantum computer; however, producing a quantum algorithm that is superior to
its classical counterpart requires the use of truly quantum effects®, which is extremely
complex. Pessimists speculate that the lack of discovery of quantum algorithms is due to
a lack of application of quantum computing. However, it seems more likely the reasons
are the non-intuitive nature of creating quantum algorithms to the classically trained
world and the fact that only superior quantum algorithms are of interest. Nevertheless,
it has not been conclusively proven that quantum computation is more powerful than
classical computation (this issue will be discussed more in the following section). The
potential of quantum computation is however extremely high as there may even be an
exponential speed gap between a quantum and classical computer [27], as is the case
for Shor’s factoring algorithm [57].

2.5 Complexity of Quantum Algorithms

Quantum computing is a unique type of probabilistic computing, which has caused the
creation of new complexity classes [54]. The most interesting quantum complexity class
is bounded-error quantum polynomial time (BQP), which is the quantum equivalent
of the classical bounded-error probabilistic polynomial time (BPP) complexity class.
BPP contains all languages for which there is a probabilistic Turing machine such that
it gives the right answer with bounded probability, which means greater than or equal
to % of the time. Note that the probability % is simply a norm as it can be replaced with
any number between % and 1 without altering the complexity class: if the probability
is set higher than % any previously BPP algorithm can simply be rerun to amplify
the probability [59]. Using this definition of BPP and substituting ‘quantum Turing
machine’ for ‘probabilistic Turing machine’ we obtain the definition of the complexity
class BQP.

It is a significant result in quantum complexity theory that Bernstein and Vazirani
proved that BPP C BQP C PSPACE [9], but the open question of extreme im-
portance in quantum computing is whether BQP is strictly larger than BPP. It is
important to note that proving BPP C BQP implies that BPP C PSPACE, which is

"A known state of superposition is where all the amplitudes are known.
8The term quantum effects is used as an umbrella term to encompass effects such as superposition and
entanglement that exist in quantum computing, but not classical computing.

not currently known. Thus, proving that quantum computers are more powerful than
classical computers would also represent a breakthrough in classical computing complex-
ity theory. However, it also indicates that proving BPP C BQP is probably extremely
difficult. Simon’s quadratic-time quantum algorithm [60] to solve a problem with known
classical complexity of exponential-time suggests that BQ P is strictly larger than BPP,
but it is not a rigorous proof as it only shows BPP C BQP for oracle problems [59].
Grover’s search algorithm [29] also puts forward a case that BQP is strictly larger than
BPP; however, it remains an open question [39]. That is, it has not yet been proven
that quantum computers have more capabilities than classical computers.

Further details on quantum complexity classes are outside the scope of this paper,
but more information on the BQ) P complexity class is presented by Fortnow and Rogers
[24], and [8, 77] detail quantum computing complexity in time and space respectively.

2.6 Models of Quantum Computation

The first quantum computation model was the quantum Turing machine (QTM) in-
troduced by Benioff [6] and Deutsch [14], which can efficiently simulate every classical
Turing machine (CTM) with a polynomial-bounded overhead [27]. The QTM is also
the commonly used basis for defining universality. In essence, the QTM has three de-
terministic CTM tapes where the two extra tapes are needed to make the computation
reversible (the set of tape states also changes to reflect the nature of quantum comput-
ing). The QTM is described in more detail by Gram$ [27].

There are also many other mathematically equivalent models of quantum compu-
tation, just as there are many different models of classical computation. Moreover,
there are other potential models of quantum computation that have not been explored
[59]. A quantum state machine [30] has been proposed that is an extension of classical
finite state machines in which amplitudes are added to transitions to represent quan-
tum parallelism; a universal quantum cellular automata model [73] is another quantum
computing model. Recently, a universal quantum lambda calculus [74] has also been
suggested that is based upon the classical lambda calculus. Essentially, a reversible
lamdba calculus is established with the use of minor reduction steps, and the quantum
parallelism is captured as subexpressions representing superposition that can not be
reduced/observed (no-cloning theorem).

This section of this paper focuses on the quantum circuit model, due to its popularity
and simplicity. The quantum circuit model, also known as the quantum gate array, was
introduced by Deutsch in 1989 [15]. The circuit model is mathematically equivalent to
the QTM [83], and is the most popular model of quantum computation. The reason
for the popularity difference is that the QTM suffers from the same complexities as
the CTM; it does not satisfy a simple algebra and it can be cumbersome to use as it
requires ‘word at a time’ thinking while keeping track of control variables such as tape
states [74]. In contrast, quantum circuits are easier to understand as they are graphical
diagrams, which can also be manipulated algebraically. Furthermore, other models such
as the quantum lambda calculus are too new to be widely popular. The quantum circuit
model will be explained in more detail in the following sub-section.

2.6.1 Quantum Circuit Model and Quantum Gates

Similar to classical circuits, the quantum circuit model consists of wires, and gates that
act upon wires. In the quantum circuit model, each wire represents a qubit? and each
individual gate has the same number of input qubits as it has output qubits (due to
the reversibility of quantum computing). Thus, an advantage of this model is that
the diagram itself can be essentially thought of classically, with the data on the wires
representing the quantum nature of the computing. As the number of qubits (wires) is
required to be constant, an important restriction of this model is that a quantum circuit

By convention a qubit begins in a basis state, usually assumed to be |0).

10

can only compute a function with a specific length domain. Therefore, for functions
with arbitrary length inputs a family of quantum circuits is required; that is, a quantum
circuit for each input length is required.

The complexity of a quantum circuit depends on the total number of gates and
qubits (wires). However, as gates are commonly restricted to act upon one, two or
three qubits'®, the number of gates in a quantum circuit is both a reasonable and the
usual measure of complexity. This restriction does not affect the universality of quantum
circuits; for example, the set of all one-qubit gates and the CNOT gate (explained later
in this section) are universal for quantum computing. Further note that an interesting
three-qubit gate is the Toffoli gate that is in fact universal for quantum computing as
presented by Deutsch [15]. In addition, it has more recently been shown that a large
number of two-bit quantum gates are universal [3]. An excellent review of quantum
gates and the respective universality issue is contained in [4].

Quantum gates are in fact unitary transformation matrices (see Section 2.4.2), and
a matrix that acts upon n-qubits will be a 2™ x 2™ square matrix due to quantum
parallelism. Quantum parallelism (see Section 2.4.1) is the reason for a linear increase
in the number of qubits causing an exponential increase in the size of a quantum system.
To familiarise the reader with both the gates and the quantum circuit model'!, some
important elementary gates are detailed below using the quantum circuit model.

Three important single-qubit gates are the identity (I), negation (X), and Hadamard
(H) transformations, which are detailed below!?:

D)0 o fonin -
o) 10 o D = 1)

i L(1 !) 0y = Loy 411511 > = 0y - 1))

1 -1 V2 V2
It is important to notice that the Hadamard gate creates an equal superposition of
states, and when applied to n-qubits it creates a superposition of all 2" states (this is
the reason for its prevalence in quantum algorithms). The workings of these gates can
be easily verified with linear algebra; for example, the negation transformation on |0):

01 1)y _(1x0+0x1Y_/(0

1 0 0) \1x14+40x0 /) \1
These single-qubit transformations are represented in the quantum circuit model by an
appropriately labeled box as shown below:

X

H

The controlled-not (CNOT) is an extremely important two-qubit gate. Its impor-
tance comes from the fact that the results of a CNOT transformation can not be ex-
pressed as the tensor product of two qubits; thus, a CNOT gate can be used to create

10T here is some inconsistency in the literature about the maximum number of qubits that a gate should
act upon; for example, Shor [59] states the maximum should be two qubits while Spector et al. [63] state
that the maximum is a few qubits.

"Variations in the quantum circuit notation of different gates exist, but they are only minor and should
be understood by a reader who has read this paper.

2Due to linearity, transformations are fully specified by their effect on the basis states [54].

11

entangled states. The workings of the CNOT gate are relatively simple: it swaps the
target qubit (represented by a cross) if the control qubit (represented by an open circle)
is |1). The mapping and quantum circuit notation for the CNOT gate are as shown.

