
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2021) 22:207–227
https://doi.org/10.1007/s10710-021-09401-z

1 3

TPOT‑NN: augmenting tree‑based automated machine 
learning with neural network estimators

Joseph D. Romano1,2 · Trang T. Le1 · Weixuan Fu1 · Jason H. Moore1,2 

Received: 22 July 2020 / Revised: 12 February 2021 / Accepted: 15 February 2021 / 
Published online: 2 March 2021 
© The Author(s) 2021

Abstract
Automated machine learning (AutoML) and artificial neural networks (ANNs) have 
revolutionized the field of artificial intelligence by yielding incredibly high-perform-
ing models to solve a myriad of inductive learning tasks. In spite of their successes, 
little guidance exists on when to use one versus the other. Furthermore, relatively 
few tools exist that allow the integration of both AutoML and ANNs in the same 
analysis to yield results combining both of their strengths. Here, we present TPOT-
NN—a new extension to the tree-based AutoML software TPOT—and use it to 
explore the behavior of automated machine learning augmented with neural network 
estimators (AutoML+NN), particularly when compared to non-NN AutoML in the 
context of simple binary classification on a number of public benchmark datasets. 
Our observations suggest that TPOT-NN is an effective tool that achieves greater 
classification accuracy than standard tree-based AutoML on some datasets, with no 
loss in accuracy on others. We also provide preliminary guidelines for performing 
AutoML+NN analyses, and recommend possible future directions for AutoML+NN 
methods research, especially in the context of TPOT.

Keywords  Automated machine learning · Genetic programming · Evolutionary 
algorithms · Artificial neural networks · Pareto optimization

1  Introduction

Automated machine learning (AutoML) and artificial neural networks (NNs, or 
ANNs) comprise two paradigms for building highly performing models that dramat-
ically outperform other classes of models in a variety of scenarios, including on clas-
sification and regression tasks. In spite of their successes, there remains substantial 

 *	 Jason H. Moore 
	 jhmoore@upenn.edu

1	 Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
2	 Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, 

PA 19104, USA

http://orcid.org/0000-0002-5015-1099
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-021-09401-z&domain=pdf


208	 Genetic Programming and Evolvable Machines (2021) 22:207–227

1 3

debate—and little quantitative evidence—on the practical advantages of the two 
approaches and how to determine which will perform best on specific real-world 
problems, resulting in NNs (especially in the context of deep learning) and AutoML 
often being seen as competing methods. Luckily, there has been growing interest 
in combining AutoML and NNs to further improve their performance by capital-
izing on their collective advantages. For example, Cartesian genetic programming 
is a branch of genetic programming (GP) that encodes programs as a 2-dimensional 
grid of graph nodes [23]—since nodes in a neural network can easily be represented 
as nodes in a graph, NNs have emerged as a natural and effective implementation of 
Cartesian GP [13, 17]. Several other notable examples of NNs used in an AutoML 
context also exist, including Auto-Net [15] and Amazon’s AutoGluon [10], but none 
are both widely available and allow discovery of pipelines that mix neural networks 
with other non-NN estimators within the same ML pipeline.

We sought to explore these issues by expanding the AutoML tool TPOT 
(described below in Sect. 2.2.1) to utilize NN estimators in its classification pipe-
lines. We refer to this extension to TPOT as TPOT-NN. We then evaluated TPOT-
NN by comparing its performance on 6 well-characterized binary classification 
problems to non-NN TPOT (which we refer to as ‘base’ TPOT) and to NN classifiers 
alone (via NN-based pipelines learned by restricting TPOT to only use NN estima-
tors stacked in GP-optimized configurations), finding that tree-based AutoML+NN 
attains better classification performance in certain contexts than either of these base-
line approaches, albeit at the cost of increased training time. Finally, we explore 
the architectures of AutoML+NN pipelines learned by TPOT-NN to gain a better 
understanding of how this performance increase is manifested, and use the results 
to suggest future directions for AutoML+NN research. We provide TPOT-NN as a 
built-in feature of TPOT (beginning with release v0.11.4), which is freely provided 
online as an open-source tool for the scientific community.

In summary, this study provides the following:

•	 TPOT-NN is a new expansion to the tree-based AutoML software TPOT that 
incorporates neural network estimators into its learned ML pipelines.

•	 TPOT-NN performs at least as well as—and sometimes significantly better 
than—non-NN TPOT.

•	 Currently, the primary tradeoff in adding NN estimators to TPOT is increased 
model training time.

•	 The architectures learned by TPOT-NN sometimes have interesting structures 
that imitate portions of larger, more complex deep learning architectures, a phe-
nomenon that merits further investigation.

•	 This initial work on TPOT-NN lays the foundation for future studies that focus 
on more complex, irregularly structured data types, as well as deeper architec-
tures.



209

1 3

Genetic Programming and Evolvable Machines (2021) 22:207–227	

2 � Background

2.1 � Artificial neural networks

Artificial neural networks are—as the name implies—artificial approximations of 
biological networks, comprised of individual neurons that propagate a signal to 
other neurons as a function of one or more inputs and a set of tunable hyperpa-
rameters. They are often used in the context of deep learning—a class of ML that 
uses multiple ANN layers stacked in a ‘deep’ configuration (tens or even hun-
dreds of layers deep), which allows models to approximate highly complex and 
nonlinear objective functions, unlike more traditional ‘shallow’ models such as 
random forest, support vector machines, or linear regression [19, 30]. Logistic 
regression is one of the simplest nontrivial models that can be expressed in terms 
of an ANN, defined as

where � is an input vector, � is an output vector, � and � are weight matrices and 
bias vectors, respectively, and �

⋅
 is a nonlinear transformation known as an activa-

tion function. Here, �(�i) =
exp(�i)

∑

j exp(�j)
 is the softmax function—a multivariate gener-

alization of the standard logistic function. In this study, we only consider binary 
classification experiments, meaning that the softmax function is identical to the 
logistic function �(�) = exp(�)

exp(�)+1
.

The simplest ANN architecture with multiple stacked layers is the Multilayer 
Perceptron (MLP), given (with 1 hidden layer) by

In both of these models, the inductive learning task is to find the values of �(⋅) and 
�(⋅) that minimize the output of a separately-defined loss function L on a set of test-
ing data, usually via convex optimization over a set of training data.

