
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2022) 23:453–493
https://doi.org/10.1007/s10710-022-09436-w

1 3

A novel tree‑based representation for evolving analog
circuits and its application to memristor‑based pulse
generation circuit

Xinming Shi1,2 · Leandro L. Minku2 · Xin Yao1,2 

Received: 15 August 2021 / Revised: 16 January 2022 / Accepted: 24 April 2022 /
Published online: 21 July 2022
© The Author(s) 2022

Abstract
When applying evolutionary algorithms to circuit design automation, circuit rep-
resentation is the first consideration. There have been several studies applying dif-
ferent circuit representations. However, they still have some problems, such as lack
of design ability, which means the diversity of evolved circuits was limited by the
circuit representation, and inefficient transformation from circuit representation into
SPICE (Simulation Program with Integrated Circuit Emphasis) netlist. In this paper,
a novel tree-based circuit representation for analog circuits is proposed, which is
equipped with an intuitive and three-terminal devices friendly mapping rule between
circuit representation and SPICE netlist, as well as a suitable crossover operator.
Based on the proposed representation, a framework for automated analog circuit
design using genetic programming is proposed to evolve both the circuit topology
and device values. Three benchmark circuits are applied to evaluate the proposed
approach, showing that the proposed method is feasible and evolves analog circuits
with better fitness and number of components while using less fitness evaluations
than existing approaches. Furthermore, considering physical scalability limits of
conventional circuit elements and the increased interest in emerging technologies,
a memristor-based pulse generation circuit is also evolved based on the proposed
method. The feasibility of the evolved circuits is verified by circuit simulation suc-
cessfully. The experiment results show that the evolved memristive circuit is more
compact and has better energy efficiency compared with existing manually-designed
circuits.

Keywords  Automated analog circuit design · Memristor · Circuit representation ·
Genetic programming · Evolvable hardware

 *	 Xin Yao
	 xiny@sustech.edu.cn

Extended author information available on the last page of the article

http://orcid.org/0000-0001-8837-4442
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-022-09436-w&domain=pdf

454	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

1  Introduction

Circuit design automation has attracted increasing attention, with analogue cir-
cuit design being particularly challenging due to its complex topology and param-
eter selection [1]. There have been several methodologies to study analog circuit
design automation, including methods that incorporate domain knowledge [2],
evolutionary algorithms [3] and simulated annealing [4]. Some of them are based
on domain knowledge and require significant expertise to be applied. For exam-
ple, Oliver et al. [2] proposed a constraint-driven method to implement the auto-
matic design of analog circuits. However, this type of method requires abundant
knowledge of circuit design to be developed and limits the range of exploring
circuits.

Evolutionary algorithms have been widely applied to automated analog circuit
design, requiring neither design rules nor domain knowledge from experts [5].
For example, Kruiskamp et al. [6] proposed the prototype synthesis tool DAR-
WIN based on Genetic Algorithm (GA) to design the CMOS opamp. Grammati-
cal Evolution (GE) [7] and Genetic Programming (GP) [8] have also been used
successfully for the automated design of analog circuits. Some researchers com-
mented that GP makes it possible for generating topology of analog circuits with
arbitrary connections [9]. Several earlier studies proposed that GP is likely the
most successful evolutionary computation-based paradigm for analog circuit syn-
thesis [10], given its good diversity for automated analog circuit design [11, 12].
Even in recent years, GP (and its variants) is still considered as the successful
evolutionary paradigm for analog circuit design [13].

Circuit representation is the first consideration in automated circuit design. It
indicates how to encode a circuit. According to different data structures, there are
several types of circuit representations, such as string-based [10, 14], tree-based
[12, 15, 16] and graph-based circuit representations [17, 18]. However, there
are also some limitations of these different types of circuit representations. Gan
et al. [17] suggested that a string-based representation [14] is so complex that
much computation time is taken during the decoding process. The linear string-
based representation has another limitation: it cannot support all possible circuit
topologies [10]. In addition, some researchers [9, 16, 17] proposed that the tree-
based circuit representations also have some inadequacies, such as bloat size of
the evolved design [15], limited application [12], inefficient crossover operators
and complex transformation into circuit netlists [11]. As for graph-based circuit
representation, designing good crossover operators is a challenging problem, as it
may result in infeasible individuals during the evolutionary processes [18].

Therefore, a new circuit representation for automated analog circuit design
based on GP is proposed in this paper. The proposed representation has the fol-
lowing characteristics. First, it makes the transformation between the circuit rep-
resentation and the circuit netlists more direct and efficient, which is a desirable
property for the evolution of circuits. Second, the proposed circuit representation
can be applied in the circuits with either two-terminal or three-terminal electrical
elements. Finally, the novel tree-based circuit representation has more suitable

455

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

crossover operator compared with some existing representations, potentially aid-
ing the evolutionary process to obtain better circuits.

Based on the proposed circuit representation, a suitable evolutionary approach
based on GP is designed, which includes topology evolution and device value
optimization. We validate the proposed representation and its corresponding GP
based on three widely used benchmark circuits [13, 14, 19], showing that the
evolved results based on proposed method are better in terms of the number of
evaluations and circuit performance than those obtained by existing methods [13,
14, 19]. The benefits of the characteristics of our proposed circuit representation
are also verified by comparison experiments.

In addition, we perform a case study of using the proposed approach to evolve
memristor-based circuits, which are particularly relevant nowadays given the
rapid development of emerging electronic devices, the wide application prospects
of memristors [20] and the increasing trend of researching neuromrophic com-
puting [21–23]. Considering the dynamic characteristics of memristors, there are
two parts of challenges of designing memristor-based circuit manually, which
are how to tune into the specific memristance by control circuits or signals, and
how to manipulate the state switching behaviors of different memristors (from
HRS/LRS to LRS/HRS), respectively. As for the manual design, it is intensive
and time-consuming for designers to manipulate these different characteristics
of memristors during the designing process. And some devices with bulk size,
such as capacitors, even external fabricated chips, are always selected to construct
circuits [22, 24], incurring large size and high power consumption of designed
circuit system. Therefore, it is reasonable to apply the evolutionary approach to
manipulate different characteristics of memristors and other devices to design
memristor-based circuits pursuing the functionality, energy efficiency, and com-
pactness synchronously.

There are very few studies on automated design of memristor-based analog cir-
cuits [25, 26]. Some of the existing work [25] is based on Koza’s tree representation,
which has the above mentioned limitations. Moreover, most existing work focuses
on synthesising memristive digital circuits [27, 28], particularly logic circuits. There
are very few works attempting to automatically design analog memristive circuits
as done in our paper. Our study shows that our proposed method can successfully
be applied to evolve emerging device-based analog circuits, obtaining better results
compared with the manual-design circuits for the similar purpose in terms of the
number of components applied and power consumption.

Overall, our key contributions are threefold:

•	 A novel tree-based representation that can be transformed more directly and
efficiently to circuit netlists, and for which a suitable crossover operator can be
applied, better supporting automated circuit evolution.

•	 A GP framework that uses the proposed representation and can improve the
number of evaluations, fitness and hits over existing literature.

•	 A case study applying the proposed GP framework to analog memristive circuit
design, demonstrating that the proposed framework can lead to more compact
size and greater energy efficiency than existing manually designed circuits.

456	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

The rest of the paper is structured as follows. Section 2 presents related work. Sec-
tion 3 introduces our proposed circuit representation in detail. Section 4 explains
the evolutionary design framework of analog circuits based on GP proposed in this
work. Section 5 focuses on the validation of our method, where three benchmark cir-
cuits are applied and the comparisons with previous works in the field are presented.
Section 6 shows how the proposed method is applied to generating a memristor-
based pulse generation circuit, and presents comparisons with manual-design cir-
cuits. The conclusion of our work is presented in Sect. 7.

2 � Related work

2.1 � Automated analog circuit design algorithms

The complex topology and a large number of component values for circuits makes
its automated analog design a challenge. Considering different strategies to imple-
ment automated analog circuit design, researchers specified several ways to tackle
the challenge, including domain knowledge-based and evolutionary algorithm (EA)-
based approaches [29]. Table 1 gives a brief comparison of automated circuit design
methodologies based on domain knowledge and EA.

As the name implies, knowledge-based methods rely on the knowledge obtained
from specific circuits or sub-circuits, thus the great human effort and experience is
highly required to extract the knowledge for each generated structure one by one
[29], which is unfriendly to inexperienced developers. In addition, the computing
complexity of some knowledge-based methods [30] is high, as it needs to check if
the automatically generated part is potentially useful by circuit knowledge such as
transmission parameters, incurring high computing complexity.

Compared with knowledge-based methods, EA-based approaches are more inde-
pendent of human effort [29]. EA-based methods require less human effort, and the
structure of evolved circuit is unfamiliar compared with that of knowledge-based
methods. Unfamiliar structures of circuit can enrich the candidates of desired cir-
cuits, which may find better results among them than that of familiar design. Based
on various evolutionary algorithms, different works of automated circuit design have
been proposed [6, 8, 13, 31]. In Kruiskamp et al. [6], applied Genetic Algorithms
(GA) to solve CMOS opamp synthesis problem, where each individual in the popu-
lation has a multi-gene chromosome that can be converted into a corresponding cir-
cuit by decoding it. Grimbleby [32] used GA for automated analogue network syn-
thesis, where GA was used to configure the circuit structure. However, component
values should be determined by subsequent numerical optimization.