100) — [00)]01) — |01)
110) — |11) |11) — |10)

J

The universal 3-qubit Toffoli gate is essentially a controlled-controlled-not gate,
where the target qubit is only flipped if the two control qubits are |1); Tt is repre-
sented in the circuit model as follows.

o

|
J

2.7 Example Problems and Algorithms

The algorithms that will be presented in this section are quantum teleportation, and
an overview of Grover’s algorithm. These algorithms have been chosen for their ease
of understanding and their ability to convey important quantum algorithm concepts.
Pittenger’s book [49] contains excellent, succinct treatments of the following quantum
algorithms: Deutsch-Joza’s, Simon’s, Grover’s, Shor’s and the Quantum Fourier Trans-
formation.

This section will also include definitions of Deutsch’s and the scaling majority-on
problems. Quantum algorithms to solve these problems have been evolved by Spector
et al. using genetic programming (see Section 4.3.3).

2.7.1 Quantum Teleportation Algorithm

Quantum teleportation'®, uses two classical bits to transfer one quantum bit of informa-
tion (|g1)) from A(lice) to B(ob) without ever being anywhere in between'#. This does
not violate the no-cloning theorem as the unknown qubit is teleported not copied; that
is, after the quantum teleportation the qubit no longer exists with Alice. The quantum
circuit model for teleportation is as shown below in Figure 1.

The first step creates Bell’s first entangled state |ig0) = % (discussed in
Section 2.2.5) by putting the first qubit into equal superposition using the Hadamard
gate and then modifying the second according to the value of the first using the CNOT
gate. Now, given that |¢l) is unknown, it can be represented as «|0) + §|1), and the
quantum state after the first two transformations is

1
7 (]0) (|00} + [11)) + B[1) (|00) +[11)))

13This explanation of the quantum teleportation algorithm is based on the explanation given by Landry
[37].
! Quantum teleportation of one qubit has been realised experimentally [11].

12

lg1) -

T

A 1 H : J{
| oo)

B &

Figure 1: Quantum Teleportation Algorithm

Alice and Bob are each given one of these two entangled particles and the final two
transformations are performed as shown, and the next CNOT is applied to make the
quantum state

1
7 ([0) (100) +[11)) + 51) (10) + [01)))

Thus, the information about |gl) is now contained in the entangled pair, and the final
Hadamard transformation is performed to yield

5 (@ (]0) +11)) (100) +[11)) + B (|0) — 1)) (]10) + |01)))
= 35 (100) (a[0) + B|1)) +[01) (a|1) + 8]0)) + [10) (2]0) — B|1)) +|11) (a|1) — B]0))]

Alice then measures the two qubits she has and sends the result encoded in two classical
bits {00,01,10,11} to Bob. Using the previous equation, Bob knows the state of his qubit
in terms of |¢1). Therefore, he can apply a simple one-qubit gate (if needed) to convert
his qubit to |¢1) as defined below (using the previous equation):

Alice’s Result Bob’s Qubit Transformation Required
[00) «|0)+ B|1) none
[01) «|1) + B|0) negation(X)

0 1
10) aloy-eiy (1 5)
1 0
1 ajn-eo) (o)
For example, in the case of |01), after transformation Bob’s qubit equals
0 1 b
1 0 a
al0) + B|1)
= q1)

X (af1) +5|0))

Thus, an unknown qubit in a superposition of states can be transported from A to B
with only two classical bits of information.

2.7.2 Grover’s Algorithm

Grover’s algorithm searches an unstructured n-element list in O(y/n) time compared to
its classical counterpart which is O(n). The first step in Grover’s algorithm is to apply
a Hadamard gate to n-qubits initially in state |0). The Grover operator (or Grover
iteration) is then applied multiple times (O(y/n)) to these n-qubits as well as extra
qubits that are required as workspace (referred to as the oracle workspace). Essentially,
the Grover operator increases the amplitude of the basis states that are being searched
for and decreases the amplitudes of the other states. This is done by rotating the current

13

A5

Figure 2: The result from applying the Grover operator: relabelled from Figure 6.3 in
Nielsen and Chuang’s book [47]. The three numbers in boxes indicate the initial (1), in-
termediate (2), and final (3) state vectors when the Grover operator is applied. |/3) is the
superposition of all solutions to the search problem, and |a) is a state orthogonal to |f).
All vectors in this diagram are unit vectors, but |«) and |3) are shown to be longer to
improve clarity.

state vector (of the n-qubits) towards the superposition of all solutions to the search
problem (|3)) as shown in Figure 2.
The Grover operator consists of

1. Applying the oracle search function (using the oracle workspace) to the n-qubits.
2. Applying Hadamard transformations to all n-qubits
3. Performing a conditional phase shift

4. Applying Hadamard transformations to all n-qubits

The initial oracle application reflects the current state of the n-qubits about |a) to move
it from its initial state 1 to state 2, as shown in Figure 2. The remaining three operations
(Hadamard, conditional phase shift, Hadamard) then reflect the state 2 vector about
state 1. Overall, this achieves a rotation of towards |3) (state 3). Repeating the Grover
operator O(y/n) times rotates the state vector very close to | 3}, the superposition of all
solutions. Hence, when the state is measured with reference to the computational basis
it reveals a solution to the search problem with extremely high probability'®. This is
the essence of Grover’s algorithm; an excellent detailed analysis of Grover’s algorithm
and its recent variations is given in chapter 6 of Nielsen and Chuang’s book [47].

2.7.3 Deutch’s and Scaling Majority-On Problems

Deutsch’s problem is determining whether a given oracle, or black box, function is
uniform or balanced, given that the oracle must be either one of these. The uniform
property requires an oracle to always return 0 or always return 1; the balanced property
requires an oracle to return an equal number of Os and 1s over all possible inputs. The
scalable majority-on problem is an extension of Deutsch’s problem where the oracle is
an arbitrary boolean function and the problem is to determine whether the majority of
the outputs are 1. Quantum algorithms to solve these problems have been evolved by
Spector et al. using genetic programming (see Section 4.3.3).

15The exact probability of observing a solution depends upon the number of solutions in the search space.

14

2.8 Further Reading

This section presents the major summary references in the field of quantum computing
that complement the specific references given in previous subsections. However, most
of the references given here have been previously referenced in this paper.

There are currently a large, and ever increasing, number of publications on quantum
computing, and consequently there is a lot of duplication and work of varying standards.
For issues on quantum computing, Nielsen and Chuang’s book [47] appears to be the
most comprehensive and well-structured publication, which is considered to be the most
significant reference. A very good introductory reference is provided by Landry [37],
who summarised the major areas in Nielsen and Chuang’s book. Another excellent
and recommended review reference is Rieffel and Polak’s work [54], which contains a
more comprehensive and detailed review of quantum computing than Landry’s paper
[37]. Furthermore, in contrast to [37, 54], Gram$ [27] provides a summary of quantum
computing from a quantum Turing machine perspective, rather than the quantum circuit
model. However, many (although not all) of the topics included in [27, 37, 54] have been
covered in this paper.

There are two excellent quantum computing books that also contain detailed in-
formation on how to actually simulate quantum algorithms on a classical computer:
Williams and Clearwater’s book [79] comes with Mathematica'® notebooks that simu-
late well-known quantum algorithms such as Shor’s factoring algorithm, and Hardy and
Steeb’s book [32] contains Java and C++ code for some simple quantum simulations
such as generating entangled qubits.

The majority of the articles referenced in this quantum computing section are freely
available at the Los Alamos preprint server: http://xxx.lanl.gov/archive/quant-ph.
This site also provides an excellent place to search for old and new articles within
the field of quantum computing.

3 Introduction to Evolutionary Algorithms

Optimisation problems can be characterised by two sets of parameters: feedback pa-
rameters to optimise according to a target solution, and free parameters to modify in
order to approach the desired solution [10]. The optimisation algorithm alters the free
parameters while controlling the quality of the solution by the feedback parameters; dif-
ferent optimisation techniques perform this search in different ways. When traditional
optimisation techniques are used to search vast, complex and unknown spaces there
are extremely complex constraints and multimodal problems'” [32]. Thus, traditional
optimisation techniques are not well-suited for these types of problems, so alternative
approaches have been researched. Evolutionary Algorithms (EAs) are one of the alter-
native methods that have gained significant popularity as general-purpose optimization
and search tools [32]. EAs are probabilistic search algorithms that are heavily based
upon Darwinian evolution, as a proxy for the process of species evolution in nature.
The central concept of Darwinian evolution is that individuals in a population have
heritable characteristics that influence their probability of producing offspring, that is,
future generations. EAs have extended this theory slightly to state that characteris-
tics of ‘better’ individuals will increase their likelihood to produce offspring, which is a
variation on Darwin’s ‘survival of the fittest’ principle [13]. The idea behind this is an
attempt to converge to the ‘best’ individual, which essentially is the paradigm of search
and optimisation.