LR and MLP are particularly important building blocks of larger NN archi-
tectures for several reasons. The first and most obvious of these is their math-
ematical simplicity. Of equal or greater importance is the fact that adding a single 
hidden layer to an ANN (i.e., moving from LR to MLP) is enough to turn a linear 
model into a nonlinear model. Since most traditional ML models are limited in 
their ability to approximate nonlinear or otherwise complex objective functions, 
they often perform suboptimally in comparison to neural networks, particularly 
on datasets where entities with similar characteristics are not cleanly separated 
by linear decision boundaries. Generally, increased depth or width of an ANN 
model increases estimation capacity. It follows that, given sufficient depth and/
or width along with an appropriate learning algorithm, even structurally simple 
feed-forward neural networks with a finite number of neurons (such as MLPs) can 
approximate virtually any continuous function on compact subsets of Euclidean 

� = �
(

�� + �
)

�1 = �1

(

�1� + �1
)

� = �2

(

�2�1 + �2
)



210	 Genetic Programming and Evolvable Machines (2021) 22:207–227

1 3

space [20]. Furthermore, sufficiently large NN architectures exhibit the strik-
ing phenomenon that both bias and variance can decrease as model complexity 
increases [3, 24], which works in opposition to the bias-variance tradeoff that 
plagues other ML models.

Nonetheless, the successes of DL and ANNs have been tempered by a number of 
important criticisms. Compared to shallow models, it is substantially more complex 
to parameterize a deep ANN due to the explosion of free parameters that results 
from increased depth of the network or width of individual layers [32]. Further-
more, ANN models are notoriously challenging to interpret since the features in a 
network’s intermediate layers are a combination of features from all previous lay-
ers, which effectively obscures the intuitive meaning of individual feature weights in 
most nontrivial cases [21, 22].

It is also worth noting that deep ANN model architectures can reach immense 
sizes. For example, the popular image classification network ResNet performed best 
in an early study when constructed with 110 convolutional layers, containing over 
1.7 billion tunable parameters [14]. However, for standard binary classification on 
simple datasets, smaller NN architectures of relatively shallow depth can still sub-
stantially outperform non-NN learners, both in terms of error and training time [1, 
6]. For the purpose of establishing a baseline comparison between AutoML and 
NNs, we restrict our analyses in this study to this latter case of applications—future 
work will involve considering substantially deeper TPOT-NN models.

2.2 � Automated machine learning

One of the most challenging aspects of designing an ML system is identifying the 
best feature transformations, model architectures, and hyperparameterizations for 
the task at hand. For example, count data may benefit from a square-root transfor-
mation prior to being used as input to an ML estimator. Similarly, a support-vector 
machine (SVM) model might predict susceptibility to a certain complex genetic dis-
ease more accurately than a gradient boosting model trained on the same dataset. 
Also, different choices of hyperparameters within that SVM model for kernel func-
tion k and soft margin width C can lead to vastly different performances. Tradition-
ally, these architecture considerations need to be made with the help of prior experi-
ence, brute-force search, or experimenter intuition, all of which can complicate the 
overall process of building the ML system and can hinder the performance of the 
final learned pipeline.

AutoML provides methods for automatically handling these choices given a uni-
verse of possible architecture configurations. A number of different AutoML tech-
niques can be used to find the best architecture for a given task, but one of the most 
popular is based on genetic programming (GP). Broadly, this type of AutoML con-
structs trees of mathematical functions that are optimized with respect to a fitness 
metric such as classification accuracy [2]. Each generation of trees is constructed via 
random mutations to the tree’s structure or the operations performed at each node 
in the tree. Repeating this process for a number of training generations produces an 



211

1 3

Genetic Programming and Evolvable Machines (2021) 22:207–227	

optimal tree. Like in natural evolution, increasingly more fit architectures are propa-
gated forward to future generations while less fit architectures “die out”.

2.2.1 � TPOT

TPOT (Tree-based Pipeline Automation Tool) is a Python-based AutoML tool that 
uses genetic programming to discover optimal ML pipelines for either regression 
or classification on a given (labeled) dataset [18, 25, 27]. Briefly, TPOT performs 
GP on trees, where nodes are comprised of operators, each of which falls into one 
of four operator types: Preprocessors, decomposition functions, feature selectors, or 
estimators (i.e., classifiers and regressors). Identical copies of the input data enter 
the tree at leaf nodes, and predictions are output at the root node. Certain opera-
tors—such as feature set selectors or model selectors—can accept input from multi-
ple previous operators, comprising ‘branching points’ in the tree. Each operator has 
a number of free parameters that are optimized during the training process. TPOT 
maintains a balance between high performance and low model complexity. As a 
result, the pipelines learned by TPOT consist of a relatively small number of opera-
tors (e.g., in the single-digits) that can still meet or exceed the performance of com-
peting state-of-the-art ML approaches. TPOT’s original fitting process is roughly 
outlined in Algorithm 1. Recent additions to the TPOT codebase have added Pareto 
optimization via the NSGA-II algorithm [8], and have migrated the genetic pro-
gramming steps to use the well-maintained implementation provided by DEAP [7].

An important component of TPOT is its implementation of StackingEsti-
mator components, which allow estimators (i.e., classification or regression mod-
els) to propagate their outputs as ‘synthetic features’ to subsequent operators. The 
stacking estimator takes an earlier operator as its only argument, and feeds all output 
values from that operator into the subsequent operator as an input vector of synthetic 
features. This means that TPOT can both (a.) chain estimators in sequence and (b.) 
concatenate the outputs of multiple operators into a single synthetic feature matrix 
for another operator, yielding a ‘branching’ pattern of operators. Any number of 
raw outputs from a single estimator can be passed as inputs to subsequent operators, 
a useful property that can be leveraged for constructing nonlinear multi-layer NN 
architectures where adjacent layers can be arbitrarily wide.



212	 Genetic Programming and Evolvable Machines (2021) 22:207–227

1 3

With the exception of our new NN estimators (which are implemented in 
PyTorch, as described below), all operators are implemented in either Scikit-learn 
[28] or XGBoost [5], both of which are popular open-source Python-based machine 
learning libraries. TPOT natively performs cross validation and generates Python 
scripts that implement the learned pipelines to allow reuse in subsequent analyses. 
For a more detailed description and evaluations of TPOT, please see [18, 25, 27].

