
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2020) 21:273–280
https://doi.org/10.1007/s10710-019-09366-0

1 3

SOFT WARE REVIEW

Software review: the GPTIPS platform

Amir H. Gandomi1 · Ehsan Atefi2

Published online: 29 October 2019 
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
GPTIPS is a widely used genetic programming software that was developed in Mat-
lab. The most recent version of this software, GPTIPS 2.0, provides a symbolic 
multi-gene regression for data analysis, in addition to traditional evolutionary algo-
rithms. We briefly explain the GPTIPS methodology and describe its main features, 
including its weaknesses and strengths, and give examples of GPTIPS applications.

Keywords  GP · MGGP · SMGR

1  Introduction

GPTIPS is a freely available open-source multi-gene genetic programming 
(MGGP) platform written in Matlab for data mining and model discovery (https​://
sites​.googl​e.com/site/gptip​s4mat​lab/). GPTIPS generates explicit predictor mod-
els in the form of symbolic equations by searching a numeric dataset for pertinent 
relationships between  the input and output. It uses symbolic multi-gene regres-
sion (SMGR) to reduce complexity and improve the functionality, accuracy, and 
robustness of bio-inspired traditional genetic programming (GP) [1]. A traditional 
GP approach starts with a population of randomly generated trees termed the ini-
tial solutions. Next, to find an accurate model that explains the data, these trees 
are evolved. Unlike traditional GP, GPTIPS starts with a population of multi-tree 
solutions (MGGP), constructed from a vector of randomly generated trees. Next, 
the goodness of fit of each solution is evaluated, and a certain percentage of the 
population is selected to be parents by using a probabilistic Pareto tournament. 
To form the next generation, the selected solutions are evolved by mutation and 
crossover. This process is repeated until a user-defined truncation criterion is sat-
isfied [2]. GPTIPS supports several run termination criteria, including the  best 

 *	 Amir H. Gandomi 
	 gandomi@uts.edu.au

1	 Faculty of Engineering & Information Technology, University of Technology Sydney, Ultimo, 
NSW 2007, Australia

2	 Faculty of Mechanical Engineering Department, Manhattan College, Bronx, NY, USA

https://sites.google.com/site/gptips4matlab/
https://sites.google.com/site/gptips4matlab/
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-019-09366-0&domain=pdf


274	 Genetic Programming and Evolvable Machines (2020) 21:273–280

1 3

model fitness, maximum number of generations, and maximum runtime. GPTIPS 
2.0, the most recent version of GPTIPS, uses a variety of evolutionary schemes 
including several types of crossover to expedite the evolution of solutions while 
retaining the performance of the models. Figure  1 contains an example of a 
user defined GPTIPS configuration file (a configuration file is required to start 
GPTIPS). In Fig. 1, the GPTIPS parameters are explained by comments on each 
line.

In Sect.  2 we introduce GPTIPS and explain its main features, including 
symbolic multi-gene regression (SMGR) and rate-based crossover. The major 
strengths (Sect. 3) and weaknesses (Sect. 4) of GPTIPS are discussed in-depth. 
We include an example of a GPTIPS input (configuration) and output file with 
instructions, plus a few examples of GPTIPS, solving real-world problems from 
different fields in science and industry.