EAs were initially used as optimisation tools for engineering problems, and were de-
veloped independently by several computer science researchers in the 1950s and 1960s
[25]. Since then, the number of applications for EAs has become diverse and has grown

16Mathematica is a comprehensive mathematical software package, details are available on the their web-
site: http://www.wolfram.com/products/mathematica/index.html.
"Multimodal problems are problems that arise in cases with a large number of locally optimum solutions.

15

at a fast rate [10]; for example, there are EA applications in financial forecasting, pre-
dicting protein structure, predicting the primeness of numbers and in developing com-
puter programs. In contrast to the application aspect of EAs, despite much theoretical
research there has been modest progress in EA theory over the last 20 years compared
with that of neural networks, another biologically motivated form of computation [5].
Nevertheless, various types of EAs have been developed and the types presented in the
following subsection now form the backbone of the EA field [46]. Regardless of what
type of EA is used the basic elements are almost identical [2]; these common elements
are [39]

e Populations of individuals representing solutions to the problem at-hand, which
allows parallel searching.
e Ways to manipulate solutions, which can be either

— Mutation (inspired by the biological process of the same name) operators,
which implement innovative change

— Recombination/Crossover (inspired by the biological process of gamete pro-
duction and sexual reproduction) operators, which implement conservation
of characteristics through rearrangement

e A measure for determining the quality of a solution, usually referred to as a fitness
function

e A method of selection that uses the fitness function to select individuals for the
next generation

3.1 Types of EAs

‘ Evolutionary Algorithms |

Evolutionary Programming ‘ ‘ Genetic Algorithms ‘ ‘ Evolution Strategies ‘

‘ Genetic Programming ‘

Figure 3: Relationships between different types of Evolutionary Algorithms

EAs and Genetic Algorithms (GAs) are terms that are sometimes incorrectly used
interchangeably. However, EA is an umbrella term that includes all algorithms that
incorporate the idea of Darwinian evolution, and GAs are just one type of EA. The
different types of EAs are shown in Figure 3. GAs, invented by Holland in the 1960s [33],
are the most prominent EAs [32], with the other major types of EAs being Evolutionary
Programming (EP) and Evolution Strategies (ES). Essentially, EP and ES operate on
and change the phenotype (observable properties) of individuals, while GAs operate on
the genotype (genetic construction) of individuals [22]. To further explain the concept of
phenotype, a change in phenotype can be viewed as a change in the behavior, physiology
or morphology without altering the genetics. In addition, a further difference between
ES and GAs is that ES places an emphasis on mutation [10], whereas GAs place a
higher weighting on recombination. However, having stated the differences between
these types of EA | it is important to note that these distinctions are not strict, as overlap
does occur [10]. For example, GAs have been applied to real numbered genomes [70],
which overlaps into the ES field. For a more thorough review of EP and ES, which also
includes a discussion on GAs, please refer to Béck’s book [1].

In 1992, Koza introduced a new type of EA known as Genetic Programming (GP)
[36]; Bornholdt [10] suggests that the reason GP arrived late into the EA field may
have been due to the need for greater computing power. GP is a type of GA whereby

16

the search space is reduced to solely include computer programs. GP techniques have
been valuable in evolving structures other than computer programs, but the fact that
individuals in a GP model are computer programs is the most defining feature of GP
[61]. Nevertheless, GP has extended the idea of genotype manipulation from GAs to
include variable length chromosomes; that is, the representation of individuals in a
population can be of varying size.

3.2 GA and GP Algorithm Structure

Generate
Initial
Population

Evaluate
Fitness

Function Generate New Population
% E Darwinian Selection J
(T
| Termination |
| Criteria Met? |

\ /
N & Genetic Modification:
@ v Recombination and Mutation
es

Optimised
Population

Figure 4: A general flow diagram of GAs and GP algorithms.

The overall structure of GAs and GP algorithms (GPAs) is shown in Figure 4. Ini-
tially, a starting population is generated; this is usually done randomly so that it results
in a diverse population that simulates all naturally occurring populations. However, be-
fore an initial population can be created there must be a way to represent individuals.
Traditionally, as supported by Holland [33], individuals, or solutions, were encoded as
binary strings; modern GAs (and consequently GPAs) use tailored encoding to suit the
problem being solved [45]. The number of individuals in the initial population is another
parameter that must be set according to the specific problem at hand.

After an initial population is created the evolutionary loop begins. The evolutionary
loop consists of the following repeating sequence:

1. Evaluate the fitness of each individual in the population. The fitness, or quality,
of each individual (x) is measured by a predetermined fitness function (f(z)) with
a real number codomain, that is, it returns a real number.

2. Select individuals based on fitness levels to be parents of the next generation, as
in Darwinian Selection. The three main selection methods used in GAs and GPAs
are

(a) Fitness-Proportional selection, where individuals are selected using a roulette
wheel concept in which each individual (i) has a sector of size proportional
to its fitness (f;). Assuming that a lower fitness function corresponds to a
superior fitness, this means each individual has a probability of being selected

17

equal to

L—fi

> (L= fi)

(b) Ranking selection, which simply involves selecting the best x (predefined pa-
rameter) number of individuals, according to a predefined function based on
their fitness.

(c) Tournament selection, which involves randomly selecting a number (prede-
fined parameter) of individuals to compete in the tournament. The losers of
the tournament, based on fitness, are then excluded from selection, and all
remaining individuals are selected. This is however, a much weaker form of
selection than the ranking selection.

3. Generate the next population through genetic modification. The mutation op-
erator is applied to a single individual which results in a random change to its
representation (genome) at one or more positions; it is applied with a certain low
probability, set as a parameter. The crossover operator is applied to two individu-
als (parents) and produces a new individual (child) for the next generation, which
is a combination of the representations (genomes) of the original individuals. The
crossover operator is also applied with a probability set as a parameter, but this
probability is usually much higher that the mutation probability. Thus, cross-over
can obviously be performed in many ways and depends on the representations
of the individuals. Two possible approaches are (1) using the beginning of the
representation from one parent and the end from the other parent, or (2) reusing
one parent’s representation with a middle section exchanged for a section of the
other parent. One common classification of different crossover operators can be
separated into the following two categories:

o Fized-length crossover, where the children have the same length representa-
tions as their parents. Assuming that individuals are a sequence of instruc-
tions, an example of fixed-length crossover is taking the first 4 instructions
from parent A (length 6) and the last 2 instructions from parent B (length 6),
which would produce a child that had 6 instructions, the same as its parents.

e Variable-length crossover, which simply means that the result of the crossover
operation may result in a different length child. For example, taking the first
4 instructions from parent A (length 6) and the last 5 instructions from parent
B (length 6) produces a child that had 9 rather than 6 instructions.

This loop terminates when sufficiently optimised individuals'® have been evolved
or other predetermined termination criteria are met, such as the maximum number of
generations have been evolved.

3.2.1 Further Reading

For futher information on GAs, Bornholdt [10] presents a succinct review, and Hardy
and Steeb [32] provide a good review of the implementation of GAs, which includes
many Java and C++ code examples. In addition, a very comprehensive analysis of GAs
from a mathematical standpoint is given by Vose [76]. More detail on GP in general is
covered in Koza’s books [36, 35].

4 Evolving Quantum Algorithms

Genetic Programming (GP) is defined as developing algorithms based on Darwinian
evolution to automatically generate computer programs. Thus, as quantum comput-
ing is a formal computational model, GP can be used to evolve quantum computing
programs (represented as quantum algorithms); this field will be hereafter referred to

8The desired level of optimisation is set as a parameter in terms of the fitness function.

18

as ‘Evolving Quantum Algorithms’. Unlike other applications of GP, there has been
relatively little work done in the field of evolving quantum algorithms [55].