3 � Methods

We designed TPOT-NN as a new feature implemented within the existing TPOT 
software. Briefly, operators in TPOT are either implemented natively or imported 
from external Python packages (mainly from Scikit Learn and XGBoost). Each 
operator takes zero or more tunable hyperparameters that TPOT can optimize during 
the learning process (an example is given above, in Sect. 2.2) (Fig. 1).

Since a non-NN LR model (implemented as part of Scikit-Learn) is included 
in standard TPOT, we are able to directly compare the two LR implementations 
to validate that the PyTorch models are compatible with the TPOT framework, 



213

1 3

Genetic Programming and Evolvable Machines (2021) 22:207–227	

NN classifier(a)

Dataset
Training

data

Testing
data

Class
predictions

MLP

TPOT classifier(b)

Dataset
Training

data

Testing
data

Class
predictions

LR

Kernel SVM

Feature
Selector

Combine 
Features

TPOT-NN classifier(c)

Dataset
Training

data

Testing
data

Class
predictions

MLP

MLP

Feature
Selector

Feature
Transformer

Combine 
Features

Fig. 1   Example pipelines for model configurations used in this study. a Stacked NN strategy with no 
AutoML. b Example of a standard (no neural networks) TPOT pipeline containing a logistic regression 
classifier and a kernel SVM classifier. c Example of a TPOT-NN pipeline containing two multilayer per-
ceptron estimators



214	 Genetic Programming and Evolvable Machines (2021) 22:207–227

1 3

and to quantify the performance variation due to differences in the internal imple-
mentations of equivalent models.

3.1 � TPOT‑NN

Our initial release of TPOT-NN adds two new classification estimators that are 
available to TPOT while learning pipelines: a logistic regression classifier (LR), 
and a multilayer perceptron classifier (MLP)—both of which are implemented as 
artificial neural network models constructed in PyTorch. TPOT uses GP to opti-
mize several metaparameters of these LR and MLP estimators that are commonly 
tuned either manually or via a brute-force architecture search, including the 
dimensionality of intermediate network layers, the specific convex optimization 
algorithm used in training, learning rate, and several others. The dimensionality 
of intermediate layers in TPOT-NN estimators is optimized by GP, but the availa-
ble options in a given experiment are based on the number of features in the input 
dataset—although this places a limit on the estimation capacity of individual lay-
ers, it prevents TPOT from building massive networks that would be intractable 
for learning in the context of TPOT’s GP algorithm. LR and MLP are considered 
two of the simplest neural network architectures, and are therefore suitable for 
this initial analysis of how neural network estimators behave when integrated into 
TPOT. Since MLPs add depth to LR’s shallow architecture, this allows us to con-
trol for two sources of variation: 

1.	 Changes in TPOT’s performance due solely to the inclusion of ANN estimators 
(e.g., baseline TPOT vs. TPOT-NN’s LR estimator).

2.	 Changes in performance due to the adoption of multi-layer ANN estimators within 
the TPOT pipelines (e.g., TPOT-NN’s MLP estimator vs. all other TPOT con-
figurations).

TPOT users can control the set of available operators—as well as the train-
able parameters and the values they can assume—by providing a ‘configuration 
dictionary’ (a default configuration dictionary is used if the user does not pro-
vide one). In the experiments described below, we use this functionality to selec-
tively restrict TPOT’s estimators to characterize these two sources of variation. 
Briefly, we sought to determine performance differences between 4 experimental 
scenarios (both in terms of final classifier pipeline performance and in the time 
efficiency of learning the final pipeline), as described in Table 2.

Although TPOT-NN currently only adds estimators written in PyTorch, we 
designed TPOT-NN’s architecture to be easily extended to estimators imple-
mented in other neural computing frameworks. Since TPOT requires that all 
estimators implement an identical public interface (compatible with the scikit-
learn API), we wrapped the PyTorch models in classes that implement the neces-
sary methods. Users interested in contributing additional NN estimators can find 
detailed documentation for how to do so on the main TPOT website.



215

1 3

Genetic Programming and Evolvable Machines (2021) 22:207–227	

3.2 � Dataset descriptions

We evaluated TPOT-NN on its ability to classify data from 6 diverse, well-
studied publicly available datasets with binary targets. All 6 of the datasets have 
been used in previous evaluations of TPOT, and are easily accessible from both 
the UCI Machine Learning Repository [9] and from the Penn Machine Learn-
ing Benchmarks (PMLB) dataset repository [26]. The dataset names—along with 
summary characteristics—are listed in Table 1. We used the PMLB Python pack-
age to retrieve the datasets and their associated target variables. Hill_Valley_
with_noise and Hill_Valley_without_noise both contain synthetic 
data; the others contain real (non-synthetic) data. The number of data points, data 
types for each feature (i.e., binary, integer, or floating-point decimal), number of 
features, and number of target classes in each dataset are variable.
spambase [9] contains features extracted from email text, including frequen-

cies of 48 informative words, 6 character frequencies, and several others, where 
the target is to predict whether an email is ‘spam’ or ‘not spam’. The iono-
sphere dataset [33] contains continuous measurements where features are 
radar measurements of the atmosphere at different frequencies, and the classi-
fication task is to differentiate ‘good’ radar readings from ‘bad’ radar readings, 
where ‘bad’ readings are ones that pass through the atmosphere without return-
ing useful information. Notably, ionosphere was specifically curated for use 
with neural network classifiers. breast-cancer-wisconsin [34] contains 
descriptive features (texture, area, concavity, etc.) of cell nuclei aspirated from 
human breast tissue masses, with the prediction target being ‘malignant’ versus 
‘benign.’ mushroom [16] is comprised of visible characteristics (gill color, cap 
shape, etc.) of mushrooms, as well as several features describing growing habitat, 
with the target being differentiation of edible versus poisonous mushroom speci-
mens. Finally the two Hill_Valley datasets [9] are synthetic representations 
of ‘hills’ and ‘valleys’ (with and without added noise) consisting of 100 ordered 
coordinates on a two-dimensional graph, where the task is to distinguish hills 
from valleys.

For further details on the 6 datasets, we have included dataset profiling reports 
(using the Pandas Profiling package for Python), which are included in Supple-
mental Materials. These reports detail additional characteristics—such as feature 
descriptions, case/control ratios, correlation structures, prevalence of missing 
values and zeros, and others—as well as sample rows from the datasets.