Table 1   Characteristics of
automated circuit design
methodologies based on domain
knowledge and EA [29]

Based methods Structures Complexity Knowledge required

Knowledge Familiar Very high Very high
EA Unfamiliar Low Low

457

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

Genetic programming (GP) has been widely used in automated circuit design and
other fields like signal processing and system structure identification [33]. Different
from numerical optimization algorithms, GP can design complex structures start-
ing with programs or operations as genes and evolve to better programs by using
GA-liked operators like selection, mutation, and crossover. In [11], Koza used GP to
design eight different types of circuits automatically with minimal problem-specific
information, demonstrating the general applicability of GP to solve the problem of
automated synthesis of analog electrical circuits. In recent years, GP (and its vari-
ants) is still considered as the evolutionary paradigm with more successful results in
the field of analog circuit design [13].

The differences between GA and GP in terms of evolving analog circuit mainly
reflect on the representation. Specifically, GA employs string-based representations
of binary or float value to the evolution [34, 35]. String is an efficient structure of
value optimization, therefore, some GA studies only provide the solutions to the
devices value with the already known circuit topology [6, 32]. Different from these
GA studies, GP approaches can generate the circuit netlists for evolution, which con-
tain both of the circuit device value and circuit topology. Using GA, some research-
ers encode the sequence of the string as the circuit topology and its string value
encoded as the device parameter, which incurs the limited circuit diversity [10] and
complex procedure of decoding to its phenotype [17]. Different from these GA stud-
ies, in GP studies, the unbalanced tree structure of function nodes encodes the rela-
tive positions of devices and the terminal nodes further encode the specific positions
for the circuit netlists. Therefore, it allows greater circuit diversity and more efficient
decoding procedure to phenotype.

2.2 � Circuit representation

Circuit representation is indispensable for automated analog circuit design, as it
allows an evolutionary algorithm to alter the circuit topology and parameters by
making use of genetic operators. According to different data structures, there are
several types of circuit representation:

1.	 String-based circuit representation: Mattiussi et al. proposed the Analog Genetic
Encoding (AGE) approach based on string representation to synthesize analog
circuits [14]. Each gene of AGE’s genome denotes a device, in which two regions
are included for denoting each terminal and parameters of the device. Connection
of these devices is determined by a device interaction map. Final circuit is con-
structed by connecting all devices step-by-step according to the device interaction
map. The experimental results show that AGE can synthesize analog electrical
circuits. However, this representation is so complex that much computation time
is taken during decoding process [17].

	  The linear representation proposed by Jason in 1999 [10] is also based on string
structure. It can encode the circuit construction operations into opcodes, such
as x-move-to-new, x-cast-to-previous and x-cast-to-ground, x-cast-to-input and
x-cast-to-output. Here, x-move-to-new represents adding a device x to the active

458	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

node and generating a newly active node; x-cast-to-previous represents inserting
a device x between the active node and the circuit under construction; x-cast-to-
ground represents casting a device x between the active node and ground; x-cast-
to-input represents casting a device x between the active node and input; and
x-cast-to-output represents casting a device x between the active node and output.
However, this representation cannot support all possible circuit topologies, being
of limited applicability [10]. Specifically, the circuit construction are guided by
above-mentioned five basic instructions, and the circuit evolution only happened
between the active node of constructed part and new devices, by which some of
the connections cannot be established.

2.	 Tree-based circuit representation: Koza and his collaborators [8] have done sev-
eral studies on automated synthesis of analog circuits by means of tree-based GP.
Sripramong et al. [36] improved on Koza’s work by using the same tree-based
circuit representation, but with a recursive analysis to verify circuit correctness.
In [37], individuals were also represented by Koza’s tree-based representation,
where non-leaf nodes represent circuit components or connection ways, and leaf
nodes are defined as terminal nodes or constants. However, Koza’s tree-based
representation is prone to a phenomenon named bloat, which refers to circuits
often growing excessively large [15], which may lead to high cost in terms of
larger circuit area and power consumption.

	  In 2006, Chang et al. [12] proposed a novel tree-based representation for syn-
thesizing RLC circuit. However, this representation has been criticized for lack
of design ability [16] and can only be applied in the two-pole electrical elements
[9]. As the length of the tree is dynamic, the potential of bloat still exists.

3.	 Graph-based circuit representation: Graphs are attractive representations for cir-
cuits as they are compact and intuitive for representing circuits [38]. An Evo-
lutionary Graph Generation (EGG) system was proposed to synthesise digital
circuits [39, 40]. This EGG system was also applied to synthesise analog circuits
[41]. In EGG, nodes represent device or I/O pin, edges represent connection
between devices and I/O pins, thus individuals are represented as graph. However,
the validity of individuals cannot be guaranteed during evolution, because the
main genetic operators such as crossover and mutation may break the rationality
behind the individual circuit [17].

	  Gan et al. [17] used graph representation to automatically synthesize passive
analog filters. The circuit topologies can be modified by six types of mutation
operations. Combined with clone selection algorithm, components parameters
could be synthesized simultaneously [17]. However, only the mutation operations
were employed to modify the individuals. The operation of crossover was ignored
in this work, which may limit to obtain better results. Some researchers also pro-
posed that the node incidence matrix relates the vertices to the edges of a graph,
possessing structural properties that are not, generally, preserved after subjected
to a crossover operation. This will result in invalid individuals in evolutionary
processes [18]. And as for some graph representation based on adjacency matrix,
they are unable to represent three terminal elements [17].

	  As for graph structure to represent analog circuits, there might be a number
of no connections among the circuit devices, which potentially incurs waste of

459

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

storage resources. Moreover, the graphs are not hierarchical structures. Therefore,
it is difficult to use them as structures that support modularity, where we can
easily identify different sub-components of the circuit. This means that it would
be difficult to design a crossover operator that does not break the circuit based
on graph representation. The trees, on the other hand, are hierarchical structures.
Each sub-tree can represent a different sub-component of the graph. This kind
of structure lends itself to crossover operators that would not produce infeasible
circuits, such as the ones proposed in this paper.

	  Graph-based CGP has also been applied for evolving analog circuits [42],
where they have applied a modified circuit representation. This modified circuit
representation has their limitations. First, the circuit device values are evolved
based on a look-up table, which is discrete. Moreover, decoding procedures con-
tain 3 stages, being complex. And also decoding constraints are designed for Mos-
fets, not being compatible with two-terminal devices like resistor and memristor.

In addition, dealing with infeasible circuits is also an important part of circuit repre-
sentation. The feasible circuit individuals should follow some rules based on circuit
theory, such as avoiding short-circuit and open-circuit. There are several approaches
of dealing with circuit feasibility, such as discarding infeasible circuit individuals
[9], accepting infeasible circuit individuals with penalty [17], and repairing infeasi-
ble circuit individuals [10, 14, 43]. Rojec et al. [9] applied the discarding strategy,
where only the individuals that pass the connection detection can be evaluated, the
other individuals left in the population are discarded. However, this may limit the
diversity of the initial population. Gan et al. [17] applied the penalty strategy, where
the individuals that have no connection with at least one of the accessible nodes
are accepted but penalized. Several studies applied repairing strategies. There are
three types strategies of repairing strategies: (1) deleting the dangling terminals in
the infeasible circuits [43, 44]; (2) connecting the dangling terminals to the existing
circuit nodes [10]; and (3) , inserting the dangling terminals into a resistor with large
value to make the circuit simulation valid [14].

2.3 � Automated memristor‑based circuit design

Memristor is the fourth basic element in electronic circuit besides resistor, capaci-
tor and inductor. The ability of memristors to act as thresholded electrically tune-
able, multilevel, non-volatile resistive loads, combined with their inherently scaling-
friendly and low power [45, 46] has rendered them a highly promising candidate
for use in future electronics applications. There are two main problems of design-
ing memristor-based circuits, which are how to tune into the specific analog mem-
ristance by control circuits or signals, and how to manipulate the state switching
behaviors of memristors (from HRS/LRS to LRS/HRS), respectively. As for the for-
mer problem, some researchers have designed the memristance tuning analog cir-
cuits to control the memristance variation [47]. As for the latter problem, researchers
have applied the state switching behaviors with different rates to implement different
functions like neuronal exponential spike generation [23] and logic circuits [24].

460	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

At present, most of memristor-based circuits are designed manually. However,
manual design of memristor-based circuits is a time-consuming task, because the
target functions, size and power consumption need to be taken into consideration
at the same time during the design process. Moreover, designing multi-memristor
combinations with different connections is also a difficult problem for its complex
dynamic electronic characteristics. Therefore, it is valuable to apply evolutionary
approaches to automatically generate memristor-based circuits. However, there are
few studies related to the memristor-based automated circuit design. Some research-
ers have applied evolutionary approaches to synthesize memristor-based digital cir-
cuits, particularly logic circuits [27, 28]. There are two works focusing on analog
circuits [25, 26]. They are based on the traditional Koza’s tree representation, which
suffer from the problems of that representation mentioned in Sect. 2.2.

3 � A novel tree‑based circuit representation

Ideally, both of the circuit topology evolution and device value optimization should
be considered in analog circuit design automation, avoiding the need for expensive
human design knowledge. In this section, we propose a novel tree-based circuit rep-
resentation for evolving analog circuits that can be used to evolve both the circuit
topology and device values. The details of representing analog circuits (Sect. 3.1),
structural plausibility check to make sure each generated circuit tree is correspond-
ing to a valid circuit (Sect. 3.2), and the advantages of the proposed tree-based rep-
resentation (Sect. 3.3) will be introduced.