As was stated in Section 2.4.3, it seems that the major reasons for a lack of dis-
covery of quantum algorithms are that they are difficult and non-intuitive to generate,
and that only faster than classical quantum algorithms are of interest. Therefore, it
would seem appropriate that we look to computers to search for quantum algorithms.
However, as the search space of quantum algorithms is vast, complex and reasonably
uncharted, using traditional search techniques is problematic (see Section 3). Hence the
motivation to use GP to evolve quantum algorithms, with the hope that GP’s power
to randomly search vast, complex and unknown spaces can discover many superior
quantum algorithms.

4.1 Simulation Limitations

In order to evolve quantum algorithms the fitness of different individuals (quantum
algorithms) must be assessed; the fitness of a solution is assessed by running the algo-
rithm. However, as quantum computers have not yet been built (Section 2.3), quantum
algorithms must be simulated on a classical machine. However, due to quantum par-
allelism simulating quantum algorithms on a classical computer comes at a potentially
exponential simulation cost [63, 55, 40]. Therefore, as inefficiencies in simulation will
only multiply rapidly during the evolutionary process, an efficient quantum computer
simulator is a necessity in this field [39]. Spector [61] introduces a tested quantum
computer simulator termed QGAME, which is based upon the quantum circuit model
detailed in Section 2.6.1; Sabry [56] outlines an interesting quantum simulation model
in the functional language Haskell, and there are also many quantum computer sim-
ulators that vary in quality available on the Internet. An example code fragment of
the quantum simulator used by Spector et al. [63] explains a possible representation of
gates in the programming language LISP, which is demonstrated below:

(HADAMARD 0) ;; apply Hadamard transformation to qubit 0
(CNOT 1 2) ;; apply CNOT gate with control (qubit 1) and target (qubit 2)

In addition, recall that Hardy and Steeb [31] provide some C++ and Java code for
simulating different quantum effects. Nevertheless, due to the simulating inefficiency
only small quantum algorithms can be simulated and evolved. In this sense small quan-
tum algorithms means that the following must be restricted in size: number of qubits,
number of gates (commonly referred to as the length of a quantum circuit), and the
number of iterations of the algorithm (with varying input) needed to determine the
fitness of the algorithm. Hence, discovering small, yet scalable, quantum algorithms is
the ultimate result from evolving quantum algorithms.

4.2 Program Structures

Within GP, the individuals (computer programs) must have a defined structure so that
genetic operators can be applied to them. In most applications of GP, the computer
programs consist of basic building blocks, referred to as primitives or genomes, such as
constants, operators, problem-specific functions and inputs [39]. When evolving quan-
tum algorithms the main components of the quantum algorithm are quantum gates.
These primitives can then combine to form complete computer programs in different
structures; the types of program structures that have been applied in the field of evolv-
ing quantum algorithms are tree, linear, and the hybrid linear-tree. The choice of an
appropriate program structure appears to be a key ingredient to the success of the GP
evolution [39].

The original GP program structure, as outlined by Koza [36, 35], was based on
the standard tree structure. Quantum gates and their arguments are represented as
parent nodes and their children respectively. Children nodes can be quantum gates

19

themselves'®, and leaf nodes can be constants, zero-argument functions, qubit indices
or other program inputs. This structure can be easily translated into a functional
programming language where the functions are the parent nodes and the function’s ar-
guments are its children. The program can also be executed with a post-order traversal
(left-subtree, right sub-tree, root), which means no further memory is required as func-
tion arguments are always locally accessible. It is also important to note that it is trivial
to convert a tree-structured quantum program into the quantum circuit model, where
the order of gates in the circuit model will be defined by the post-order traversal®.

Although Koza’s tree structure provides elegant adaptations to different program
sizes and shapes [38] and allows for easy expression in any functional programming lan-
guage, there is no guarantee it is the most appropriate representation for all problems
[66]. An alternative to the tree structure, is a linear structure that unsurprisingly con-
sists of a linear sequence of instructions. Spector et al. [66] outline reasons that suggest
tree-based program structures offer no advantages over linear program structures, but
have additional complexity. They state that quantum algorithms are linear, so a linear
program structure appears to be more appropriate than a tree structure. Operators
or functions in the linear based model then get their arguments from external memory.
The linear-tree structure is a combination of these two structures, where there is a linear
structure and branching function at each node of the tree structure. During execution
of the tree structure, the linear structure of each node visited is executed. The tree
structure execution begins by visiting the root node and executes only one path to a
leaf node: the next node visited is determined by the branching function at the current
node. In quantum computing, partial measurements of the entire quantum state are
appropriate branching functions [39]; therefore, the next node depends on the result
of the partial measurement. An example branching function is if the measurement of
qubit n yields |0) or |1), then the left or right subtree will be visited next respectively.

It should also be noted that there is a graph, and consequently a linear-graph, GP
program structure that has been applied to areas other than quantum algorithms. There
are many types of graph structures: the well-known PADO graph structure is presented
by Teller and Veloso [71]. It seems likely that the reason this structure has not been
used to evolve quantum algorithms is that the complexity cost is greater than that of
other structures, but this approach does not seem to represent quantum effects better
than other structures.

4.3 Previous Studies

In addition to the papers cited, Leier’s PhD thesis [39] is a major source for this section
and provides more details on the specific parameters of each study than are given in this
section. A new paper by Giraldi, Portugal and Thess [25] also contains, among other
things, reviews of Rubinstein’s [55] and Yabuki and Iba’s [81] work; however, Leier’s
thesis [39] appears to be the best reference.

4.3.1 Williams and Gray

The book by Williams and Gray [78] is the pioneering work that suggests the use of
genetic programming to evolve quantum algorithms. However, the goal of their study
was to search more efficiently for alternative quantum circuits to a known quantum
algorithm than conducting an exhaustive search. The difference from subsequent studies
is that, in this case the overall unitary gate that represents the quantum algorithm was
already known. This is still useful as it could be used to search for (hopefully faster)
alternative quantum algorithms that solve the same problem [55]. In this case, the

!9The return value of a quantum gate node is a valid index of a qubit it acted upon. For example, the
CNOT gate is usually defined to return the index of the control qubit.

20There is also a trivial mapping of a quantum circuit to a tree-structured program, based on establishing
a sequence of gates, that is further described in Leier’s thesis [39].

20

fitness function would include a penalty for circuits that were similar to the known
quantum algorithm.

Using a population size of 100, the GP algorithm implemented in this study success-
fully found a quantum teleportation algorithm (see Section 2.7.1 for details on quantum
teleportation), where the send portion was as efficient, and the receive portion more
efficient, than the known algorithm; the GP algorithm used:

e A linear program structure

e An approximate universal-gate set consisting of the CNOT gate and two other
one-qubit gates

e A three-tuple representation: {quantum gate, [parameters®!]??, set of qubits acted
upon}

e A fitness function based on the evolved circuits similarity to the known solution

e A ranking selection scheme

e Mutation and Crossover operators that act on quantum gate(s)

4.3.2 Yabuki and Iba

Yabuki and Iba [81] developed a GA model?? that was specifically tailored to evolve
the quantum teleportation algorithm as did Williams and Gray [78]. Using a larger
population size of 5000, the GA algorithm implemented in this study successfully found a
quantum teleportation algorithm (see Section 2.7.1 for details on quantum teleportation)
that has at least 3 fewer gates than any non-evolved quantum teleportation algorithm;
the GA algorithm used:

e A linear program structure
e The same gate set as Williams and Gray [78] (chosen as the problem was the same)

e A unique fized-length string representation that was specifically tailored to the
production of two entangled particles, which is essential in quantum teleportation

e A problem specific fitness function based on the error of the evolved algorithm’s
output

e A fitness-proportional selection scheme
e Mutation and fixed-length crossover operators

Yabuki and Iba, like Williams and Gray, have approached evolving quantum algo-
rithms from an optimisation, rather than a search, standpoint. They have focused on
using a tailored evolutionary algorithm to find a more efficient quantum algorithm for
a given existing quantum algorithm. Furthermore, along with Williams and Gray’s
[78] results, it has been shown that there is potential in this area, particularly for the
quantum teleportation algorithm.

4.3.3 Spector et al.

Spector has recently published the first book [62] about using GP to automatically
evolve quantum algorithms, which makes reference to all of his previous work with a
more detailed introduction into the field. Spector et al. [63, 64, 65, 66] have conducted
extensive research on evolving quantum algorithms. Three different GP models were
outlined and applied to various problems in [66]. The common elements of all three
models are the

e Standardised fitness function (detailed in [63]) that takes into account three com-
ponents:

210nly discrete parameters were allowed.