3.3 � Experimental setup

We performed 720 TPOT experiments in total, corresponding to 30 repetitions for 
each of the 6 datasets (described previously, and in Table 1) on each of the the 4 
configurations listed in Table 2. We used an 80%/20% train/test split on the datasets 
and scored pipelines based on classification accuracy with 5-fold cross-validation. 
Across all experiments, we allowed TPOT to train to completion by terminating 



216	 Genetic Programming and Evolvable Machines (2021) 22:207–227

1 3

training after 35 generations with no improvement to the Pareto front of the best 
pipelines, and each generation contained 100 individual pipeline trees. Of the 4 con-
figurations, tpot-base and tpot-all are meant to highlight performance dif-
ferences that occur when NN estimators are added to TPOT (tpot-all includes 
the new NN estimators). The tpot-lr and tpot-mlp configurations limit TPOT 
to only use PyTorchLRClassifier and PyTorchMLPClassifier estimators (respec-
tively, in addition to the feature selectors and feature transformers available in all 
configurations), and are meant to explore the performance capabilities of those esti-
mators alone, as well as whether TPOT is capable of automatically constructing 
deeper configurations of smaller NN building blocks.

3.4 � Hardware and high‑performance computing environment

All experiments were run on a high-performance computing (HPC) cluster at the 
University of Pennsylvania. Each experiment was run on a compute node with 48 
available CPU cores and 256 GB of RAM. Job scheduling was managed using 
IBM’s Platform Load Sharing Facility (LSF). All experiments involving PyTorch 
neural network estimators were run on nodes equipped with NVIDIA® TITAN 
GPUs, and using a version of PyTorch compiled with support for CUDA GPU 
acceleration.

4 � Results

We evaluated the pipelines’ performance based on two metrics: classification accu-
racy of the trained pipeline and the elapsed time to train the pipeline.

The results of running TPOT in the 4 configurations (described in Sect. 3.3) on 
the 6 previously described datasets are shown in Fig.  2 and Table  3. Along with 
mean classification accuracy, we also report 2-tailed p-values for two separate 
hypothesis tests performed on “base” TPOT (tpot-base) and TPOT-NN (tpot-
all) experiments: the independent samples t-test on means, used to determine 
whether there is a significant difference in classification accuracy; and Levene’s test, 

Table 1   6 datasets used to evaluate TPOT-NN

Names are identical to corresponding labels used to denote the dataset in the PMLB Python library

Dataset name n Number of 
features

Data type Real/synthetic

spambase 4601 57 Mixed Real
ionosphere 351 34 Mixed Real
breast-cancer-wisconsin 569 30 Float Real
mushroom 8124 22 Mixed Real
Hill_Valley_with_noise 1212 100 Float Synthetic
Hill_Valley_without_noise 1212 100 Float Synthetic



217

1 3

Genetic Programming and Evolvable Machines (2021) 22:207–227	

used to determine whether there is a significant difference in variance of the accu-
racy scores [4].

4.1 � Base TPOT vs. TPOT with PyTorch neural network estimators

TPOT-NN yields significantly greater classification accuracy on two of the datasets: 
HV-without-noise and HV-with-noise. Notably, TPOT-NN performed 
at least as well as base TPOT on all 6 datasets, in spite of the improvement not 
being statistically significant on 4 of those datasets. These observations are consist-
ent with the principles of GP-based AutoML—namely, that adding new operators 
should not result in decreased performance, since evolution will select for the best 
pipelines using the available set of operators, ignoring those that would yield worse 
performance.

Interestingly, we also observe that TPOT-NN significantly reduces variance in 
classification accuracy in 3 of the datasets (HV-without-noise, HV-with-
noise, and ionosphere), which suggests that when TPOT is used with the new 
PyTorch neural network estimators, the learned pipelines may perform more con-
sistently than otherwise, even in the absence of significantly improved accuracy.

In our experiments, TPOT yielded perfect classification accuracy across all 4 
configurations when applied to the mushroom dataset, suggesting that the two tar-
get classes (whether a mushroom is poisonous or edible) can be easily distinguished 
by many types of ML pipelines.

4.2 � Single‑ vs. multi‑layer NN estimators in TPOT‑NN

In addition to exploring the effect of adding NN models to TPOT (as described in 
the previous section), we also explored the effect of introducing multi-layer versus 
single-layer NN estimators in a GP context. The two corresponding TPOT configu-
rations—tpot-lr and tpot-mlp—yielded pipelines consisting of PyTorch LR 
estimators and MLP estimators (respectively), plus TPOT’s feature selectors and 
feature transformers (in other words, removing all non-NN estimators from TPOT’s 

Table 2   Configurations tested for evaluating TPOT-NN

By comparing performance of TPOT in each of the 4 configurations, we can determine the effects of 
adding PyTorch neural network estimators to TPOT, as well as the effect of adding multi-layer (i.e., 
MLP) neural network estimators

Configuration Description of estimators TPOT-NN?

tpot-lr TPOT restricted to only use TPOT-NN’s Yes
LR estimator for classification

tpot-mlp TPOT restricted to only use TPOT-NN’s Yes
MLP estimator for classification

tpot-base Baseline TPOT (no TPOT-NN estimators) No
tpot-all TPOT with all estimators (including TPOT-NN) Yes



218	 Genetic Programming and Evolvable Machines (2021) 22:207–227

1 3

operator pool). Since TPOT pipelines can contain multiple estimators, these pipe-
lines often consist of multiple NN estimators arranged in parallel and/or serial, 
which theoretically allows them to become arbitrarily deep and arbitrarily wide, 
depending on TPOT’s evolutionary algorithm. However, the model simplicity con-
straint introduced via Pareto optimization encourages learning simpler (shallower) 
models in the absence of significant performance differences, so it is unlikely for 
TPOT-NN to learn pipelines with very high depth.