function gp = Sample_Config(gp)
%loading the data
load Sample_Data; % ‘Sample Data’ includes training, testing and 
validation datasets
gp.userdata.xtrain = X; % Input dataset used for training
gp.userdata.ytrain = Y; % Output dataset used for training
gp.userdata.xval = X_val; % Input used for Validation see line 34
gp.userdata.yval = Y_val; % Output used for Validation see line 
34
gp.userdata.xtest = X_test; % Input used for testing
gp.userdata.ytest = Y_test; % Output used for testing
%Configurational parameters used in Genes development
gp.genes.max_genes = 4; %Maximum number of trees per solution
%Probability of mutation, crossover etc., used for breeding
gp.operators.mutation.p_mutate = 0.6;
gp.operators.crossover.p_cross = 0.38;
gp.operators.directrepro.p_direct = 0.02;
%The list of functions (funtionset) used in building the trees
gp.nodes.functions.name = 
{'times','minus','plus','rdivide','square','tanh','exp','log','mu
lt3','add3','sqrt','cube','negexp','neg','abs','sin','cos'};
%Configurational parameters used for termination of the run
gp.runcontrol.pop_size = 100; %Population size
gp.runcontrol.timeout = 500; %Maximum runtime
gp.runcontrol.runs = 30; %Number of runs
gp.runcontrol.num_gen = 50; %Number of generations
gp.selection.tournament.p_pareto = 0.4; %Selection procedure
%The definition of fitness for evaluation of the solution
gp.fitness.terminate = true;
gp.fitness.terminate_value = 0.3;
gp.fitness.minimisation = true;
gp.fitness.fitfun = @regressmulti_fitfun;
%Enabling the holding out validation process
gp.userdata.user_fcn = @regressmulti_fitfun_validate; 

Fig. 1   A sample GPTIPS configuration file written in Matlab. Comments explaining the different vari-
ables and sections are shown in green font (starting with % sign)



275

1 3

Genetic Programming and Evolvable Machines (2020) 21:273–280	

2 � Major features of GPTIPS

One of the key advantages of GPTIPS is using SMGR, as illustrated in Fig.  2. 
GPTIPS generates a population of solutions, each of which contains randomly 
generated trees (genes). The trees are combined using different weights. Figure 2a 
shows a single solution formed of four trees. Their outputs, plus a bias value, are 
added linearly using weights listed in Fig. 2b to form the solution (see Fig. 2c). In 
a method like least squares, the weight corresponding to each tree is calculated by 
minimizing the error of fitting the model to the training dataset.

Another important feature of GPTIPS is that it generates a thorough report on 
the model properties and configurational parameters. Figure 3 contains an exam-
ple GPTIPS report, which lists the properties of the best training model, includ-
ing the input variables, model complexity, and the number of trees used in the 
model (Fig. 3a). The components of the best training model and the correspond-
ing weights are shown in Fig. 3b, c. The model is explicitly expressed in a sym-
bolic format (Fig. 3d), and the performance of the model is statistically and visu-
ally studied using both training and test data sets (Fig. 3d, f). The GPTIPS report 
contains additional features, including the Pareto Front curve (Fig. 4) and a com-
parison of the performance of predictive models. 

3 � GPTIPS strengths

GPTIPS is a freely available GP platform. The majority of GPTIPS features operate 
automatically, however the user must have a basic understanding of Matlab program-
ming. They must also set configurational variables, such as the maximum number of 
trees in each solution, the population size and the maximum number of generations.

GPTIPS provides three tournament selection options: goodness of fit (RMS 
error), solution complexity (size), and Pareto Front. Complexity can be measured 
either by the number of nodes per tree or expressional complexity [1, 3]. The user 
can choose the probability of each tournament selection method.

GPTIPS produces an HTML report that contains comprehensive data on con-
figuration and run parameters as well as the results of the analysis. The GPTIPS 
report contains a statistical analysis of the solutions on training, validation and 
test datasets. The GPTIPS report also provides details of models that lie on the 
Pareto front (using the training dataset), along with a plot of the Pareto front.

The Pareto curve plots expressional complexity against the goodness of fit (R2) 
for the models that are not dominated by other solutions in terms of both com-
plexity and accuracy. The Pareto curve enables the user to visualize the perfor-
mance of solutions and select a solution that retains a balance between complex-
ity and accuracy. The final solutions can be saved for future use in Matlab as a 
symbolic function and exported to C [1, 3].