3.1 � Circuit representation and netlist transformation

The circuit representation is based on a multi-tree. We define the non-leaf node as
function node and leaf node as terminal node (see right part of Fig. 1).

A function node (Fig. 2a) consists of two parts, the first part is a device type
depending on the circuits to be implemented, for example, in a simple RC filter cir-
cuit, the device type of a function node will be R (resistor) or C (capacitor). The sec-
ond part is the value tree representing the value of the circuit device in the form of
a binary tree, as shown in the example provided in Fig. 3. Every value-based device
will have its corresponding value tree. For devices that do not require a value, the
value tree is null.

A single terminal node (Fig. 2b) refers to the position of one device port in the
circuit netlist, which is represented by an integer number. According to the number
of device ports, each function node has a defined arity (i.e., number of child nodes).
For example, memristor, a two-port device, can be represented by an arity-2 node
in the circuit representation. Similarly, MOSFET, a three-port device, can be rep-
resented by an arity-3 node in the circuit representation. Therefore, the circuit con-
nection of a device in the circuit netlist can be determined by assigning the position
numbers of each port (Fig. 4).

461

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

Fig. 1   A circuit example represented by proposed method

Fig. 2   Diagram of function node
and terminal node

(a) (b)

Fig. 3   An example of value tree

462	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

In order to enhance the flexibility of circuit representation, the devices with
polarity correspond to different function nodes. For instance, the memristor and its
equivalent memristor with reversed polarity in Fig. 5a are represented by two differ-
ent function nodes. Similarly, the PMOS with original definition and its five types of
equivalent PMOS with different port definitions are also represented by fix different
function nodes. In this way, the circuits with any-connection can be implemented.

During the process of converting the tree-based circuit representation into the
circuit netlists, each function node needs to be specified a netlist position number.
Therefore, a hierarchical relationship between parent node and child node is defined.
The terminals of the parent node are formed by the left terminals of its child nodes,
which allows for the representation to be circuit-intuitive. Figure 1 shows an exam-
ple of how to convert the devices in a tree-based circuit representation into their
corresponding circuit position numbers. In Fig. 1, PMOS2 is the parent node of R,
NMOS, and Mem. According to the hierarchical relationship between parent node
and child node, Terminal1 of PMOS2 will be 3, which is the same as Terminal1 of
R; Terminal2 of PMOS2 will be 1, which is the same as Terminal1 of NMOS; and
Terminal3 of PMOS2 will be 2, which is the same as Terminal1 of Mem. In this way,
all the function nodes will be assigned corresponding terminal nodes, enabling the
construction of a circuit netlist further.

In Koza’s tree-based structure [8], both of the circuit constructing operations and the
circuit devices are function nodes. However, the circuit constructing operations such
as series, parallel and flip will use many nodes within a tree, which may cause some

Fig. 4   Diagram of equivalent devices with different terminal definitions. a Memristor and its equivalent
device with reversed polarity. b PMOS and its five types of equivalent device

463

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

undesirable scenarios where a complex tree with plenty of circuit constructing opera-
tions and fewer circuit components can only represent a simple circuit. These undesir-
able scenarios can be prevented in our representation, by using different function nodes
of a tree to represent circuit components and use the topology of a tree to represent the
circuit connection. Therefore, we can use a simpler tree to represent the same circuit
compared with Koza’s tree. Figure 5 gives an example of encoding a given circuit by
Koza’s and our method. We can see that many circuit construction operation nodes are
used by Koza’s method to construct the circuit, such as S (series), F (flip) and E (end).
As for our proposed method, only the circuit devices and their netlist positions are nec-
essary to construct the circuit, which is therefore more compact than Koza’s tree.

Besides the above tree structure representing the circuit topology, the value tree,
which is embedded in the related function nodes, is designed to represent the device
value. In the value tree, the arithmetic operators are regarded as function nodes, and the
terminal nodes are float numbers from − 1 to 1. The equation to calculate the value of
a tree is:

where A is the fitting parameter that is capable of scaling the obtained value into the
reasonable range of corresponding devices, and Valuetree can be calculated by the
arithmetic operators and float numbers in the value tree. Taking Fig. 3 as an example
and assuming A = 105 , the Valuetree of a resistor is calculated as:

(1)Valuedevice = A ×
(
10Valuetree

)
,

(2)Valuedevice = 105 × (10((−0.2∗0.8)+0.5)+(0.7−(−0.3))).

Fig. 5   An example of encoding a same circuit by Koza’s and our method

464	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

The value tree allows the approach to optimise by shuffling around arithmetic opera-
tions from a small and tractable set, as opposed to randomly having to “mutate" val-
ues directly. This can protect those “good" arithmetic operations that are beneficial
for the evolution, generating better value gradually during the evolution.

3.2 � Three types of structure check

We want to prevent the bloat problem [48] of tree structure and the invalid cir-
cuits that will cause simulation failure, therefore, three types of structure check are
applied in this work. In order to check if a circuit is feasible, the usage count of dif-
ferent terminal nodes is an important indicator. Algorithm 1 gives how to count the
terminal nodes of a tree, where the post-fix traversing is applied to each parent node.
When the current traversed parent node is the terminal node, the current parent node
will be added to the terminal set (Ln 2–3 in Algorithm 1). When the current tra-
versed parent node is the function node, every child nodes of this parent node will
be traversed. The value embedded on the terminal node will be stored in portList.
The counts of each element in portList will be updated to terminal_count (Ln 8–9 in
Algorithm 1). Three types of structure check are introduced accordingly.

First, our representation considers that there is a predefined embryo circuit rep-
resenting the initial circuit configuration of the to-be evolved circuit. The embryo
circuit design is generally simple, which could be specified depending on differ-
ent circuit requirements [11, 13, 14]. The common embryo circuit includes volt-
age sources, ground, and load resistor. This part of circuit will not be evolved, i.e.,
will remain fixed during the evolutionary process. However, the way with which the
to-be evolved circuit will be connected with the embryo will be determined by the
evolutionary process. Therefore, the external nodes of embryo circuit are defined
as necessary nodes. And we define the unnecessary nodes from two perspectives,
which are node counts and node function. Specifically, if a node that has been
assigned over twice or does not belong to the embryo circuit will be regarded as
unnecessary node. The first step is that the external terminals of the embryo cir-
cuit (necessary nodes) should be checked if they are all assigned to the tree termi-
nal node by the evolutionary process. If they are not, the unconnected terminal of
embryo circuit will be isolated, incurring invalid circuits during the evolution. Such
infeasible individuals are repaired by replacing a random unnecessary node by the
isolated necessary node. The step 1 in Fig. 6 gives an example of the first structure
check. Nodes 0, 1, 2, 3 indicates the embryo nodes that must be assigned in the
tree necessarily. However, as we can see that the node 1 has not existed in the tree.
Therefore, the unnecessary nodes, which are 5, 7, 9, 6, 8, 15, 12, one of them will be
selected randomly and replace it by node 1. In this way, all the external terminals of
the embryo circuit will be connected to the evolved circuit.

Second, in our circuit representation, the terminal nodes represent the port position
directly. Therefore, we need to make sure the devices are connected to each other com-
posing a complete circuitry and preventing the problem of hang terminals, i.e., isolated
terminals of devices that are not connected to the evolved circuit. In particular, for this
problem not to happen, one terminal node should always be assigned at least twice in a

465

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

single tree. Therefore, we have to make sure that the random-generated terminal nodes
of the tree-based circuit representation appear in the tree at least twice. The step 2 in
Fig. 6 shows an example of the second structure check works. Nodes 4, 11, 10, 13, 14
are dangling terminals without the connections with other nodes. The last node 13 will
be fixed firstly, where a random node from unnecessary nodes and embryo nodes will
substitute the node 13. Then, the neighboring two nodes will be set as the same. As
shown in Fig. 6, 4, 11, 10, 13, 14 are changed to 4, 4, 10, 10, 8, respectively. By the tree
structure check, all the embryo nodes could be connected into the evolved circuit and
there will be no dangling terminals existed in the evolved circuit.

Fig. 6   Diagram of tree structure check

466	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

Third, some researchers asserted that the restriction of tree depth or the number
of nodes can ameliorate the bloat problem of tree [9]. The third type of structure
check is to apply a max depth limit for the tree. Therefore, the depth of a tree will
be limited in the range between minimum and maximum. After generating a new
tree, the tree depth will be checked and the part that exceeds the max depth will be
replaced by its left terminal node.

3.3 � Advantages of our proposed tree‑based representation

The advantages of our proposed tree-based representation are as follows:

•	 Efficient transformation into circuit netlists:
	  In Koza’s tree representation [19], function nodes contain both of the cir-

cuit construction operations, such as parallel (P) or series (S) operations, and
device types, such as resistor (R) or capacitor (C), which leads to complex tree
structures. Compared with Koza’s tree representation, the function nodes of
our proposed tree-based representation only contain circuit devices manipulat-
ing different ways of connections between function nodes and terminal nodes
(port position) to represent circuits, which leads to more compact tree struc-
ture. We only consider the two-terminal and three-terminal devices are applied
in this work. The same height H for both of our proposed tree-based represen-
tation and Koza’s tree are given for the analysis. When the circuit devices are
all the two-terminal devices, there will be 2

H−2

2
 devices, and when the circuit

devices are all the three-terminal devices, there will be 3
H−3

6
 devices. There-

fore, the number of circuit elements that our proposed tree can represent will
be in the range of

(
2H−2

2
,
3H−3

6

)
 . However, as the function nodes of Koza’s tree

not only contain the device types but also the circuit construction operations,
the number of the circuit elements that Koza’s tree can represent will be in the
range of

(
� ×

2H−2

2
, � ×

3H−3

6

)
 , where � is a constant indicating the proportion

of the number of device types to all the number of function nodes. Theoreti-
cally, � could be 1, indicating the function nodes are all the circuit elements.