Fig. 2   Distributions of accuracy scores for TPOT deployed in various configurations on 6 well-studied 
public datasets. Each distribution consists of 30 experiments using the same initial TPOT configuration 
on the same dataset

Table 3   Characteristics of TPOT deployed in various configurations on 6 public datasets

Values for hypothesis tests are p-values, shown in bold font when statistically significant ( � = 0.05)

Dataset Accuracy by TPOT configuration 2-tailed p-value

tpot-lr tpot-mlp tpot-base tpot-all t-test Levene

spambase 0.961 0.955 0.964 0.960 0.40 0.43
ionosphere 0.921 0.828 0.948 0.947 0.91 0.04
breast-cancer 0.959 0.909 0.979 0.975 0.54 0.85
mushroom 1.000 1.000 1.000 1.000 – –
HV-without-noise 0.976 0.977 0.977 0.994 < 0.01 < 0.01
HV-with-noise 0.968 0.970 0.976 0.989 0.05 0.05



219

1 3

Genetic Programming and Evolvable Machines (2021) 22:207–227	

The results in Fig. 2 and Table 3 show that tpot-lr and tpot-mlp perform 
nearly identically across most datasets, with no statistically significant differences in 
mean accuracy. However, the average number of PytorchLRClassifier estimators in 
a tpot-lr pipeline is noticeably greater than the average number of PytorchMLP-
Classifier estimators in a tpot-mlp pipeline (mean 3.04 vs. 2.49; 2-tailed t-test 
p = 0.01 ). This can be interpreted as TPOT automatically using multiple LR estima-
tors to achieve a certain depth, which equivalently is accomplished using a smaller 
number of MLP estimators. In other words, TPOT automatically replicates the well-
known observation that greater estimation capacity can be achieved by increasing 
either the width or depth of a given neural network model.

4.3 � Time efficiency of TPOT‑NN

Neural network models—in general—are known to require substantially more com-
putational power to train than traditional, shallow ML models, largely due to the 
number of tunable free parameters and the complexity of optimizing over gradients 
that span multiple layers. As expected, TPOT pipelines that include NN estimators 
correspondingly take longer to train than pipelines learned by base TPOT. Fig.  3 
and Table 4 show the training time distributions for the previously described TPOT/
TPOT-NN experiments. For most datasets, TPOT pipelines that use NN models 
exclusively (tpot-lr and tpot-mlp) require noticeably more time to train than 
tpot-all pipelines that contain a mixture of NN and non-NN estimators, which 
in turn take longer to train than tpot-base pipelines that only contain non-NN 
estimators.

This pattern seems to disappear when TPOT is trained on the ionosphere 
dataset which, at only 351 samples, is the smallest dataset tested in our experiments. 
Anecdotally, this is likely attributable to the fact that the increased time to train NN 
models ends up being eclipsed by other computational tasks when the dataset is 
small, such as TPOT having to select from a larger pool of potential operators, as 
well as the computational overhead inherent to creating and evaluating Scikit-Learn 
and XGBoost estimators.

4.4 � Structural topologies of pipelines learned by GP

TPOT assembles pipelines that consist of multiple operators—possibly including 
multiple classifiers or regressors in addition to feature selectors and feature trans-
formers—to achieve better performance than individual machine learning estimators 
[25]. Since the estimation capacity of simple feedforward neural networks monoton-
ically increases with added network depth, we sought to determine whether TPOT 
will automatically construct deeper architectures by stacking several NN estimators 
in the absence of a priori instruction to do so. Although we would expect a naïve 
AutoML system to do this in most cases, TPOT’s multi-objective optimization bal-
ances model performance against model simplicity, and therefore adding more NN 



220	 Genetic Programming and Evolvable Machines (2021) 22:207–227

1 3

estimators to a pipeline needs to be ‘justified’ by a substantial boost in classification 
performance.

As described earlier, TPOT’s StackingEstimator concatenates the outputs 
of earlier operators together as a set of synthetic features for subsequent operators. 
Currently, TPOT-NN’s LR and MLP estimators are designed such that they will out-
put the raw values of their final fully-connected layers when occurring in the middle 
of a pipeline (i.e., when wrapped in a stacking estimator), but instead feed the raw 
values through an output layer yielding a class prediction when the estimator is the 
final step in the pipeline.

The one major challenge/caveat exposed by this design is that adjacent NN 
estimators are “decoupled” during optimization: Since they are implemented 
as separate PyTorch networks, gradients cannot be propagated across the entire 
architecture, leading to reduced computational efficiency.

When we force TPOT-NN to build pipelines comprised only of feature selec-
tors, feature transformers, and logistic regression estimators, it did indeed con-
struct pipelines consisting of stacked arrangements of logistic layers that bear a 
resemblance to segments of well-known DL models. The following Python code 
is the output of one of these, selected at random from the pool of LR-only TPOT-
NN pipelines (hyperparameters have been removed for readability):

Fig. 3   CPU clock time distributions for training TPOT on each of the 6 evaluation datasets. In most 
cases, TPOT configurations containing PyTorch neural network estimators require longer to train than 
“base” TPOT configurations, with the overall effect scaling proportionally with the size of the dataset



221

1 3

Genetic Programming and Evolvable Machines (2021) 22:207–227	

This pipeline is replicated graphically in Fig. 4. Notably, this pipeline strongly 
resembles a key building block of the world record-holding ResNet image rec-
ognition architecture [14]. Specifically, the “skip connection” segment (imple-
mented in TPOT by splicing a second copy of the training data into a second 
leaf node in the pipeline) behaves similarly to “shortcut connections” found in 
ResNet, which essentially allow signals in the input data to be directly utilized 
in later neural network layers of the model. The mathematical properties of these 
skip connections have been known at least since 1989, when they were known 
as the cascade-correlation architecture [11], underscoring their influence on the 
larger field of AI. This suggests that AutoML could be used as a tool for identi-
fying new submodules for larger NN-based models. We discuss this possibility 
further in Sect. 5.4.

Table 4   Training time statistics for 6 datasets across 4 TPOT configurations

2-sided p-values are given for the difference in means between tpot-base and tpot-all, with sta-
tistically significant results highlighted in bold ( � = 0.05)

Dataset Mean training time (minutes) t-test 
(base v. 
all)tpot-lr tpot-mlp tpot-base tpot-all

spambase 3473 2339 1296 1634 0.03
ionosphere 201 166 139 197 < 0.01
breast-cancer 324 507 174 272 0.01
mushroom 2555 2872 157 372 < 0.01
HV-without-noise 690 876 287 295 0.78
HV-with-noise 988 816 589 652 0.48



222	 Genetic Programming and Evolvable Machines (2021) 22:207–227

1 3

5 � Discussion

5.1 � Compatibility of neural network estimators with TPOT

The two NN estimators we have currently designed for TPOT (PyTorchLRClassifier 
and PyTorchMLPClassifier) integrate without issue into the TPOT workflow. Due 
to the frequently increased training time of TPOT-NN pipelines versus base TPOT 
pipelines, the NN estimators are not enabled by default, but can be enabled by pass-
ing the parameter config_dict=’TPOT NN’ when initializing TPOT.