In order to save run-time, in addition to the maximum number of generations, 
the user can define the maximum run-time and desired fitness score at which 



276	 Genetic Programming and Evolvable Machines (2020) 21:273–280

1 3

Fig. 2   a The parts (4 trees/genes) of a solution in a symbolic tree format. b The corresponding weight of 
each tree. c The simplified form of the solution



277

1 3

Genetic Programming and Evolvable Machines (2020) 21:273–280	

Fig. 3   Selected parts of a sample GPTIPS report. These include: a the general properties of the model. b 
The component trees/genes. c The symbolic expression of the model. d Performance on the training data-
set. e Plot of performance on the test dataset. f Graph of tree/gene weights



278	 Genetic Programming and Evolvable Machines (2020) 21:273–280

1 3

GPTIPS will stop. By default GPTIPS uses root mean squared error (RMSE) 
for fitness but GPTIPS also allows the user to define their own fitness function. 
Also, GPTIPS is compatible with the Matlab Parallel Computing Toolbox, which 
reduces runtime by using multiple computer cores [1, 3].

To improve robustness, GPTIPS uses a novel crossover technique, includes an 
extensive set of functions to be the internal nodes of the trees, used to create the 
evolved models, and forces each tree to be unique in the initial generation.

Evolutionary algorithms have the tendency to evolve bigger programs. This phe-
nomenon is called bloat, which may cause overfitting of the training dataset. Bloat 
significantly increases the complexity of solutions while providing little to the accu-
racy of the model. GPTIPS support features that suppress bloat. For instance, the 
user can limit the depth of the trees and include expression complexity in the fitness 
of solutions. Since GPTIPS uses multi-gene genetic programming (MGGP), it tends 
to generate horizontal bloat, meaning extra trees are added with little improvement 
in model performance. To resolve this issue, GPTIPS permits the user to manually 
delete low-performing genes by setting the maximum number of genes per solution 
and by monitoring gene performance, during the runtime, in the evolving popula-
tions (i.e. interactive evolution). As shown in Fig. 3a, GPTIPS tracks the input varia-
bles used in each predictive model. For instance, in Fig. 3a, only four of the six input 
variables are used in the best training model. This information can be used to further 
analyze the importance of each independent variable by measuring the frequency of 
variable usage.

GPTIPS has been widely used for solving engineering and science problems. 
In the field of structural engineering (e.g. bridges and pipelines), it is known 
that studying the geotechnical behavior of structural systems is complex due to 
its dependency on several variables, such as soil properties. GPTIPS has been 
used widely in this field to model material and structural problems [4, 5] as well 
as geotechnical and earthquake engineering problems [6, 7]. Other examples of 

0.6

0.7

0.8

0.9

0 50 100 150

1-
R

2 

Complexity

T= 1.42 x1 - 1.42 x2 - 0.934 x3 - 0.934 x7 - 0.237 x2 x9 + 6.96 x10

x11 - 0.934 x10
2 + 5.57

Fig. 4   Example of Pareto tournament generated by GPTIPS on a dataset with 11 dimensions. Pareto 
front curve shows the models that are dominant in one of the two categories of complexity and good-
ness of fit (1-R2). To analyze this dataset GPTIPS generated 3000 models, of which 21 models lie on the 
Pareto frontier (solid circles)



279

1 3

Genetic Programming and Evolvable Machines (2020) 21:273–280	

GPTIPS applications include solving multi-objective management problems [8], 
energy forecasting [9], and biotechnology and bioprocess optimization [10, 11].

4 � GPTIPS weaknesses

GPTIPS is a Matlab-based platform. Although GPTIPS is freely available soft-
ware, Matlab needs to be purchased by the user. GPTIPS needs an advanced Mat-
lab library that includes Symbolic Math and Statistics Toolbox. Matlab is not 
always as fast as other programming languages, such as Python. It is possible 
that trees in a solution are collinear, i.e. they are not independent, and therefore 
cannot add to each other. GPTIPS requires the user to define the function set, the 
maximum number of trees and the population size. Additionally, GPTIPS does 
not permit seeding the initial population. Finally, it is not simple to access indi-
vidual parts of the solutions in each population to extract or manipulate them.

Acknowledgement  We would like thank William B. Langdon for his careful review and valuable 
comments on the draft of this paper.