22[

] indicates optionality.

231t is technically not a GP model due to the fixed length representation of individuals.

21

1. Hits: total number of fitness cases minus the number of fitness cases for which
the quantum circuit yields the correct answer with less than 0.48 probability

numCases
) maxz(0,error; —0.48) . . .
2. Correctness: 2 maz(hits 1) . This formula deliberately ignores

any circuits with errors less than 0.48, so that the focus is on producing
correct quantum algorithms, not on improving the probability of correctness
of already correct quantum algorithms?*

3. Efficiency: number of quantum gates / 100,000, which makes sure that this
component will always be less than 1.

Spector et al. recommend that these components be combined lexicographically,
whereby quantum circuits are only compared on Correctness if their Hits are the
same, and similarly only compared on Efficiency if the Hits and Correctness are
the same.

e Tournament selection method with a tournament size of five individuals

The first GP model defined in [66] uses a standard tree program structure, and is in
fact a summary of the results presented in Spector et al.’s initial paper [63]. This GP
model was applied to two oracle problems, namely Deutsch’s problem and the scaling
majority-on problem (defined in Section 2.7.3). Using a population size of 10,000,
this tree structure GP algorithm was used to evolve a better-than-classical quantum
algorithm for Deutsch’s problem, but did not evolve a quantum algorithm to solve
the majority-on problem better than any classical algorithm. Along with the common
elements shown above, this tree structure GP algorithm also used

e A set of gate building functions as well as iteration structures and arithmetic
operators

e Functions in prefix notation, analogous to functional languages such as LISP in
which the quantum algorithms were simulated

e Mutation operators, and two types of crossover operators: a variable length oper-
ator design for the tree structure and a reproduction operator to produce a child
exactly the same as a parent.

The other two GP models use two types of linear program structures. As stated
in Section 4.2, a linear structure stores arguments in external memory. The first type
of linear structure, called the stack-based linear GP, uses a global stack for temporary
data storage. This GP model successfully evolved a quantum algorithm to solve the
four-item database search problem faster than any classical algorithm; moreover, the
evolved quantum algorithm is as efficient as, and almost identical to, Grover’s search
algorithm. Besides the program structure, the differences between this GP model and
the tree structure model discussed above are that the

e Various crossover operators are designed to operate on linear, rather than tree,
structures; they are also fixed-length operators

e Iteration structures are stack-based, rather than tree-based
e Gate building functions do not return values on to the stack

e Arithmetic functions take their arguments from, and return their result to, the
stack

e A no—op operator is part of the function set

The primary role of including iteration structures is to produce scalable quantum
algorithms, however, some non-scalable quantum algorithms are of interest [66]. The
second type of linear GP model is tailored to evolving these non-scalable quantum
algorithms as there is no iteration structure. Furthermore, Spector et al. [66] suggest
that there is no major reason for quantum gates to share parameter values, which

2"Here Spector et al. are using the term correct to mean correct greater than or equal to 48% of the time.

22

consequently means there is no reason for data storage. Thus, in contrast to the stack-
based linear structure, the second type of linear structure implemented, called the stack-
less linear GP, only contains the gate building functions and has no external memory for
temporary data storage. This GP structure was used to evolve a quantum algorithm to
solve the And-Or Query problem faster than any previously known classical or quantum
algorithm. The And-Or Query problem is to determine whether the boolean function
(f(0) Vv fF(1)) A (f(2) V f(3)) is true or false for a two-bit boolean function f.

Spector et al. [64, 65] then presented a modification of their stack-less linear struc-
ture GP. The changes to the GP model include

e Using a steady-state GP. All previous GP models applied to quantum algorithms
have been generational GP models; the difference is simply that steady-state GP
models do not have clearly defined generations. The remainder of the evolutionary
process can be considered to be very similar

e Supporting the use of variable-length representations and variable-length crossover
operators

e A four component fitness function, in which the components are again combined
lexicographically; the components are the

1. Misses component, which is equivalent to the Hits component used in [66]
2. Ezpected-Queries component that considers the number of oracle calls (de-
fined in [65]), which is a tailored modification for evolving quantum algorithms
to solve oracle problems
3. Max-Error component, which is the maximum probability of getting a wrong
answer in any fitness case, and is similar to the Correctness component used
in [66]
4. Num-Gates component, which is equivalent to the Efficiency component used
in [66]
e Including a one-qubit measurement gate so that partial measurements can be
made, which are key to several known quantum algorithms such as Shor’s factoring
algorithm

e The added ability to distribute the evolutionary process across multiple worksta-
tions to decrease execution time

This modified GP model was again applied to the And-Or Query problem, with bet-
ter results that the initial stack-less linear structure model. From these improving
results, Spector et al. deduced that they were successfully improving their GP model to
evolve quantum algorithms, and that the stack-less linear structure is probably the best
structure that has been developed for evolving quantum algorithms. Furthermore, the
successful research by Spector et al. summarised above has shown that there definitely
is a degree of potential in evolving quantum algorithms.

4.3.4 Rubinstein

Using a population size of 5000, Rubinstein [55] used his generational GP algorithm to
successfully discover the most efficient known quantum algorithms to produce two to
five maximally entangled qubits?®, that is, qubits of the form % (J0...0) +|1...1)).
The GP algorithm used

e A linear program structure (with no external storage)

e An unspecified set of quantum gates that include CNOT, Hadamard and impor-
tantly an ‘Observe’ gate that can measure one or many qubits, which is known to
be a vital technique in several known quantum algorithms, such as Shor’s factoring
algorithm

%Two maximally entangled qubits is in fact the first Bell state as described in Section 2.2.5.

23

A modification of the three-tuple representation, where the quantum gate and its
parameters and qubit operands are encoded into a bit string, which is the standard
representation for an individual in GPs

A fitness function based solely on the error of the evolved quantum system. The
fitness was calculated using the following formula, where 4 is an input case of k
total cases, j is a basis state in a quantum system of n qubits, and o and d are
the observed and desired amplitudes respectively.

k—12n—1

error = Z Z (035 — dij)
i g

The error obtained from this function is then divided by the highest error of any
individual evolved to obtain a stardardised fitness that lies in the range between
0 (optimal) and 1.

A fitness-proportional selection scheme

Mutation operators (with low probability), and crossover operators that act upon
all parts of the bit string representation, that is, gates, parameters and qubits.
Gate cross-over is variable-length, but parameter and qubit crossover are fixed-
length, as most quantum gates act upon a fixed number of qubits with a fixed
number of parameters

From the quantum algorithms produced for the maximum entanglement problem
with two to five qubits, deductions were made about an arbitrary sized maximum en-
tanglement production circuit. Thus, this study shows that there is potential for GP
to produce small, yet scalable, quantum circuits that can be converted into large scale
quantum circuits.

4.3.5 Lukac et al.

Lucak and Perkowski [43] present a general GA for evolving quantum circuits. Their
algorithm used:

An encoding system where quantum circuits are represented as an array of strings
of quantum gates. Each element of the array represented a specific point in time
(after the previous element and before the next element) in the quantum algorithm
when gates could act upon qubits. The string of ordered gates at each element
corresponded to the order of qubits, such that the the first gate acted upon the
first qubit and so on. This system had no extra parameters to identify which
qubits a gate acted upon, thus it was only possible with the introduction of a
no operation gate. Their encoding system also deliberately allowed for parallel
evalution of individuals to potentially decrease fitness evaluation time.

A large gate set comprising various one, two and three qubit gates, including a
one-qubit ‘wire’ gate that performs ‘no operation’. The reason for the diverse gate
set is Lukac and Perkowski’s focus on evolving arbitrary quantum algorithms.

A fitness function considering the correctness of the quantum algorithm. This
fitness function is similar to those in previous papers [55, 78], but in this case a
fitness level of 1 corresponds to maximum (not minimum) fitness.

Roulette wheel and stocastic universal sampling selection schemes. Stocastic uni-
versal sampling is less biased towards selecting 'fit” individuals, thus a more ran-
dom selection scheme (which is detailed more in [26]).

Mutation and crossover operators.

Population sizes of 50 and 100 individuals. The population was deliberately kept
small to avoid long fitness evaluation times.