Overall, TPOT has not been tested extensively on many specialized classifica-
tion tasks (such as image classification, text classification, and others), which com-
prise an important topic that we have prioritized for future exploration. However, 
the inclusion of NN estimators is an important step in bridging this gap—neural 
networks implemented in PyTorch and other neural computing libraries have proven 
to be incredibly flexible for a vast number of applications, which opens many excit-
ing opportunities for expanding TPOT and other AutoML tools.

This, however, points to one of the major challenges in developing NN estima-
tors for TPOT: While most shallow estimators can be included in TPOT simply by 
referring to their modules in Scikit-Learn or XGBoost, TPOT-NN estimators need 
to be implemented ‘from scratch’ in PyTorch (or another neural computing library). 
Once these are written and incorporated into TPOT’s codebase, an appropriate set of 
tunable metaparameters also need to be defined. For most non-NN estimators, this is 
as simple as enumerating the possible arguments provided by their source libraries, 
but for NN estimators it can include complex dynamic characteristics that are highly 
responsive to the underlying dataset, like the number of hidden layers, layer width, 
multiple activation functions, and dropout rates, among many others.

Nevertheless, the fact that TPOT is supported by contributions from the open-
source community—as well as the continued development of more streamlined neu-
ral computing interfaces (such as Keras)—suggests that these barriers will prove less 
challenging to handle in the future. The examples we show in this study illustrate the 

LR1 LR2 LR3 LR4

Class
predictions

Identity (skip)

Training
data

Fig. 4   Randomly selected pipeline learned when restricting TPOT’s pool of estimators to logistic regres-
sion classifiers only. Some redundant components, such as make_pipeline function calls, are omit-
ted. Notably, the structure of this pipeline resembles one of the key components of the popular ResNet 
architecture, which suggests that other motifs learned by TPOT-NN may be possible to expand into 
deeper architectures



223

1 3

Genetic Programming and Evolvable Machines (2021) 22:207–227	

early potential of TPOT-NN and demonstrate how it behaves in comparison to base 
TPOT.

5.2 � TPOT‑NN significantly improves classification accuracy and reduces variance, 
but only for some datasets

A major criticism of neural networks and deep learning is that it has often been 
unfairly touted as a “magic bullet” that is ideal for solving most problems in AI. 
Recent research does a good job acknowledging that this is more nuanced than origi-
nally thought [31], and that shallow learners actually outperform deep learning in 
many cases, in spite of deep models in theory being universal approximators. We 
observed that the TPOT-NN performs substantially better than non-NN TPOT on 2 
of the 6 datasets we tested—HV-with-noise and HV-without-noise—and 
we have not found a situation when it performs worse in terms of classification accu-
racy when compared to base TPOT.

Of possibly equal importance, we observed that repeated experiments using 
TPOT-NN yield more consistent results (lower variance in classification accuracy). 
This effect was statistically significant in 3 of 6 datasets (HV-with-noise, HV-
without-noise, and ionosphere), but the observed variance measurements 
were smaller using TPOT-NN versus base TPOT in all 6 datasets. This observation 
suggests that TPOT-NN (and similar tools, in the future) could be used to improve 
the reproducibility of ML analyses. As this result was unexpected, we intend to 
explore this phenomenon more comprehensively in future studies.

This highlights one of the chief strengths of AutoML, and one of the major moti-
vations for developing TPOT-NN: Neural network models clearly are advantageous 
for certain classification tasks performed on certain datasets, but simpler shallow 
models might work better on other datasets, including smaller datasets like those 
tested in this study. Further still, TPOT pipelines that incorporate both NN and non-
NN estimators with different optimization objectives have the potential to outper-
form simpler pipelines containing only one estimator, especially when datasets con-
tain complex sets of features made up of different data types. Finally, the inclusion 
of feature transformer and feature selector operators in TPOT adds model introspec-
tion capabilities to experiments that use ANNs.

5.3 � Assessing the tradeoff between model performance and training efficiency

The amount of time needed to train a pipeline is an important pragmatic considera-
tion in real-world applications of ML. This certainly extends to the case of AutoML: 
The parameters we use for TPOT include somewhere between 50 and 100 training 
generations with a population size of 100 in each generation, meaning that we evalu-
ate several thousand candidate pipelines—each of which consists of a variable num-
ber of independently optimizable operators—for every experiment (of which there 
were 720 in the present study). As shown in Table 4, we generally expect a non-NN 



224	 Genetic Programming and Evolvable Machines (2021) 22:207–227

1 3

pipeline to train in the range of several hours to slightly over 1 day, depending on the 
dataset.

Our relatively simple NN estimators sit at the lower end (complexity-wise) of 
components used to build DL architectures, and likewise are among the simplest to 
train. Regardless, using either the LR or MLP PyTorch estimators in a TPOT experi-
ment can cause the average training time to increase significantly—in our experi-
ments, the average training time on the mushroom dataset increased by 18-fold 
when comparing the tpot-base to tpot-mlp configurations, and the datasets 
we used are smaller than those used in most DL applications, which can have mil-
lions of datapoints comprised of thousands of features each [35]. Users will have to 
determine, on an individual basis and dependent on the use case, whether the poten-
tial accuracy increase of at most several percentage points is worth the additional 
time and computational investment inherent to ANNs.

Nonetheless, our results make it clear that it is unlikely for a TPOT-NN pipe-
line to perform worse than a (non-NN) TPOT pipeline. In ‘mission critical’ settings 
where training time is not a major concern, TPOT-NN can be expected to perform at 
least as well as standard TPOT. Furthermore, the surprising observation that TPOT-
NN seems to yield pipelines with less variance in their classification accuracy sug-
gests that TPOT-NN’s new estimators may make the results of experiments more 
reliable and reproducible. However, this claim needs to be tested on additional data-
sets and explored further before any definitive conclusions can be made.