467

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

Actually when � = 1 , there will be only one device in the circuit generated by
Koza’s method, which is unlikely to perform the desired function of the cir-
cuit. Therefore, � ∈ (0, 1) . As a results, our proposed tree-based representation
is more compact, which means it can represent more devices in a circuit with
the same tree height. More compact tree structures make transformation into
netlists more efficient.

	  In addition, the form of “Device–circuit position" of our proposed repre-
sentation also leads to more efficient transformation into netlists. Specifically,
the executable circuit netlist could be transformed from the form of “Device–
circuit position" of our proposed representation directly by the post-order tra-
versing. However, Koza’s tree-based representation [11] has tree structures
based on the form of “Circuit construction operations–devices", which require
extra steps to be executed in addition to traversing the whole tree in order to
assign the corresponding terminal position to circuit devices for constructing
or updating the circuit netlist. Therefore, considering the more compact tree
structure and the direct form of “Device–circuit position", our proposed tree-
based representation can make the transformation into circuit netlist more effi-
cient.

•	 Support for both of two-terminal and three-terminal devices
	  As mentioned in Sect. 3.1, the proposed representation can be used both with

two-port (resistor or capacitor) and three-port (transistor) electrical devices. Dif-
ferent from topology-restricted methods [12], the proposed circuit representation
can be applied in both of two-port and three-port based topologies. Therefore,
the proposed method has a wider application range of circuit design.

•	 Suitable and efficient crossover operators for circuit evolution
	  Some researchers proposed that it is challenging to design crossover operators

for graph-based circuit representation due to its close-loop structure [38]. Thus,
only the point mutation operations are applied in some work [17]. Compared
with graph-based representations, the proposed circuit representation lends itself
better to crossover operators, which may help the evolutionary process to find
better circuits. The sub-circuits of a circuit can be represented by the branches
of the tree directly in our proposed representation, facilitating the design of suit-
able crossover operators for circuit evolution. However, in Koza’s tree represen-
tation [11], the sub-circuits of the whole circuit are represented not only by their
corresponding branches but also by the function nodes in the parent level of the
branches, which may lead to inefficient crossover operations. The crossover oper-
ator adopted with our representation is explained in Sect. 4.3.

4 � Evolutionary design of analog circuits based on GP

In this section, we will introduce a GP-based circuit evolutionary algorithm based
on the proposed circuit representation. The schematic flow of the algorithm is given
in Fig. 7, which explains how the circuit topology (Sect. 4.3) and device value
(Sect. 4.4) are evolved.

468	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

4.1 � Overall flowchart

As shown in Fig. 7, a GP algorithm for evolving analog circuits contains the follow-
ing steps:

Step 1: Parameter settings—a series of parameters is set, such as population size
N, tournament size T, max iterations M, max depth of tree H, topology crossover
rate Pcross , mutation rate Pmutate and value crossover rate Pvaluecross.

Fig. 7   Flowchart of GP algorithm for evolving analog circuits

469

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

Step 2: Population initialization—According to the parameters set in Step 1, the
population is initialized. The details of population initialization in our proposed GP
design are introduced in Sect. 4.2.

Step 3: Fitness evaluation—Each individual is assigned a fitness value by the
proposed fitness function. The specified fitness functions for different tasks are pro-
posed in Sect. 5.

Step 4: Elitism strategy—The fourth step is to employ the elitism strategy. All the
individuals in the population are sorted by their fitness value and the one with the
best fitness is reserved.

Step 5: Topology crossover—The next step is topology crossover. Two parents
are selected by n-tournament selection to go through topology crossover with prob-
ability Pcross . One child is generated as a result of the crossover operation, and will
survive to the next generation. Moreover, the generated child will replace the par-
ent 2 to execute value crossover operation with parent1. The detail of the topology
crossover is explained in Sect. 4.3.

Step 6: Value crossover—The next step is value crossover. Two parents are
selected by n-tournament selection. Two function nodes will be selected from the
parents respectively and go through value crossover with probability Pvaluecross . The
resulting child node of the value crossover will be taken as the corresponding func-
tion node of Parent 1, replacing Parent 1’s previous function node. This crossover
operator is introduced specifically in Sect. 4.4.

Step 7: Mutation—The last step is mutation. One of two mutation operations
(delete or add) is randomly selected with equal probability to being executed on the
i-th individual. The mutation operators are introduced in Sect. 3.1.

4.2 � Population initialization

Population initialization defines how the individuals in the initial population are
generated and how to ensure that their structure is valid. Each tree individual is gen-
erated by the grow method [49], which means that the distances between each leaf
nodes and the root node are not the same.

The three types of structure check mentioned in Sect. 3.2 are applied to prevent
invalid circuits.

4.3 � Circuit topology evolution

Based on the proposed circuit representation, circuit topology evolution is imple-
mented by executing the operations of topology crossover and mutation. Figure 8
shows an example of topology crossover operation based on the proposed circuit
representation. The crossover operation is executed among non-leaf nodes. As
shown in Fig. 8, two parents are selected among T individuals by n-tournament
strategy. A node of the first parent and a node of the second parent are randomly
selected, e.g., terminal node 2 and node C1 in Fig. 8 and node C1 of Parent 2 is also
randomly selected. Then the sub-tree rooted at the selected node from the second

470	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

parent is used to replace the sub-tree rooted at the selected node from the first parent
to generate a child, which will be added into the population.

Figure 9 shows an example of mutation operation that explains how the mutation
operation is executed based on proposed circuit representation. Two types of muta-
tion operations are applied in this work, which are delete and add, respectively. As
for the delete operator, a subtree is randomly selected to be deleted and the left-most
terminal node of this sub-tree is used to replace it. As for the add operator, a termi-
nal node from the current tree is selected uniformly at random, and then a randomly
generated sub-tree with a feasible depth is created to replace the selected terminal

Fig. 8   An example of topology crossover operation

Fig. 9   An example of mutation operation

471

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

node. “Feasible depth” here means that its depth must be between the minimum and
maximum depth parameter of the algorithm. This is implemented by the three types
of structure checks introduced in Sect. 3.2. The upper part of Fig. 9 shows an exam-
ple of delete operation, in which the function node R1 is randomly selected to be
deleted and its left terminal node 3 will substitute the node R1 itself. The bottom part
of Fig. 9 shows an example of add operation, in which a random terminal node 1 is
substituted by a newly generated sub-tree.

4.4 � Device value optimization

Besides the circuit topology, the device values of the circuits also need to be deter-
mined automatically for the circuit design. In this work, the device value is repre-
sented by the value trees (proposed in Sect. 3.1), which are embedded in the cor-
responding function nodes. The device value is evolved by the operation of value
crossover alongside the evolution of the circuit topology as outlined in the flowchart
from Fig. 7. The value crossover operation can only be executed to two function
nodes of the same type of device. Here, the “same type" refers to the same device
type of function nodes. For example, the value of a resistor could only go through
value crossover with the value of another node that also represents a resistor. Simi-
larly, a node representing a capacitor cannot go through value crossover with another
node representing a resistor.

Figure 10 shows the detail that how the value crossover works. R1 is a randomly
selected function node in the i-th individual. R2 is a randomly selected function node
of Parent 1 (which was selected by tournament selection) among the function nodes
of the same type as R1 . If no function node of the same type exists, then another
function node could be selected until there is the one with the same type. Assume
that both nodes correspond to a resistor. Their corresponding value trees go through
crossover as follows. A sub-tree is randomly selected for each of the two value trees.
The sub-tree from the value tree of R2 then replaces the sub-tree from the value

Fig. 10   An example of value crossover for a resistor

472	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

tree of R1 . In this example, after the value crossover is applied, the value tree of R1
changes from 169.8KΩ to 70.8KΩ according to Eq. (1).

As mentioned above, evolutionary design of analog circuit contains both of cir-
cuit topology evolution and device value optimization, which allows for the diver-
sity of evolved circuits and better evolution results. The specific genetic operators
(crossover and mutation) are proposed for the circuit topology evolution and device
value optimization. The sub-circuits of a whole circuit can be represented by the
branches of a tree. Therefore, the crossover operation executed on the tree stands for
the exchanging between sub-circuits. This is an advantage over graph-based repre-
sentations, for which suitable crossover operators are difficult to design. Mutation
operations include delete and add, which can increase and reduce the depth of a tree,
allowing for increasing the diversity of circuit topology.

5 � Experimental studies

We implemented our GP in Python. We also use Python to generate netlists. The
implementations will be made available as open source in GitHub.1 The perfor-
mance of the evolved circuits is evaluated in simulation using NGSPICE [50], which
is based on Spice3 [51].

