
Noname manuscript No.
(will be inserted by the editor)

Emergence in genetic programming

Let’s exploit it!

Anikó Ekárt

Received: date / Accepted: date

Abstract Banzhaf explores the concept of emergence and how and where
it happens in genetic programming [1]. Here we consider the question: what
shall we do with it? We argue that given our ultimate goal to produce genetic
programming systems that solve new and difficult problems, we should take
advantage of emergence to get closer to this goal.

Keywords emergence · self-modification · autoconstructive evolution ·
multilevel genetic programming

1 Introduction

The study of emergence is clearly important in many research fields, only in
the last five years over one million scientific articles on the topic have been
written (based on Google Scholar).1

Given the many subtle variants and examples in the literature people may
become confused. As opposed to Holland refusing to give a concise definition
for the notion of emergence [4], Banzhaf goes back to the origin of the term and
adopts the simple definition by which emergence is the process that leads to
the whole being more than a sum of its parts [1]. For the genetic programming
community, this definition offers clarity and allows the practitioners to move
forward toward understanding how emergence happens in general and what it
can mean for genetic programming systems.

A. Ekárt
Aston University
Aston Triangle, Birmingham B4 7ET, United Kingdom
E-mail: a.ekart@aston.ac.uk

1 In comparison, about 17,300 articles have been written on genetic programming in the
same period.



2 Anikó Ekárt

Banzhaf [1] discusses the two main mechanisms that would allow for emer-
gence: top-down and bottom-up causation and places them in the context of ge-
netic programming. Selection exemplifies top-down causation, while genotype-
phenotype mapping and phenotype to fitness mapping exemplify bottom-up
causation. There are plenty of well-documented and analyzed examples in the
genetic programming literature to support the existence of emergent phenom-
ena, such as bloat, evolvability, cooperation, modularity and repetitive pat-
terns. He argues that repetitive patterns emerge ”as a result of the presence
of downward causation realized through selection”.

2 Engineering emergence in genetic programming

Genetic programming systems have always been engineered to produce emer-
gent solutions. Through the use of genetic programming, we expect the com-
puter to solve a problem without explicitly telling it what steps to take and in
what order, often not knowing ourselves in advance what the solution should
be. Then it should not come as a surprise that some emerging properties, such
as bloat in many cases, may be unwanted and hinder the production of ac-
ceptable solutions, so mechanisms to discourage them have to be put in place.
External observation of these unwanted properties and external intervention
to reduce or more radically eliminate them is needed.

An interesting idea is internal emergence that allows a system to take
advantage of the emergent patterns without external intervention. To achieve
this, self-modification and self-reflection are required [6].

3 Exploiting emergence

Substantial effort in the genetic programming community is dedicated to ex-
ploring avenues for designing solutions to hard problems. In an ideal situation
the solution would adapt to unseen new problems in a satisfactory manner. In
our view, this can be achieved to a great extent if mechanisms for allowing
perpetual emergence and autonomous response to emerging properties, not re-
quiring external intervention, are put in place. Although some authors are of
the opinion that genetic programming may not be suitable for perpetual emer-
gence due to the representation and artificial selection mechanism used [2], we
believe that the extension of genetic programming systems in the direction of
self-modification can overcome the difficulties and allow for more open-ended
emergence and exploitation of emerging properties. We shall briefly discuss
three promising directions.

Self-modifying Cartesian genetic programming In addition to the usual func-
tions, in self-modifying Cartesian genetic programming the genotype includes
primitive functions that act on the genotype itself, allowing the phenotype
to unfold over time [3]. Self-modifying Cartesian genetic programming is rela-
tively easy to implement, has been reported successful on a variety of problems



Emergence in genetic programming 3

and also has the nice property that self-modification is only triggered when
needed and without external intervention.

Autoconstructive evolution Spector proposes to extend genetic programming
through so-called autoconstructive evolution, where the reproduction and vari-
ation algorithms are encoded in the programs themselves [5]. In this way, these
algorithms can evolve together with the problem-solving part of the solutions.
The usual encoded restrictions on these mechanisms are removed, so more
open-ended emergence is allowed.

Multilevel genetic programming Multilevel selection has been designed to en-
courage cooperation between multiple partial solutions to solve complex prob-
lems [7]. The particularly attractive reported side effect of multilevel selection
is the autonomous decomposition of the tackled problem through evolution,
without human intervention.

4 Conclusion

We agree with Banzhaf’s key idea [1] that selection in genetic programming
is an example of top-down causation, while genotype-phenotype mapping and
phenotype-fitness mapping exemplify bottom-up causation. The challenge is
whether we can engineer genetic programming algorithms to exploit emergence
to produce good solutions to real life problems. To this end, we are encouraging
increased efforts in the direction of incorporating mechanisms for perpetual
emergence and autonomous response to emergent properties.

References

1. W. Banzhaf, Genetic programming and emergence, Genetic Programming and Evolvable
Machines, (2013)

2. A.D. Channon and R.I. Damper, Towards the evolutionary emergence of increasingly
complex advantageous behaviours, International Journal of Systems Science, 31(7), 843-
860 (2000)

3. S. Harding. W. Banzhaf and J. F. Miller, A survey of self modifying Cartesian genetic
programming, In R. Riolo et al. (Eds.), Genetic Programming Theory and Practice VIII,
p. 91-107 (2011)

4. J. Holland, Emergence, Philosophica, 59, 11- 40 (1997)
5. L. Spector, Towards practical autoconstructive evolution: self-evolution of problem-

solving genetic programming systems, In R. Riolo et al. (Eds.), Genetic Programming
Theory and Practice VIII, p. 17-33 (2011)

6. S. Stepney, Programming unconventional computers: dynamics, development, self-
reference, Entropy, 14, 1939-1952 (2012)

7. S. Wu and W. Banzhaf, Rethinking multilevel selection in genetic programming. In N.
Krasnogor et al. (Eds.), Proceedings of the International Conference on Genetic and Evo-
lutionary Computation (GECCO-2011), p. 1403-1410 (New York, 2011)