5.4 � AutoML as a tool to discover novel neural network architectures

Based on the results we describe in Sect. 4.4, AutoML (and TPOT-NN, in particu-
lar) may be useful for discovering new neural network “motifs” to be composed into 
larger networks. For example, by repeating the internal architecture shown in Fig. 4 
to a final depth of 152 hidden layers, converting the fully connected layers to con-
volutional layers, and adjusting the number of nodes in those layers, the result is 
highly similar to the version of ResNet that won first place in 5 categories at two 
major image recognition competitions in 2015 [14]. In the near future, we plan to 
investigate whether this phenomenon could be scaled into a larger, fully data-driven 
approach for generating modular neural network motifs that can be composed into 
models effective for a myriad of learning tasks.

However, there are two main challenges that need to be addressed before TPOT 
can automatically learn models of substantially greater depth. First, new strategies 
for efficiently learning pipelines using large training datasets need to be imple-
mented. As it currently stands, TPOT pipelines become computationally infea-
sible to learn in a reasonable amount of time (and with reasonable computational 
resources) when datasets reach tens of thousands of samples, which is substantially 
smaller than many of the popular datasets used to train highly performant DL mod-
els. Second, TPOT penalizes larger pipelines in favor of smaller (and more interpret-
able) pipelines. Since increasing depth would result in larger pipelines, TPOT-NN 
would need to compensate for this penalty somehow. Both of these challenges are 
currently on the roadmap of tasks to address for TPOT in the near future.



225

1 3

Genetic Programming and Evolvable Machines (2021) 22:207–227	

5.5 � Future work on integrating AutoML and ANNs

Since one of our primary goals in this work was to provide a baseline for future 
development of neural network models in the context of AutoML, the two PyTorch 
models we have currently built (logistic regression and multilayer perceptron) are 
structurally simple. Future work on TPOT-NN will allow expansion of its function-
ality to improve the capabilities of the existing models as well as incorporate other, 
more complex architectures, such as convolutional neural networks, recurrent neural 
networks, and other applications of deep learning. Additionally, we will be adding 
support for NN-based regression.

In implementing these neural network estimators, we also intend to evaluate 
and improve TPOT for use with other, more complex types datatypes, including 
images, text, graph data, and others, which have all played important roles in the 
success of ANNs and modern applications of AI. However, by first evaluating 
TPOT-NN on simple binary classification datasets made up of regularly struc-
tured, pre-extracted features, we have layed a strong foundation for future devel-
opment in many exciting directions.

6 � Conclusions

AutoML and ANNs are immensely useful tools for approaching a wide variety 
of inductive learning tasks, and it is clear that both hold strengths and weak-
nesses for specific use cases. Rather than viewing them as competing methods, 
we instead propose that the two can work synergistically: For at least the cases 
we explored in this study (binary classification on 6 well-characterized datasets 
with regularly structured inputs), the addition of simple NN blocks into the pool 
of available estimators improves classification accuracy in comparison to non-NN 
AutoML. Anecdotally, our observations also suggest that the objective nature of 
learning pipelines containing NN estimators via GP may allow for the discov-
ery of new NN ‘motifs’ that can be expanded into deep learning pipelines that 
achieve very high performance. Since TPOT-NN’s learned pipelines often explic-
itly include feature selection and feature transformation operators, they also pro-
vide a feasible mechanism for improving interpretability of models that contain 
NN components arranged in a deep configuration.

Currently, use of these NN estimators increases the training time for TPOT 
pipelines, which may limit their usefulness in some situations. As we continue to 
improve TPOT in subsequent releases, we plan to explore various strategies for 
improving the training time, such as techniques for performing parallel GPU opti-
mization of adjacent PyTorch neural network models within the same pipeline. 
Nonetheless, our results suggest a multitude of novel directions for methodologi-
cal research in machine learning and artificial intelligence. TPOT-NN serves as 
both an early case study as well as a platform to facilitate AutoML+NN research 
in a reproducible, transparent manner that is open to the scientific community.



226	 Genetic Programming and Evolvable Machines (2021) 22:207–227

1 3

Supplementary Information  The online version contains supplementary material available at https​://doi.
org/10.1007/s1071​0-021-09401​-z.

Acknowledgements  This work was made possible with support from US National Institutes of Health 
Grants R01-LM010098, R01-LM012601, R01-AI116794, UL1-TR001878, UC4-DK112217 
(PI: Jason Moore), T32-ES019851, and P30-ES013508 (PI: Trevor Penning).

Code and data availability  TPOT-NN is a component of the full TPOT Python distribution, which is 
freely available on the Python Package Index (PyPI) and through GitHub [12]. Since the NN estimators 
increase the overall training time of TPOT pipelines, users need to explicitly enable the use of the TPOT-
NN estimators by passing the parameter config=’TPOT NN’ when instantiating a TPOT pipeline. A 
frozen copy of all code, data, runtime output, and trained models is available on FigShare [29].

Compliance with ethical standards 

 Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 P. Auer, H. Burgsteiner, W. Maass, Reducing communication for distributed learning in neural net-
works, in International Conference on Artificial Neural Networks (Springer, 2002), pp. 123–128

	 2.	 W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming (Springer, Berlin, 1998)
	 3.	 M. Belkin, D. Hsu, S. Ma, S. Mandal, Reconciling modern machine-learning practice and the classi-

cal bias-variance trade-off. Proc. Nat. Acad. Sci. 116(32), 15849–15854 (2019)
	 4.	 M.B. Brown, A.B. Forsythe, Robust tests for the equality of variances. J. Am. Stat. Assoc. 69(346), 

364–367 (1974)
	 5.	 T. Chen, C. Xgboost Guestrin, A scalable tree boosting system, in Proceedings of the 22nd ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 785–794
	 6.	 R. Collobert, & S. Bengio, Links between perceptrons, mlps and svms, in Proceedings of the 

Twenty-first International Conference on Machine Learning (2004), p. 23
	 7.	 F.-M. De Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, C. Gagné, DEAP: a python frame-

work for evolutionary algorithms, in Proceedings of the 14th Annual Conference Companion on 
Genetic and Evolutionary Computation (2012), pp. 85–92

	 8.	 K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: 
NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

	 9.	 D. Dua, C. Graff, UCI machine learning repository (2017). https​://archi​ve.ics.uci.edu/ml/index​.php
	10.	 N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, A. Smola, Autogluon-tabular: 

robust and accurate automl for structured data. arXiv:2003.06505 (2020)
	11.	 S. Fahlman, C. Lebiere, The cascade-correlation learning architecture, in Advances in Neural Infor-

mation Processing Systems, D. Touretzky, Ed., vol. 2, (Morgan-Kaufmann, 1990), pp. 524–532
	12.	 W. Fu, R. Olson, J.G. Nathan, T. Augspurger, J. Romano, P. Saha, S. Shah, S. Raschka, S. DanKore-

tsky, K. Jaimecclin, bartdp1, G. Bradway, J. Ortiz, J.J. Smit, J.-H. Menke, M. Ficek, A. Varik, A. 