Three benchmark circuits are chosen to evaluate the proposed approach, namely
voltage reference circuit, temperature sensor circuit, and Gaussian function gen-
erator, respectively. These benchmark circuits are widely applied to evaluate the
automated circuit design methods [13, 14, 19]. In this section, we show how our
proposed method can be applied to evolve these three benchmark circuits and com-
pare the results with existing approaches. The circuit evaluation of all the compared
work are carried on the NGSPICE. In order to make a fair comparison, all the fit-
ness values are computed by the same fitness function proposed in [19], and will be
explained in Sect. 5.1. Moreover, the related parameters are listed in Table 2.

Table 2   GP-based circuit
evolutionary algorithm
parameters

Parameters Value

fitness Depends on cases
P 100
Representation Proposed method
M 800
P
cross

0.8
P
valuecross

0.2
P
mutate

0.2
Parent selection Tournament(T=20)

1  https://​github.​com/​embed​dedsky/​EvoCkt.​git.

https://github.com/embeddedsky/EvoCkt.git

473

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

5.1 � Experimental setup

5.1.1 � Experimental setup for voltage reference circuit

The first experiment is to evolve a voltage reference circuit, which is to produce a
fixed output voltage Vout = 2V on the load resistor when the input voltage varies
within the interval 4V ≤ Vi ≤ 6V and the circuit temperature varies within the inter-
val 0 °C ≤ T ≤ 100 °C ≤ 100 °C. All the candidate circuits are simulated with DC
sweep, where the intervals of the input voltage DC sweep are 0.1V and the intervals
of the temperature sweep are 25 °C. Therefore, there will be 21 discrete values of
input voltage and 5 discrete values of temperature, giving a total of 105 measured
points for the DC sweep simulation.

•	 Embryo circuit: The embryo circuit of voltage reference circuit is shown in
Fig. 11. There are three accessible nodes, which is one power supply (with a 1KΩ
input resistor), one output load resistor ( 10KΩ ), and ground. The part marked by
the dashed line will be further evolved.

•	 Fitness function: Under the different circuit temperatures Ti , each measured out-
put voltage point Vouti,j has its corresponding target value V∗

outi,j
 , where i denotes

the i-th circuit temperature, and j denotes the sampled points of output voltage.
The fitness function is defined as the following equation [19]:

 where �ij is :

•	 Device set: The devices used for evolving the voltage reference circuit are the
same as those used by the baseline approaches, namely NPN (BC846B), PNP
(BC856B) bipolar junction transistor, and resistors.

•	 Circuit Quality Measurement: “Hit" is applied in this work to measure the
evolved circuit quality, which has been widely used in previous work [13, 14,

(3)fitness = −
∑
i,j

�ij,

(4)𝜀ij =

⎧
⎪⎨⎪⎩

�
Vouti,j − V∗

outi,j

�2

, if �Vouti,j − V∗
outi,j

� ≥ 0.01V

0, if �Vouti,j − V∗
outi,j

� < 0.01V .

Fig. 11   The diagram of embryo
circuit for voltage reference
circuit. Where R

in
= 1KΩ ,

load resistor R
L
= 10KΩ , and

the output voltage V
out

 will be
measured to be evaluated

474	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

19]. “Hit" refers to the situation where the absolute difference between the meas-
ured point of output voltage and its target value (error) is less than or equal to
0.02V. Therefore, the proportion of the number of “Hit" to the total number of
measured points indicates the quality of the evolved circuit.

5.1.2 � Experimental setup for temperature sensor circuit

The second evaluation task is to evolve a temperature sensor circuit, of which out-
put voltage is varying with the different circuit temperatures. The variation range
of temperature is 0 °C ≤ T ≤ 100 °C, and the variation range of output voltage is
0V ≤ Vi ≤ 6V  . All of the candidate circuits will be simulated with temperature
sweep. The sample step of temperature is 5 °C , giving 21 measured points for the
sweep simulation.

•	 Embryo circuit: The embryo circuit for evolving temperature sensor circuit is
shown in Fig. 12. There are four accessible nodes, where one is the positive volt-
age supply ( Vin1 with a series resistor R1 ), one is the negative voltage supply ( Vin2
with a series resistor R2 ), one is the output terminal (load resistor RL ), and final
one is ground. The part marked by the dashed line is to-be evolved circuit.

•	 Fitness function: At the different circuit temperatures Ti , the output voltage Vout
is different, which will be measured to be evaluated. The i-th target value of
output voltage is linear-related to the circuit temperature Ti , which is defined as
V∗
outi

= �Ti . � is a constant representing the linear relation between circuit tem-
perature and output voltage. The fitness function is defined as following [19]:

•	 Device Set: The devices applied to evolving temperature sensor circuit are
the same as those used for evolving voltage reference circuit mentioned in
Sect. 5.1.1.

•	 Circuit quality measurement: Different from voltage reference circuit, the stand-
ard of “Hit" for temperature sensor circuit is that the absolute difference between
the measured output voltage and target (error) is less than or equal to 0.1V,
which is the same as the one has been set in [13]. The rate of “Hit" will indicate
the evolved circuit quality.

(5)fitness = −
∑
i

(
Vouti − V∗

outi

)2
.

Fig. 12   The diagram of embryo
circuit for temperature sensor
circuit. Where V

in1 = 15V  ,
V
in2 = 5V  , R1 = 1KΩ ,

R2 = 1KΩ , load resistor
R
L
= 10KΩ , and the output

voltage V
out

 will be measured to
be evaluated

475

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

5.1.3 � Experimental setup for Gaussian function generator

The final task is to evolve a Gaussian function generator, of which output cur-
rent is a Gaussian function of input voltage. All of the candidate circuits will
be simulated with DC sweep, where the variation range of input voltage is
2V ≤ Vin1 ≤ 3V  . The target output current is the Gaussian function with a peak
value Imax

out
= 80nA in correspondence of Vin1 = 2.5V and sweep step is 10mV,

which provides a total of 101 measured points for DC sweep simulation.

•	 Embryo circuit: The embryo circuit for evolving Gaussian function generator
is shown in Fig. 13 There are four accessible nodes, where one is the vari-
able voltage supply ( Vin1 with series resistor R1 ), one is the fixed voltage sup-
ply ( Vin2 ), one is the output terminal (with another voltage supply VL ), and
the final one is ground. The part marked by the dashed line will be further
evolved.

•	 Fitness function: During the circuit evolution, the output current will be meas-
ured to be evaluated. There will be the different target values of output current
corresponding to the different input voltage Vin1 . Therefore, the fitness func-
tion is defined as follows [19]:

 where Iouti is the measured current and I∗
outi

 is the corresponding target value.
The value −1014 is a factor to normalize the square of the error, since the unit of
swept current is nano-level, and the square of the differences between target cur-
rent and measured current will be much smaller.

•	 Device set: MOSFETs are applied to evolving Gaussian function generator
and resistors are also necessary for Gaussian function generator. The type and
model of the devices used in this work are the same as the baseline approaches
[14] and [13].

•	 Circuit quality measurement: As for the Gaussian function generator, there is
also minor change for the standard of “Hit". The absolute difference between
measured current Iouti and target value I∗

outi
 (error) is less than or equal to 5nA,

a “Hit" will be scored. The circuit quality measurement applied in this work is
the same as the one used in [13].

(6)fitness = −1014 ∗
∑
i

(
Iouti − I∗

outi

)2
.

Fig. 13   The diagram of
embryo circuit for Gaussian
function generator. Where
2V ≤ V

in1 ≤ 3V  , V
in2 = 5V  ,

R1 = 1Ω , and V
L
= 2.5V  . I

out

will be measured to be evaluated

476	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

5.2 � Experiment results

Based on the experimental setup mentioned above, this section gives the valida-
tion results of the proposed method. The fitness evaluation results for three bench-
mark circuits, the benefits of the proposed crossover operators and structure check,
evolved circuits and result comparisons with existing literature will be introduced in
following Sects. 5.2.1, 5.2.2, 5.2.3 and 5.2.4, respectively.

5.2.1 � Fitness evaluation results

This section gives the fitness evaluation results for each benchmark circuit. Sev-
eral metrics are used for a statistical evaluation of the proposed method, such as BF
and MBF, which have been widely used to measure the performance of evolution-
ary algorithms [13, 52]. BF defines the best fitness obtained in 20 runs and MBF
is the acronym of Mean Best Fitness, which is the average value of the best fitness
obtained in each run. Table 3 shows the results for the experiments with different
number of evaluations. As Table 3 shows, with the increase of the number of fitness
evaluations from 2 ×104 to 8 ×104 , BF and MBF are more closing to 0, as expected.
The average fitness and error curves for 20 runs of the experiments of each bench-
mark circuit will be given in the appendix.

5.2.2 � Validating the benefits of our proposed tree‑Based crossover operators
and feasibility checks

As explained in Sect. 3.3, our tree-based representation lends itself to a suitable
crossover operator. In particular, our topology crossover stands for exchanging
sub-circuits between individuals. This may lead to better fitness than algorith-
mic designs that do not make use of crossover, being an advantage over algo-
rithm designs such as graph-based designs. Therefore, we evaluate whether the

Table 3   Results for the
experiments with different the
number of evaluations

*Fitness is with negative sign, so the best fitness (BF) is to maximize
the negative fitness value

Tasks Evaluations BF* MBF±std

Voltage reference 2×104 −0.0228 −0.8141±1.0961
5×104 −0.0081 −0.2594±0.7815
8×104 −0.0070 −0.0319±0.0231

Temperature sensor 2×104 −0.0093 −0.1941±0.2058
Temperature sensor 5×104 −0.0089 −0.0502±0.0480
Temperature sensor 8×104 −0.0084 −0.0233±0.0232
Gaussian function 2×104 −0.0158 −0.2865±0.2472

5×104 −0.0074 −0.1104±0.0944

8×104 −0.0063 −0.0883±0.0862

477

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

introduction of our crossover operators is helpful to improve fitness. Figure 14a
shows the fitness across generations when applying and when not applying the
crossover operators. We can see that the evolution with crossover operators leads
to better fitness results than the one without crossover operators, confirming the
benefits of our tree-based representation, which lends itself to the adoption of
crossover operators.