24

Lucak and Perkowski used their algorithm to evolve various quantum circuits, av-
eraging each experiment over 20 runs. First, they evolved single gate circuits (whereby
the target gate was included in the gate set for the experiment) to test their algorithms
convergence. All gates were successfully evolved, but for larger number of input-qubits
(gate size) longer evolution time was required. Interestingly, mutation with a probabil-
ity greater than 0.4 was found to decrease both real-time evolution and the number of
generations needed to successfully evolve the target gate. Their second experiment was
to evolve three quantum circuits consisting of more than one gate: namely, the quan-
tum teleportation algorithm previous evolved by Williams and Gray [78] and three and
four maximally entagled qubits as previously evolved by Rubinstein [55]. In all three
cases, the desired quantum circuit was evolved in similar or less time than previously
published. It was also noted that while the number of generations required to evolve
quantum circuits increases exponentially as the number of qubits increase, the real-time
evolution increases at a much slower rate. Higher probability of mutation was again
found to decrease the number of generations and real-time for successful evolution.

While not discovering any new or further optimised quantum algorithms, Lucak
and Perkowski have established benchmarks for the evolution of various small quantum
algorithms, ranging from 1 to 4 qubits. Furthmore, for the three composite quantum
algorithms (> 1 qubit) evolved, their GA has performed equally or more efficiently (in
terms of time of evolution) than previous studies. Lukac et al. [44] have furthered their
research by investigating implementing their GA on a quantum computer. The specific
encoding used in this GA lends itself to be computer in parallel, thus it should be
implementable on quantum technologies, such as nuclear magnetic resonance (NMR).

4.3.6 Leier

Leier, in his recent PhD thesis [39], presented two GP models for evolving quantum
algorithms, one linear and one linear-tree structure. Both models are very similar to
the successful stack-less linear structure GP model developed by Spector et al. [65, 64].
The major difference is the four component fitness function of Leier’s model, in which the
components are combined through different weightings, rather than lexicographically.
The actual components are also slightly different, but have all been previously been
mentioned by Spector et al.; they are: misses, maz-error, correctness and num-gates.
Further differences in the linear-tree model, caused by its structural difference, are
that branching functions are partial measurements and the crossover operators that act
on the linear and tree substructures are included. The inherent inclusion of partial
measurements and the added flexibility of the linear-tree structure was the motivation
for creating a GP model that was not strictly linear.

Both GP models were applied to the Deutsch-Jozsa (D-J) and 1-SAT problems?®.
The Deutsch-Jozsa problem is essentially a scalable version of Deutsch’s problem; 1-SAT
also has a known better-than-classical quantum algorithm solution (Hogg’s algorithm).
The linear-tree GP was able to find a quantum algorithm essentially the same as the
known algorithms for both the 1-SAT and D-J problem, although some evolutionary
runs did not produce a solution to the D-J problem. The interesting finding from this
study was that intermediate partial measurements had no noticeable positive effect;
similarly, the added flexibility of the linear-tree structure did not add a benefit over
the strict linear structure which also evolved solutions to both problems. However, it is
probable that these findings can not be generalised past these small problems that have
relatively simple quantum solutions. Nevertheless, this study was the first to show that
linear-tree structure GP models can be used to evolve quantum circuits.

Leier also made some other interesting observations; the most important of these
are listed below:

26Note that the result of the linear-tree models applied to 1-SAT is also contained in a paper by Leier and
Banzhaf [40].

25

e Using the linear structured GP model, Leier showed that there was an increase in
the efficiency of the evolutionary process when using a pre-evolved, rather than
a random, initial population for both the D-J and 1-SAT problem. This pre-
evolution involved feeding evolved individuals from a smaller problem instance
into the initial population.

e According to Leier’s research crossover is not as important as commonly thought.
This finding conflicts with the traditional GP approach, where crossover is per-
formed with much greater probability than mutation with the idea of multiplying
and distributing better solutions over the population.

e Even though Leier made a point of emphasising that his GP models were not
designed to produce scalable quantum algorithms, scalability was achieved: the
algorithms evolved using Leier’s models, which apply to n-qubits, can be easily
manually scaled to apply to (n+1)-qubits. However, this is in fact not surprising
as the known quantum algorithms for both application problems are scalable.

4.3.7 Ding et al.

Ding et al. [17] recently presented a new framework for evolving quantum circuits that is
designed for both quantum algorithm discovery and optimisation. This framework uses
a Hybrid Quantum-Inspired Evolutionary Algorithm (HQEA), which was motivated by
GP and detailed in Yang’s Masters thesis [82]. Ding et al.’s approach used:

e A fixed length numerical encoding of quantum circuits, compared with encoding in
symbols as done in previous works. Encoding the quantum circuits with numerical
values was necessary to take advantage of the HQEA algorithm.

e A gate set comprising the Hadamard, CNOT, Phase and 7/8 gates®’. Their
approach is not limited to these gates, but gates in their quantum algorithms are
confined to one-qubit and adjacent two-qubit gates. For example, the control qubit
of the CNOT gate must be adjacent to the qubit undergoing the NOT operation.

e A fitness function that considers both the cost and correctness of quantum al-
gorithms (as also done in Reid’s Masters thesis [52]). The fitness function used,
where lower fitness is better, was:

fitness = reward x (actualcost — satcost) + punish x (1 — correctness)

The satcost represents a satisfactory algorithms cost, whereby if it is set high or
low then the evolution is inclined towards discovery or optimisation respectively.
Algorithm cost was calculated with one-qubit gates, two-qubit gates, and the wire
costing 1, 2 and 0 respectively. However, using this same framework algorithm
cost could be more accurately computed in terms of the monetary costs using
different quantum technologies.

e A fitness-proportional selection scheme
e Mutation and crossover operators.

Ding et al. tested their approach on evolving 2 and 3 entangled qubits, as well
as the controlled-phase gate, which confirmed that lower satcosts resulted in more
optimised quantum algorithms. However, more generations of evolution were required
to evolve optimised algorithms. Further experiments were conducted on evolving 2
entagled qubits as research into the appropriate values for the reward-punish factors.
This revealed that a large punish:reward ratio (> 5 for satcost = 6) is required to
evolve correct quantum algorithms, and larger punish is required for larger satcost. In
addition, Ding et al. present a faster method for matrix multiplication with tensor
product, to increase the efficiency of evaluating individuals. This faster method can

ZTWithin the scope of this paper, Phase and /8 gates can be thought of as reflection (about a basis state)
and rotation gates respectively.

26

also be adapted to other evolutionary algorithms. Overall, this new approach has shown
promise in evolving and optimising small quantum algorithms, but it has not yet been
used to discover a previously undiscovered quantum algorithm.

4.4 Further Reading

The papers mentioned in the previous section provide further reading: Spector et al.’s
work that was published in a book [66] is recommended as the first paper to read due
to its understandability. Spector’s book [62] and Leier’s excellent PhD thesis [39] are
recommended as the main points of call on the topic of evolving quantum algorithms.
Both of these references also contain an introduction to both the field of quantum
computing and evolutionary algorithms, which is similar to, but more detailed than,
the one given in this paper. Spector’s paper [61] is also recommended as an excellent
short paper that extends the idea of evolving quantum algorithms using GP to evolving
arbitrary computational processes.

4.4.1 Related Applications of GP

Genetic programming has also been applied to some other closely-related applications.
Quantum program evolution based on density matrices [68] is a new area that is showing
promise. Spector et al. [63] also suggested that there was potential in researching how
GP algorithms would be executed on quantum computers, and whether a significant
speed-up on fitness evaluation is possible using quantum parallelism. This idea has
been reviewed by Giraldi, Portugal and Thess [25] in 2004, and Udrescu et al. [72]
have presented new research into implementing GA algorithms on quantum computers.
Another of Spector et al.’s suggestions is to evolve hybrid quantum-classical algorithms,
whereby the quantum algorithm has classical pre and post data processors [63]. Another
somewhat related paper [53] looked into a case of using GAs to evolve the hardware of
quantum computers: a set of pulse sequences (which can be thought of as rotations) is
evolved for a given quantum logic gate, implemented by Nuclear Magnetic Resonance
(NMR). The significance of this is that the shorter and more robust the pulse sequence
the more efficient the implementation of a quantum gate or algorithm; furthermore, the
evolved set of pulse sequences was superior to any previously known set.