https://doi.org/10.1007/s10710-021-09401-z
https://doi.org/10.1007/s10710-021-09401-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://archive.ics.uci.edu/ml/index.php


227

1 3

Genetic Programming and Evolvable Machines (2021) 22:207–227	

Chaves, J. Myatt, Ted, A.G. Badaracco, C. Kastner, C. Jerônimo, Hristo, M. Rocklin, R. Carnevale. 
Epistasislab/tpot: v0.11.5 (2020)

	13.	 E. Galván, P. Mooney, Neuroevolution in deep neural networks: current trends and future chal-
lenges. arXiv:2006.05415 (2020)

	14.	 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

	15.	 F. Hutter, L. Kotthoff, J. Vanschoren, Automated Machine Learning: Methods, Systems, Challenges 
(Springer, Berlin, 2019).

	16.	 W. Iba, J. Wogulis, P. Langley, Trading off simplicity and coverage in incremental concept learning, 
in Machine Learning Proceedings 1988. (Elsevier, 1988), pp. 73–79

	17.	 M.M. Khan, A.M. Ahmad, G.M. Khan, J.F. Miller, Fast learning neural networks using cartesian 
genetic programming. Neurocomputing 121, 274–289 (2013)

	18.	 T.T. Le, W. Fu, J.H. Moore, Scaling tree-based automated machine learning to biomedical big data 
with a feature set selector. Bioinformatics 36(1), 250–256 (2020)

	19.	 Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)
	20.	 M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Multilayer feedforward networks with a nonpolyno-

mial activation function can approximate any function. Neural Netw. 6(6), 861–867 (1993)
	21.	 Z.C. Lipton, The mythos of model interpretability. Queue 16(3), 31–57 (2018)
	22.	 Y. Lou, R. Caruana, J. Gehrke, Intelligible models for classification and regression, in Proceed-

ings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 
(2012), pp. 150–158

	23.	 J.F. Miller, Cartesian genetic programming, in Cartesian Genetic Programming (Springer, 2011), 
pp. 17–34

	24.	 B. Neal, S. Mittal, A. Baratin, V. Tantia, M. Scicluna, S. Lacoste-Julien, I. Mitliagkas, A modern 
take on the bias-variance tradeoff in neural networks. arXiv:1810.08591 (2018)

	25.	 R.S. Olson, N. Bartley, R.J. Urbanowicz, J.H. Moore, Evaluation of a tree-based pipeline optimiza-
tion tool for automating data science, in Proceedings of the Genetic and Evolutionary Computation 
Conference 2016, GECCO’16 (New York, NY, USA, ACM, 2016), pp. 485–492

	26.	 R.S. Olson, W. La Cava, P. Orzechowski, R.J. Urbanowicz, J.H. Moore, PMLB: a large benchmark 
suite for machine learning evaluation and comparison. BioData Min. 10(1), 36 (2017)

	27.	 R.S. Olson, R.J. Urbanowicz, P.C. Andrews., N.A. Lavender, L.C. Kidd, J.H. Moore. Applications 
of Evolutionary Computation: 19th European Conference, EvoApplications 2016, Porto, Portugal, 
March 30–April 1, 2016, Proceedings, Part I. Springer International Publishing, 2016, ch. Auto-
mating Biomedical Data Science Through Tree-Based Pipeline Optimization, pp. 123–137

	28.	 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. 
Duchesnay, Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

	29.	 J. Romano, Archive of code and data used to evaluate TPOT-NN.  Figshare  (2020).  https​://doi.
org/10.6084/m9.figsh​are.12542​321.v1

	30.	 J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
	31.	 T. Serre, Deep learning: the good, the bad, and the ugly. Ann. Rev. Vis. Sci. 5, 399–426 (2019)
	32.	 S. Shi, Wang, Q., Xu, P., and Chu, X. Benchmarking state-of-the-art deep learning software tools, 

in 2016 7th International Conference on Cloud Computing and Big Data (CCBD) (IEEE, 2016), 
pp. 99–104

	33.	 V.G. Sigillito, S.P. Wing, L.V. Hutton, K.B. Baker, Classification of radar returns from the iono-
sphere using neural networks. Johns Hopkins APL Tech. Digest 10(3), 262–266 (1989)

	34.	 W.N. Street, W.H. Wolberg, O.L. Mangasarian, Nuclear feature extraction for breast tumor diagno-
sis, in Biomedical Image Processing and Biomedical Visualization, vol. 1905 (International Society 
for Optics and Photonics, 1993), pp. 861–870

	35.	 S. Zafeiriou, D. Kollias, M.A. Nicolaou, A. Papaioannou, G. Zhao, I. Kotsia, Aff-wild: valence and 
arousal’in-the-wild’challenge, in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops (2017), pp. 34–41

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.6084/m9.figshare.12542321.v1
https://doi.org/10.6084/m9.figshare.12542321.v1

	TPOT-NN: augmenting tree-based automated machine learning with neural network estimators
	Abstract
	1 Introduction
	2 Background
	2.1 Artificial neural networks
	2.2 Automated machine learning
	2.2.1 TPOT


	3 Methods
	3.1 TPOT-NN
	3.2 Dataset descriptions
	3.3 Experimental setup
	3.4 Hardware and high-performance computing environment

	4 Results
	4.1 Base TPOT vs. TPOT with PyTorch neural network estimators
	4.2 Single- vs. multi-layer NN estimators in TPOT-NN
	4.3 Time efficiency of TPOT-NN
	4.4 Structural topologies of pipelines learned by GP

	5 Discussion
	5.1 Compatibility of neural network estimators with TPOT
	5.2 TPOT-NN significantly improves classification accuracy and reduces variance, but only for some datasets
	5.3 Assessing the tradeoff between model performance and training efficiency
	5.4 AutoML as a tool to discover novel neural network architectures
	5.5 Future work on integrating AutoML and ANNs

	6 Conclusions
	Acknowledgements 
	References