In addition, the effectiveness of the structure check proposed in Sect. 3.2 is
verified by executing the experiments without the structure check, where the
infeasible individuals are given a penalty instead of applying the proposed struc-
ture check to revise them. Several approaches in the literature are based on pen-
alties, such as Gan’s work [17]. As Fig. 14b shows, there are a lot of infeasible
individuals ( fitness = −100 ) in the population, which may limit the diversity of
the population incurring worse fitness.

5.2.3 � Evolved circuits

Besides the analysis of the evaluation fitness, the evolved results also play an
important part for verifying the proposed algorithm. Figure 15 shows the dia-
gram of measured output of the best evolved voltage reference circuit (red lines)
and its ideal output (green line), and Fig. 16 gives its circuit scheme. Corre-
spondingly, Figs. 17, 18, 19 and 20 show the output voltage of temperature sen-
sor and Gaussian generator circuits, as well their circuit schemes, respectively.
According to the Figs. 15, 16, 17, 18, 19 and 20, we can see that the evolved cir-
cuits do not have infeasible structures and can be simulated successfully. Moreo-
ver, the output signals of evolved circuits follows the target outputs well.

Fig. 14   a The average fitness comparisons with crossover and without crossover operation for different
benchmark circuits. b Fitness distribution without structure check for different benchmark circuit

478	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

Fig. 15   The diagram of meas-
ured output of the best evolved
voltage reference circuit (red
lines) and its ideal output (green
line)

Fig. 16   The best evolved results of voltage reference circuit

Fig. 17   The diagram of meas-
ured output (red line with circle)
of the best evolved temperature
sensor circuit and its reference
target (green line with triangle)

479

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

Fig. 18   The best evolved results of temperature sensor circuit

Fig. 19   The diagram of meas-
ured output (red line with circle)
of the best evolved Gaussian
function generator and its
reference target (green line with
triangle)

Fig. 20   The best evolved results of Gaussian function generator

480	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

5.2.4 � Comparison with existing approaches

To further validate the proposed method, this section compares its results with those
of the previous approaches, which are shown in Table 4. The data shown in the last
column of the Table 4 are the average results for 20 runs of the proposed method. As
mentioned in [14], despite the differences in the number of runs in other’s work, it is
useful to consider side by side the results obtained with those methods.

As for the results of evolving voltage reference circuit, the proposed method pro-
duces better fitness (0.0233) with less number of evaluations ( 8 × 104 ), where the
fitness of other work are 6.6 (Koza’s [19]), 2.64 (Mattiusssi’s [14]) and 0.112 (Fed-
erico’s [13]), respectively. It is worth to note that the fitness of proposed work is
much better than that of Koza’s [19] although the two methods are all based on tree
structure. This highlights the advantage of our proposed tree representation. Hit rate
of the proposed method is greater than the work presented by Koza [19] and Fed-
erico [13]. Moreover, our evolved voltage reference circuit has fewer components
than all others.

In the case of temperature sensor circuit, the fitness produced by Federico’s
method is slightly better than the one produced by our method, but using about two
orders of magnitude more circuit evaluations. Moreover, the result temperature sen-
sor circuit evolved by our method contains the least number of components com-
pared with all other methods.

In the case of Gaussian function generator, the proposed method also can produce
better fitness (0.0319) with less number of evaluations ( 8 × 104 ). In addition, the hit
rate of proposed method is higher than other methods. And also the evolved results
of temperature sensor circuit have fewer components, which is more compact than

Table 4   Comparisons with previous work for the three benchmark circuits

Parameters Koza’s [19] Matthiussi’s [14] Federico’s [13] Ours

Vol. reference
 Absolute value of fitness 6.6 2.64 0.112 0.0233
 Evaluations 5.12 × 107 5.6 × 106 1.86 × 106 8 ×104

 Hits/max 89.9/105 98.1/105 70.7/105 94/105
 Components 67 70.2 32 15

Tem. sensor
 Absolute value of fitness 26.4 1.13 0.065 0.0883
 Evaluations 1.6 × 107 6.5 × 106 6.14 × 106 8×104

 Hits/max 16/21 20.3/21 19.9/21 19.1/21
 Components 54 27.8 33 21

Gau. function
 Absolute value of fitness 0.094 0.3 0.036 0.0319
 Evaluations 2.3 × 107 4.3 × 106 6.23 × 106 8 ×104

 Hits/max 101/101 98.3/101 85.0/101 99.6/101
 Components 14 36 28 30

481

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

the left three. And the hit rate of proposed method is also competitive with other
works. The circuit evolved by our proposed method is more compact than the one
proposed by Matthiussi [14].

As it can be seen in the above-mentioned experiment results, the feasibility of our
proposed approach has been verified considering the evolved circuit performance
and the fitness comparisons with previous work. In addition, our method usually
improves the fitness results while using less number of evaluations, achieves a com-
petitive hit rate, and usually uses fewer components to construct the circuits.

As for the manual design of the benchmark circuits, engineers have proposed
different ways to construct these circuits, while the strong experience and circuit
knowledge are highly required. Some classic manual-designed circuits for bench-
mark circuits are applied to compare with those of our approach evolved. Paul
et al. [53] proposed a voltage reference circuit, which is composed of 15 BJTs, 13
resistors and 1 capacitor. Meijer et al. [54] proposed a temperature sensor, which
is composed of 8 BJTs, 7 diodes, 2 capacitors and 6 resistors. Popa [55] proposed
a Gaussian function generator that consists of 30 Mosfets. The comparison with
manual-designed circuits is listed in Table 5. Compared with these manual designs,
our proposed method provides an automated design tool for designing the analog
circuits without the high requirement of circuit experience and knowledge, and the
evolved circuits are human-competitive, which not only can realize their correspond-
ing functions but also have compact size.

We have also inferred that why our proposed method outperformed other’s work
is fused by two parts. Firstly, sub-circuits of a whole circuit could be represented by
the branches of a tree directly, therefore, the crossover operation executed on the tree
stands for the exchanging between sub-circuits, which is beneficial for the evolution
process as shown in Sect. 5.2.2. In Koza’s tree [11], the sub-circuits are determined
by not only the corresponding branches but also the other function nodes located in
its parent’s node level. As a result, their crossover operations between the branches
may miss the corresponding function nodes in its parent’s node level, which will be
disruptive to evolution process. Secondly, because of three types of structure check
for circuit, each circuit individual decoded by our tree-based representation could
be simulated and evaluated, preventing the problem of infeasible chromosomes in
Federico’s approach [13]. In Federico’s work [13], the circuit individual that can-
not be simulated could be still generated, though they will are strongly penalized.

Table 5   Comparisons with manual-designed circuits

Work Implementation #Components

Vol. reference Ours BJT+resistor 15
Manual design [53] BJT + resistor + capacitor 29

Tem. sensor Ours BJT + resistor 21
Manual design [54] BJT + resistor + diode 23

Gau. function Ours MOSFET + resistor 30
Manual design [55] MOSFET 30

482	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

As shown in Sect. 5.2.2, the structural checks adopted by our approach are more
efficient than the use of a penalty. In addition, according to circuit simulation results,
our evolved circuits can ensure the circuit feasibility successfully.

6 � Evolving a memristor‑based pulse generation circuit

With the rapid development of microelectronics and semiconductor technology,
Moore’s Law is breaking down. Device size and power consumption have become
critical for developing electronic technologies. Therefore, memristor research has
been widely spread in the field of electronic technology for its nano-size and energy
efficiency [56]. In addition, memristors also have nonvolatility and resistance vari-
ability [46], which can potentially be useful for many applications such as neuro-
morphic computing, storage and logic computation.

Most neuromorphic circuits are based on spike or pulse, having similarities with
the neural system [23]. Therefore, it is necessary for researchers to study the cir-
cuit counterpart of pulse generators in order to adopt neuromorphic computing.
For realizing pulse generation circuits in neuromorphic computing, some research-
ers relied on external chips to generate pulse [22, 24]. However, this leads to bulk
control or auxiliary circuits. Moreover, applying external chips as pulse generation
circuits also has the problem of inefficient resource utilization of chips. Therefore,
some researchers have made attempts to design the in-chip pulse generation circuits
with traditional analog devices to prevent using external chips [57, 58]. However,
based on the experience of circuit designers, some of these circuits contain capaci-
tors, which will occupy most of area of the pulse generation circuits [59]. Besides,
the circuits contain large number of traditional devices such as MOSFETs, which
may also lead to large size and high power consumption.

Therefore, it is desirable to use memristors themselves to construct pulse gen-
eration for neuromorphic computing, due to their nano-size, energy efficiency and
dynamic behavior. However, due to the complex dynamic behaviors of memristors
and comprehensive circuit requirements for neuromorphic computing, it is time-
consuming for designers to design a memristor-based pulse generation circuit with
high quality. Therefore, it is valuable to apply our proposed method to evolve a
memristor-based pulse generation circuit.