5 Conclusion

Genetic algorithms and programming have been successfully used to analyse and opti-
mise known quantum algorithms. Previous studies have also shown that genetic pro-
gramming can evolve new quantum algorithms, albeit only small quantum algorithms.
Another possible outcome of evolving quantum algorithms is that a new useful idea,
such as a meaningful sequence of gates, which will change the way future quantum
algorithms are developed manually, may be discovered; however as yet, this has not oc-
curred. Nevertheless, manual quantum algorithm generation has had more success than
evolving quantum algorithms [39], although no further breakthroughs have been made
manually since Shor’s and Grover’s algorithms. Furthermore, the fact that quantum
computers do not yet exist is a huge limitation on the research field of evolving quan-
tum algorithms, as quantum simulation on a classical machine has an exponential order
overhead. This means that only small quantum algorithms can be evolved, which are
few in number and generally have little practical application. Thus, Leier and Banzhaf
[39, 40] speculate that this field will have a brighter future when quantum computers
exist. However, there are still ideas that have not been tested as the field of evolving
quantum algorithms is relatively new and has not yet been comprehensively researched
[39].

27

References

[1]
[2]

[3]
[4]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]
[18]

[19]

BAck, T. Ewvolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford Univeristy Press, 1996.

BANzHAF, W., NORDIN, P., KELLER, R., AND FRANCONE, F. Genetic Program-
ming -An Introduction. dpunkt Heidelberg and Morgan Kaufmann Publishers, San
Francisco, 1998.

BARENCO, A. A universal two-bit gate for quantum computation. In Proceedings
of the Royal Society of London A 449 (1995), pp. 679-683.

BArENCO, A., BENNETT, C. H., CLEVE, R., DIVINCENZO, D. P., MARGOLUS,
N., SHOR, P., SLEATOR, T., SMOLIN, J., AND WEINFURTER, H. Elementary
gates for quantum computation. Physical Review A 52, 5 (1995), 3457-3467.

BeLEw, R. K., AND VOSE, M. D., Eds. Foundations of Genetic Algorithms /
(1997), Morgan Kaufmann.

BENIOFF, P. The computer as a physical system: A microscopic quantum mechan-
ical hamiltonian model of computers as represented by turing machines. Journal
of Statistical Physics 22, 5 (1980), 563-591.

BENNETT, C. H. Logical reversibility of computation. IBM Journal of Research
and Development 17 (1973), 525-532.

BeENNETT, C. H., BERNSTEIN, E., BRASSARD, G., AND VAZIRANI, U. V.
Strengths and weaknesses of quantum computing. Society for Industrial and Ap-
plied Mathematics Journal on Computing 26 (1994), 1510-1523.

BERNSTEIN, E., AND VAZIRANI, U. V. Quantum complexity theory. In Proceedings
of the 25th Annual ACM Symposium on Theory of Computation (1993), pp. 11-20.

BORNHOLDT, S. Genetic algorithms. In Non-Standard Computation, T. Gram$,
S. Bornholdt, M. Grof}, M. Mitchell, and T. Pellizzari, Eds. WILEY-VCH, Wein-
heim, Germany, 1998, pp. 141-178.

BOUWMEESTER, D., PaNn, J.-W., MarTLE, K., EiBIl, M., WEINFURTHER, H.,
AND ZEILINGER, A. Experimental quantum teleportation. Nature 390 (1997),
D75-579.

BRAUNSTEIN, S. L. Quantum computation: a tutorial. Tech. rep., Department of
Computer Science, York University, 1995.

DARWIN, C. On the origin of species by means of natural selection or the preser-
vation of favoured races in the struggle for life. Murray, London, 1859.

DruTscH, D. Quantum theory, the church-turing principle and the universal
quantum computer 400. In Proceedings of the Royal Society of London A (1985),
pp- 97-117.

DruTscH, D. Quantum computational networks. In Proceedings of the Royal
Society of London A 425 (1989), pp. 73-90.

DeuTscH, D., AND J0zZsA, R. Rapid solution of problems by quantum compu-
tation. In Proceedings of the royal society of london series A (1992), vol. A439,
pp. 553-558.

Ding, S., JIN, Z., AND YANG, Q. Evolving quantum oracles with hybrid quantum-
inspired evolutionary algorithm. ArXiv Quantum Physics e-prints (October 2006).

Dirac, P. The Principles of Quantum Mechanics, fourth ed. Oxford University
Press, 1958.

FEYNMAN, R. Simulating physics with computers. International Journal of The-
oretical Physics 21 (1982), 467-488.

28

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]
31]
[32]
[33]

[34]
[35]
[36]

[37]
[38]
[39]

[40]

FEYNMAN, R. P. There’s plenty of room at the bottom: An invita-
tion to enter a new field of physics. Speech at the annual meeting of
the American Physical Society, December 1959. It is available online at
http://www.zyvex.com/nanotech /feynman.html.

FeyNMAN, R. P., AND GILBERT, D. H., Eds. Miniaturization. Reinhold, New
York, 1961, pp. 282-295.

FoGEL, D. B. Phenotypes, genotypes, and operators in evolutionary computation.
In Computational Intelligence: Theory and Applications, 5th Fuzzy Days (Berlin,
1995), Springer-Verlag, pp. 337-342.

FORNEY, JR, G. D., AND GUHA, S. Simple rate-1/3 convolutional and tail-biting
quantum error-correcting codes. submitted to 2005 IEEE International Symposium
on Information Theory, 2005.

ForrNOW, L., AND ROGERS, J. Complexity limitations on quantum computation.

Journal of Computer and System Sciences 59, 2 (1999), 240-252. Special issue for
selected papers from the 13th IEEE Conference on Computational Complexity.

GIRALDI, G. A., PORTUGAL, R., AND THESS, R. N. Genetic algorithms and
quantum computation. CoRR ¢s.NE/0403003 (2004).

GOLDBERG, D. E. Genetic Algorithms in Search, Optimisation, and Machine
Learning. Addison Wesley, 1989.

GraMss, T. The theory of quantum computation: An introduction. In Non-
Standard Computation, T. Gram$B, S. Bornholdt, M. Grof}, M. Mitchell, and T. Pel-
lizzari, Eds. WILEY-VCH, Weinheim, Germany, 1998, pp. 141-178.

Gross, M. Molecular computing. In Non-Standard Computation, T. Gram$,
S. Bornholdt, M. Grof; M. Mitchell, and T. Pellizzari, Eds. WILEY-VCH, Wein-
heim, Germany, 1998, pp. 15-58.

GROVER, L. K. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the 18th annual ACM symposium on the history of computing (Philadel-
phia, Pennsylvania, May 1996), pp. 212-219.

GUDDER, S. Quantum automata: An overview. International Journal of Theoret-
ical Physics 28,9 (1999), 2261-2282.

HARDY, Y., AND STEEB, W.-H. Entangled quantum states and a C++ imple-
mentation. International Journal of Modern Physics C' 11 (2000), 69-77.

HARDY, Y., AND STEEB, W.-H. Classical and Quantum Computing, with C++
and Java Simulations. Birkhduser Verlag, Berlin, Germany, 2001.

HoLLAND, J. H. Adaptation in Natural and Artificial Systems. MIT Press, Cam-
bridge, 1975.

HUNGERFORD, T. A. Algebra. Springer Verlag, New York, 1974.
Koza, J. R. Genetic Programming II. MIT Press, Cambridge, 1992.

Koza, J. R. Genetic programming: on the programming of computers by means
of natural selection. MIT Press, Cambridge, 1992.

LANDRY, O. Introduction to quantum computing. From Physics Department of
McGill University, April 2004.

LanapoN, W. B., SouLg, T., PoLl, R., AND FOSTER, J. A. The evolution of
size and shape. In Spector et al. [67], pp. 163-190.

LEIER, A. Ewvolution of quantum algorithms using genetic programming. PhD
thesis, University of Dortmund: Department of Computer Science, 2004.

LEIER, A., AND BANzHAF, W. Evolving Hogg’s quantum algorithm using linear-
tree GP. In Genetic and Evolutionary Computation — GECCO-2003 (Chicago,
12-16 July 2003), E. Cantu-Paz, J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M.

29

[41]
[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]
[50]
[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener,
D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller,
Eds., vol. 2723 of LNCS, Springer-Verlag, pp. 390-400.

LENSTRA, A. K., AND LENSTRA, JR, H. W. The Development of the Number
Field Sieve. Lecture Notes in Mathematics 1554. Springer Verlag, 1993.