References

	 1.	 D.P. Searson, GPTIPS 2: an open-source software platform for symbolic data mining, in Hand-
book of Genetic Programming Applications (Springer, Berlin, 2015), pp. 551–573. https​://doi.
org/10.1007/978-3-319-20883​-1_22

	 2.	 D. Searson, M. Willis, G. Montague, Co-evolution of non-linear PLS model components. J. Che-
mom. (2007). https​://doi.org/10.1002/cem.1084

	 3.	 A.H. Gandomi, A.H. Alavi, C. Ryan, Foreword. Handbook of Genetic Programming Applica-
tions (Springer, Berlin, 2015). https​://doi.org/10.1007/978-3-319-20883​-1

	 4.	 A.H. Gandomi, A.H. Alavi, A new multi-gene genetic programming approach to nonlinear sys-
tem modeling. Part I: materials and structural engineering problems. Neural Comput. Appl. 
(2012). https​://doi.org/10.1007/s0052​1-011-0734-z

	 5.	 H. Bolandi, W. Banzhaf, N. Lajnef, K. Barri, A.H. Alavi, Bond strength prediction of FRP-bar 
reinforced concrete: a multi-gene genetic programming approach, in Proceedings of Genetic 
and Evolutionary Computation Conference Companion, pp. 364–364 (2019). https​://doi.
org/10.1145/33196​19.33220​66

	 6.	 A. Garg, A. Garg, K. Tai, S. Sreedeep, Estimation of factor of safety of rooted slope using 
an evolutionary approach. Ecol. Eng. 64, 314–324 (2014). https​://doi.org/10.1016/j.ecole​
ng.2013.12.047

	 7.	 S. Gharehbaghi, A.H. Gandomi, S. Achakpour, M.N. Omidvar, A hybrid computational approach 
for seismic energy demand prediction. Expert Syst. Appl. 110, 335–351 (2018). https​://doi.
org/10.1016/j.eswa.2018.06.009

	 8.	 A.H. Gandomi, A.H. Alavi, A new multi-gene genetic programming approach to non-linear sys-
tem modeling. Part II: geotechnical and earthquake engineering problems. Neural Comput. Appl. 
21(1), 189–201 (2012). https​://doi.org/10.1007/s0052​1-011-0735-y

	 9.	 O. Chikumbo, E. Goodman, K. Deb, Triple bottomline many-objective-based decision mak-
ing for a land use management problem. J. Multi Criteria Decis. Anal. (2015). https​://doi.
org/10.1002/mcda.1536

https://doi.org/10.1007/978-3-319-20883-1_22
https://doi.org/10.1007/978-3-319-20883-1_22
https://doi.org/10.1002/cem.1084
https://doi.org/10.1007/978-3-319-20883-1
https://doi.org/10.1007/s00521-011-0734-z
https://doi.org/10.1145/3319619.3322066
https://doi.org/10.1145/3319619.3322066
https://doi.org/10.1016/j.ecoleng.2013.12.047
https://doi.org/10.1016/j.ecoleng.2013.12.047
https://doi.org/10.1016/j.eswa.2018.06.009
https://doi.org/10.1016/j.eswa.2018.06.009
https://doi.org/10.1007/s00521-011-0735-y
https://doi.org/10.1002/mcda.1536
https://doi.org/10.1002/mcda.1536


280	 Genetic Programming and Evolvable Machines (2020) 21:273–280

1 3

	10.	 A. Tahmassebi, A.H. Gandomi, Building energy consumption forecast using multi-objective 
genetic programming. Measurement 118, 164–171 (2018). https​://doi.org/10.1016/j.measu​remen​
t.2018.01.032

	11.	 A. Cankorur-Cetinkaya et al., CamOptimus: a tool for exploiting complex adaptive evolution to opti-
mize experiments and processes in biotechnology. Microbiology 163(6), 829–839 (2017). https​://
doi.org/10.1099/mic.0.00047​7

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1016/j.measurement.2018.01.032
https://doi.org/10.1016/j.measurement.2018.01.032
https://doi.org/10.1099/mic.0.000477
https://doi.org/10.1099/mic.0.000477

	Software review: the GPTIPS platform
	Abstract
	1 Introduction
	2 Major features of GPTIPS
	3 GPTIPS strengths
	4 GPTIPS weaknesses
	Acknowledgement 
	References