In this section, the proposed method will be applied to evolving a memristor-
based pulse generation circuit and compared against similar purpose circuits
designed manually [22, 24, 57, 58, 60].

6.1 � Experimental setup

6.1.1 � Memristor model

In order to evolve a memristor-based pulse generation circuit, the selection of
memristor models is the first consideration. Since the invention of HP TiO2
memristor [56], some research groups pay their attention to modelling memristor

483

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

dynamic behaviors into formulas [61, 62]. HP model is a classic memristor
device model introduced by Strukov et al. [56], where a time-domain differential
equation was proposed to describe the physical behavior of linear ion drift in a
memristor [63]. Therefore, in this work, Hewlett–Packard (HP) TiO2 memristor
model is adopted for the concept verification in our design and simulation.

Since the invention of HP TiO2 memristor [56], some research groups pay
their attention to modelling memristor dynamic behaviors into formulas. Volt
ampere characteristics of memristor can be described by the following algebraic
equation [56]:

where D denotes the total length of memristor; Ron and Roff represent the resistances
of oxygen vacancy and oxygen-deficient vacancy parts of memristor, respectively;
w(t) is the oxygen vacancy part; and dv(t) and i(t) are the voltage applied on memris-
tor and the current flowing across the memristor, respectively.

The state variable of memristor changes with the applied external signal,
which can be described by the following differential equation:

where �v is the dopant mobility of the material and x(t), which is regarded as the
state variable of memristor, is the proportion of the length of the oxygen vacancy
part w(t) and total length of memristor D. f(x(t)) is a window function to get over the
boundary effect of memristor [64], which can be described as follows:

where p ∈ Z+ is a parameter of controlling the non-linear degree of the window
function.

(7)v(t) =

[
Ron

w(t)

D
+ Roff

(
1 −

w(t)

D

)]
i(t),

(8)
dx(t)

dt
=

�v

D2
i(t)f (x(t)),

(9)f (x(t)) = 1 − (2x(t) − 1)2p,

Fig. 21   Schematic diagram and netlist of embryo circuit for evolving memristor-based pulse generation
circuit

484	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

6.1.2 � Circuit configuration and evolutionary algorithm

In order to evolve the pulse generation circuit, a proper embryo circuit should
be predefined. As shown in Fig. 21, five circuit components are predefined in
the netlist, which are input source Vin , pull-up voltage Vcc , pull-off voltage −Vcc ,
ground port and the load Rload , respectively. And their position information (0, 1,
2, 3 ,4) will be added into the terminal node set in advance.

Besides setting up the embryo circuit, the following items also need to be set
up:

•	 Input and target output: Similar with the neuronal dynamic behaviors, the out-
put pulse of pulse generator can be triggered by accumulated potential. There-
fore, the accumulated potential will be set as the input of the evolved circuit.
For simplification, the saw-tooth wave with 2 V amplitude and 1ns period will
be used as input in this work. The square pulse is the most commonly gener-
ated by pulse generation circuits, and will thus be set as the target output, of
which the amplitude is 2V and period is 1 ns.

•	 Set of devices: To our best knowledge, there is no pulse generation circuit
that is only composed of memristors, even in the logical circuit content [65].
Memristors and MOSFET are commonly used for constructing pulse gener-
ation circuits [60, 66]. Therefore, in our design, in order to manipulate the
dynamic switching behaviors of memristor sufficiently, MOSFET, resistors,
and memristors are added into the devices set.

•	 Simulation options: Combined with the rate of state switching of memristor,
the simulation time is set as 10ns. To trade off the execution time and sample
accuracy, the number of sample points of the target output of the circuit is set
as 1000. We need the variation of output with time; therefore, the simulation
type is the transient analysis.

Besides the circuit configuration, parameters of the algorithms were chosen
based on preliminary experiments, and are listed in Table 6. Besides, the fitness
function of evolving the memristor-based pulse generation circuit is defined as
follows:

Table 6   Circuit evolutionary
algorithm parameter setting

Parameters Value

Number of generations 1000
Population size 100
Crossover rate 0.6
Mutation rate 0.2
Value crossover rate 0.6
Tree depth 4–7
Tournament size 20

485

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

where N is the total number of sampled points, which is set as 1000; Vouti is the i-th
sampled point of output voltage and V∗

outi
 is its corresponding target value.

6.2 � Experiment results

The results for the experiments with different number of evaluations are shown in
Table 7. As it shown in Table 7, the BF (Best fitness for one run) and MBF (Mean
Best Fitness) across the 20 runs improve with the increase of the evaluations. Fig-
ure 24 in the appendix shows the average fitness and error curves for 20 runs of the
experiments.

Figure 22 shows the input, output and target voltage of the evolved memristor-
based pulse generation circuit. As we can see, under the triangle input voltage, the
evolved circuit can generate a regular pulse, which is highly matched to the target
curve. In order to qualify the output performance of the evolved pulse generation
circuit, mean-square error (MSE), which has been widely applied for evaluating the
differences between the actual and target output of circuit [67], is applied for meas-
uring the quality of the circuit output in this work.

where V∗
outi

 , Vouti are target voltage value, actual output voltage value for a given data
point i, respectively. N is the number of sampled points of the output voltage. MSE
of the result shown in Fig. 22 is 0.15, which meets the requirement of the circuit
with similar purpose proposed in [22]. Figure 23 shows the evolved memristor-
based pulse generation circuit, including the evolved resistance of the resistors con-
tained in the circuit. The circuit contains 8 memristors, 6 resistors and 10 transistors.
The initial state of all the memristors in the evolved circuit is OFF.

Table 9 gives the comparisons of the evolved circuit and other manual design
circuits with similar purpose. To validate the proposed approach, we compare the

(10)fitness = −100 ∗

∑
i

���Vouti − V∗
outi

���
N

,

(11)MSE =
1

N

N∑
i=1

(
V∗
outi

− Vouti

)2
,

Table 7   Results for evolving
memristor-based pulse
generation circuits with different
the number of evaluations

* Fitness is with negative sign, therefore, the best fitness (BF) is to
maximize the negative fitness value

#Evaluations BF
∗ MBF ± std

2×104 − 16.84 − 37.32 ± 16.54
4×104 − 12.45 − 31.28 ± 19.02
6×104 − 11.46 − 22.01 ± 12.23
8×104 − 10.69 − 15.02 ± 4.54

10×105 − 10.47 − 12.91 ± 2.10

486	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

works from different perspectives, which are the usage of external chip, the ways
of realizing, the number of transistors and capacitors, area and energy. According
to Wu et al. [68], the energy dissipation per pulse can be defined as the differences
between the input power consumption PIN and output power consumption POUT dur-
ing the duration of one pulse, where PIN and POUT can be calculated by the follow-
ing equation:

where V(t) and I(t) are the voltage and current at the sampled points.
In addition, the area of the single MOSFET can be calculated by the following

equations:

where W and L refer to the width and length of the channel, and k is a factor show-
ing how much bigger a transistor is than its channel area. As for the area of one
HP memristor, it is set as 9 nm2 , as proposed in previous work [69, 70]. Con-
sidering the compatibility of memristor and MOSFET, 45nm CMOS technol-
ogy is applied in this work for MOSFET and resistor. The area of one resistor is
set as 2025nm2 ( 45nm × 45nm ). The area of one MOSFET is set as 0.6075�m2 (
450nm × 450nm × 3 ). Our current estimation of power and area of circuits may

(12)P = ∫
T

0

|V(t) ⋅ I(t)|dt.

(13)AREAMOS = W × L × k.

Fig. 22   Saw-tooth wave input and the circuit simulation results of the best evolved circuit. a Saw-tooth
wave input. b Target voltage

487

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

not be accurate and could be improved in future work. Table 8 shows the area and
device value range of the devices to be used in evolving circuits. The initial states
(ON or OFF) of different memristors and the specific value of different resistors will
be determined by the proposed algorithm.

As shown in Table 9, some researchers applied an external chip to generate pulse,
555 timer, which contains 25 transistors and 2 capacitors, leading to large circuit

Table 8   Area and value range of
the devices

* The area of one MOSFET is calculated by Eq. (13)

Devices Memristor MOSFET* Resistor

Area 9nm2 0.6075�m2 2025 nm2

Value range OFF or ON – 200–200K

Table 9   Comparisons of the evolved memristive pulse generation circuit and other works

Works External chip? Realizing method #Transistors #Capacitors Area Energy/pulse (nJ)

[22] YES 555 timer 25 2 9 mm2 240
[24] YES 555 timer 25 2 9 mm2 240
[57] NO Transistor+Capacitor 19 3 18,340 μm2 4500
[58] NO Transistor+Capacitor 20 1 1705 μm2 2.85
[60] NO Transistor+Memristor 16 1 23.24 μm2 125
[66] NO Transistor+Memristor 25 0 46.37 μm2 –
Ours NO Transistor+Memristor 10 0 6.08μm2

1.53

Fig. 23   The best evolved results of voltage reference circuit

488	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

area and power consumption [22, 24]. Petit et al. used 19 transistors and 3 capaci-
tors to implement the pulse generation, which occupies 18340�m2 circuit area and
generates 4500nJ energy for one pulse [57]. In the work of Wijekoon et al. [71], 20
transistors and 1 capacitor were applied to design the circuit for generating pulse, of
which area is 1705�m2 and energy dissipated per pulse is 2.85nJ.