Loss, D., aAND DIVINCENZO, D. Quantum computation with quantum dots.
Physical Review A 57 (1998), 120-126.

Lukac, M., AND PERKOWSKI, M. Evolving quantum circuits using genetic algo-
rithms. In Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware
(2002), pp. 177-185.

Lukac, M., PErRkKOwskKI, M., KErNTOPF, P., PIvroraiko, M., FoL-
GHERAITER, M., LEg, D., Kim, H., HWUuANGBO, W., wooK Kim, J., AND
CHor, Y. W. A hierarchical approach to computer aided design of quantum cir-
cuits. In Proceedings of the 6th International Symposium on Representations and
Methodology of Future Computing Technology (2003), pp. 201-209.

MICHALEWICZ, Z. Genetic algorithms + Data structures = Ewvolution Programs,
3rd ed. Springer - Verlag, New York, 1996.

MITCHELL, M. An introduction to genetic algorithms. MIT Press, 1996.

NIELSEN, M. A., AND CHUANG, I. L. Quantum computation and Quantum In-
formation. Cambridge University Press, Cambridge, 2000.

PELLIZZARI, T. Quantum computers: first steps towards a realization. In Non-
Standard Computation, T. Gram$B, S. Bornholdt, M. Grof}, M. Mitchell, and T. Pel-
lizzari, Eds. WILEY-VCH, Weinheim, Germany, 1998, pp. 141-178.

PITTENGER, A. O. An Introduction to Quantum Computing Algorithms.
Birkh&user, Boston, 2000.

PAUN, G., ROZENBERG, G., AND SALOMAA, A. DNA Computing: New Comput-
ing Paradigms. EATCS Series. Springer-Verlag, 1998, pp. 1-6,43-74.

PAUN, G., ROZENBERG, G., AND SALOMAA, A. DNA Computing: New Comput-
ing Paradigms. EATCS Series. Springer-Verlag, 1998.

REID, T. On the evolutionary design of quantum circuits. Master’s thesis, Water-
loo, Ontario, Canada, 2005.

RETHINAM, M. J., JAvALI, A. K., BEHRMAN, E. C., STECK, J. E., AND SKIN-
NER, S. R. A genetic algorithm for finding pulse sequences for nmr quantum
computing. submitted to Physical Review A (April 2004).

RIEFFEL, E., AND PoLAK, W. An introduction to quantum computing for non-
physicists. ACM Computing Surveys (2000).

RUBINSTEIN, B. I. P. Evolving quantum circuits using genetic programming. In
Proceedings of the 2001 IEEE Congress on Evolutionary Computation (CEC2001)
(2001), IEEE Press, pp. 114-121.

SABRY, A. Modeling quantum computing in Haskell. In Haskell '03: Proceedings
of the ACM SIGPLAN workshop on Haskell (New York, NY, USA, 2003), ACM
Press, pp. 39-49.

SHOR, P. W. Algorithms for quantum computation: Discrete log and factoring.
In Proceedings of the 35th Annual Symposium on Foundations of Computer Sci-
ence (November 1994), Institute of Electrical and Electronic Engineers Computer
Society Press, pp. 124-134.

SHOR, P. W. Scheme for reducing decoherence in quantum computer memory.
Physical Review A 52 (1995), 2493-2496.

SHOR, P. W. Introduction to quantum algorithms. Notes for talk given for the
short course at the January 2000 American Math Society meeting, 2000.

30

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

[71]

[72]

[73]
[74]

[75]

[76]

[77]

SiMON, D. On the power of quantum computation. In Proceedings of the 35th
annual IEEE symposium on the foundations of computer science (FOCS) (Santa
Fee, USA, November 1994), IEEE Computer Society Press, pp. 116-123.

SPECTOR, L. The evolution of arbitrary computational processes. IEEE Intelligent
Systems (May/June 2000), 80-83.

SPECTOR, L. Automatic Quantum Computer Programming: A Genetic Program-
ming Approach. Genetic Programming Series. Kluwer Academic Publishers, 2004.

SPECTOR, L., BARNUM, H., AND BERNSTEIN, H. J. Genetic programming for
quantum computers. In Genetic Programming 1998: Proceedings of the Thurd An-
nual Conference (1998), J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo,
D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo, Eds., pp. 365—
374.

SPECTOR, L., BARNUM, H., AND BERNSTEIN, H. J. Quantum circuits for or and
and of ors. Journal of Physics A: Mathematical and General 33 (2000), 8047—8057.

SPECTOR, L., BARNUM, H., BERNSTEIN, H. J., AND Swamy, N. Finding a
better-than-classical quantum AND/OR algorithm using genetic programming. In
Proceedings of the 1999 Congress on Evolutionary Computation (1999).

SPECTOR, L., BArRNUM, H., BERNSTEIN, H. J., AND SwaMY, N. Quantum
computing applications of genetic programming. In Spector et al. [67], pp. 135—
160.

SPECTOR, L., LANGDON, W. B., O-REILLY, U.-M., AND ANGELINE, P. J., Eds.
Advances in Genetic Programming: Volume 3. The MIT Press, 1999.

STADELHOFER, R. Solving the parity problem on a mixed state quantum computer.
Tech. rep., University of Dortmund, 2004. Available upon request.

STEPNEY, S., AND CLARK, J. A. Evolving quantum programs and protocols.
In Handbook of Theoretical and Computational Nanotechnology, M. Rieth and
W. Schommers, Eds. American Scientific Publishers, 2005. Overview available
at http://www-users.cs.york.ac.uk/%7Esusan/bib/ss/nonstd /gqprev05.htm.

SURRY, P., AND RADCLIFFE, N. A formalism for real-parameter evolutionary
algorithms and directed recombination. In Belew and Vose [5].

TELLER, A., AND VELOSO, M. PADO: A new learning architecture for object
recognition. In Symbolic Visual Learning, K. Ikeuchi and M. Veloso, Eds. Oxford
University Press, 1996, pp. 81-116.

UDRESCU, M., PRODAN, L., AND VLADUTIU, M. Implementing quantum genetic
algorithms: a solution based on grover’s algorithm. In Proceedings of the Third
Conference on Computing frontiers (New York, 2006), ACM Press, pp. 71-82.

VAN Dam, W. A universal quantum cellular automaton. In Proceedings of
PhysComp96 (1996), New England Complex Systems Institute, pp. 323-331.

VAN TONDER, A. A lambda calculus for quantum computation. SIAM Journal on
Computing 33, 5 (2004), 1109-1135.

VANDERSYPEN, L. M. K., STEFFEN, M., BREYTA, G., YANNONI, C. S., SHER-
wooD, M. H., AND CHUANG, I. L. Experimental realization of shor’s quan-
tum factoring algorithm using nuclear magnetic resonance. Nature 414 (December
2001), 883-887.

VoOsE, M. D. The simple genetic algorithm: foundations and theory. The MIT
Press, 1999.

Watrous, J. Relationships between quantum and classical space-bounded com-
plexity classes. In 13th Annual IEEE Conference on Computational Complexity
(June 1998), pp. 210-227.

31

[78]
[79]
[80]

[81]

[82]

[83]

[84]

WiLLiams, C., AND GRAY, A. Automated Design of Quantum Circuits. Springer,
New York, 1997.

WiLLiams, C. P., AND CLEARWATER, S. H. Explorations in Quantum Computing.
Springer Verlag, 1998.

WooTers, W. K., AND ZUREK, W. H. A single quantum cannot be cloned.
Nature 299 (1982), 802-803.

YABUKI, T., AND IBA, H. Genetic algorithms for quantum circuit design, evolving
a simpler teleportation circuit. In GECCO-00: Procedings of the Genetic and Evo-
lutionary Computation Conference (San Francisco, July 2000), Morgan Kauffman
Publishers, pp. 421-425.

YaNnG, Q. The research of a hybrid quantum-inspired evolutionary algorithm.
Master’s thesis, Wuhan University, China, 2006.

Yao, A. Quantum circuit complexity. In Proceedings of the 34th Annual Sympo-
sium on the Foundations of Computer Science (Los Alamitos, USA, 1993), IEEE
Computer Society Press, pp. 352—-361.

ZUREK, W. H. Decoherence and the transition from quantum to classical. Physics
Today 44 (1991), 36—44.

32