Compared with the work of [22, 24], our evolutionary approach prevents apply-
ing the external chips as pulse generator, which solves the problems of bulk auxil-
iary circuits and inefficient resource utilization of chips. Compared with the manual
design circuits proposed by [57, 71], the evolved memristor-based pulse generation
circuit is equipped with fewer transistors (0 capacitor), lower energy consumption,
and more compact design, which is better for neuromorphic computing. The work
proposed in [60, 66] also applied memristors to implement pulse generation. As for
work [60], additional 16 transistors and 1 capacitor were used. As for work [66], 25
MOSFETS are applied extra besides the memristors, which were more than the ones
evolved by our proposed method (10 transistors and 0 capacitor).

7 � Conclusion

In this paper, a novel tree-based circuit representation is proposed. Its advantages
over existing work include:

•	 It is a more compact representation that can be more efficiently mapped to circuit
netlists, thanks to its “Device-circuit position" form of the tree.

•	 It lends itself to the adoption of crossover operators, whose behaviour corre-
sponds to that of exchanging well defined sub-circuits between individuals. This
is mainly an advantage over graph-based representation [17], but, together with
the other evolutionary operators, it also helps the GP to achieve better fitness and
Hits than existing work, including existing work based on Koza’s tree representa-
tion [11].

•	 It supports three-port devices, which is an advantage over previous work with
topology-restricted representation [12].

•	 It prevents the problem of infeasible chromosomes by adopting three types of
structure check, which is an an advantage over the fitness penalized-based
method [13].

Manipulating memristors is very difficult in practice as the components are fre-
quently unstable on many levels, such as static variation and retention problem. Our
work made the primary attempt to apply an ideal HP memristor model and MOSFET
to construct a memristor-based pulse generation circuit achieving the correspond-
ing basic function. The feasibility of our evolved circuits is verified by the circuit
simulations, indicating that they are feasible to be implemented with real physical
memristors. For potential future work, the proposed approach can be adopted for
evolving circuits with more realistic memristor models. Moreover, the scalability of
our approach could also be improved further. We will investigate new approaches

489

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

that can evolve much larger and more complex circuits. The evolved circuits could
also be implemented using real physical hardware, to further validate them.

Appendix

The average fitness for 20 runs of the experiments (voltage reference circuit, tem-
perature sensor circuit, Gaussian function generator and memristor-based pulse gen-
eration circuit) are shown in Fig. 24. As we can see from the figure, the fitness curve
presents the typical fitness improvement behaviour of evolutionary algorithms,
where the blue shadow indicates the standard error.

Fig. 24   The average fitness for 20 runs of the experiment on different tasks

490	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

Acknowledgements  This work was supported by Guangdong Provincial Key Laboratory (Grant
No. 2020B121201001), the Program for Guangdong Introducing Innovative and Enterpreneur-
ial Teams (Grant No. 2017ZT07X386), Shenzhen Science and Technology Program (Grant No.
KQTD2016112514355531), and the Research Institute of Trustworthy Autonomous Systems (RITAS).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 B. Liu, Y. Wang, Z. Yu, L. Liu, M. Li, Z. Wang, J. Lu, F.V. Fernández, Analog circuit optimization
system based on hybrid evolutionary algorithms. Integration 42(2), 137–148 (2009)

	 2.	 O. Mitea, M. Meissner, L. Hedrich, P. Jores, Automated constraint-driven topology synthesis for
analog circuits. in Proc. DATE 2001 (Grenoble, 2011), , pp. 1–4

	 3.	 A. Das, R. Vemuri, An automated passive analog circuit synthesis framework using genetic algo-
rithms. in Proc. IEEE ISVLSI 2007, (Porto Alegre, 2007), pp. 145–152

	 4.	 E.S. Ochotta, R.A. Rutenbar, L.R. Carley, Synthesis of high-performance analog circuits in astrx/
oblx. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 15(3), 273–294 (1996)

	 5.	 X. Yao, T. Higuchi, Promises and challenges of evolvable hardware. IEEE Trans. Syst. Man Cybern.
C 29(1), 87–97 (1999)

	 6.	 W. Kruiskamp, D. Leenaerts, Darwin: CMOS OPAMP synthesis by means of a genetic algorithm.
in Proc. 32nd DAC 1995, (San Francisco, 1995), pp. 433–438

	 7.	 M. O’Neill, C. Ryan, Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)
	 8.	 J.R. Koza, D. Andre, F.H. Bennett III, M.A. Keane, Use of automatically defined functions and

architecture-altering operations in automated circuit synthesis with genetic programming. in Proc.
1st Annual Conference on Genetic Programming, pp. 132–140 (Stanford, 1996)

	 9.	 Ž Rojec, Á. Bűrmen, I. Fajfar, Analog circuit topology synthesis by means of evolutionary computa-
tion. Eng. Appl. Artif. Intell. 80, 48–65 (2019)

	10.	 J.D. Lohn, S.P. Colombano, A circuit representation technique for automated circuit design. IEEE
Trans. Evol. Comput. 3(3), 205–219 (1999)

	11.	 J.R. Koza, F.H. Bennett, D. Andre, M.A. Keane, F. Dunlap, Automated synthesis of analog electri-
cal circuits by means of genetic programming. IEEE Trans. Evol. Comput. 1(2), 109–128 (1997)

	12.	 S.J. Chang, H.S. Hou, Y.K. Su, Automated passive filter synthesis using a novel tree representation
and genetic programming. IEEE Trans. Evol. Comput. 10(1), 93–100 (2006)

	13.	 F. Castejón, E.J. Carmona, Automatic design of analog electronic circuits using grammatical evolu-
tion. Appl. Soft Comput. 62, 1003–1018 (2018)

	14.	 C. Mattiussi, D. Floreano, Analog genetic encoding for the evolution of circuits and networks. IEEE
Trans. Evol. Comput. 11(5), 596–607 (2007)

	15.	 A. Das, R. Vemuri, A graph grammar based approach to automated multi-objective analog circuit
design. in Proc. DATE 2009, pp. 700–705 (Nice, 2009)

	16.	 J. He, M. Liu, Y. Chen, A novel real-coded scheme for evolutionary analog circuit synthesis. in
Proc. ISA 2009, pp. 1–4 (Wuhan, 2009)

	17.	 Z. Gan, Z. Yang, T. Shang, T. Yu, M. Jiang, Automated synthesis of passive analog filters using
graph representation. Expert Syst. Appl. 37(3), 1887–1898 (2010)

	18.	 A. Mesquita, F.A. Salazar, P.P. Canazio, Chromosome representation through adjacency matrix in
evolutionary circuits synthesis. in Proc. the NASA/DoD Conference on Evolvable Hardware, pp.
102–109 (2002)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

491

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

	19.	 J.R. Koza, D. Andre, M.A. Keane, F.H. Bennett III., Genetic programming III: Darwinian invention
and problem solving, vol. 3 (Morgan Kaufmann, 1999)

	20.	 O. Krestinskaya, A.P. James, L.O. Chua, Neuromemristive circuits for edge computing: a review.
IEEE Trans. Neural Netw. Learn. Syst. (2019). https://​doi.​org/​10.​1109/​TNNLS.​2019.​28992​62

	21.	 C.D. Schuman, T.E. Potok, R.M. Patton, J.D. Birdwell, M.E. Dean, G.S. Rose, J.S. Plank, A survey
of neuromorphic computing and neural networks in hardware. arXiv:​1705.​06963 (2017)

	22.	 X. Shi, Z. Zeng, L. Yang, Y. Huang, Memristor-based circuit design for neuron with homeostatic
plasticity. IEEE Trans. Emerg. Top. Comput. Intell. 2(5), 359–370 (2018)

	23.	 L. Zhao, Q. Hong, X. Wang, Novel designs of spiking neuron circuit and STDP learning circuit
based on memristor. Neurocomputing 314, 207–214 (2018)

	24.	 Z. Wang, X. Wang, A novel memristor-based circuit implementation of full-function Pavlov asso-
ciative memory accorded with biological feature. IEEE Trans. Circ. Syst. I 65(7), 2210–2220 (2017)

	25.	 A. Sinha, M.S. Kulkarni, C. Teuscher, Evolving nanoscale associative memories with memristors.
in Proc. IEEE NANO 2001, pp. 860–864 (Portland, 2011)

	26.	 M.S. Kulkarni, C. Teuscher, Memristor-based reservoir computing. in Proc. IEEE NANOARCH
2012, pp. 226–232 (Amsterdam, 2012)

	27.	 R. Gharpinde, P.L. Thangkhiew, K. Datta, I. Sengupta, A scalable in-memory logic synthesis
approach using memristor crossbar. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(2), 355–
366 (2017)

	28.	 H.P. Wang, C.C. Lin, C.C. Wu, Y.C. Chen, C.Y. Wang, On synthesizing memristor-based logic cir-
cuits with minimal operational pulses. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(12),
2842–2852 (2018)

	29.	 S.E. Sorkhabi, L. Zhang, Automated topology synthesis of analog and rf integrated circuits: A sur-
vey. Integration 56, 128–138 (2017)

	30.	 E.A. Klumperink, F. Bruccoleri, B. Nauta, Finding all elementary circuits exploiting transconduct-
ance. IEEE Trans. Circuits Syst. II 48(11), 1039–1053 (2001)

	31.	 J. He, J. Yin, Evolutionary design model of passive filter circuit for practical application. Genet.
Program Evolvable Mach. 21(4), 571–604 (2020)

	32.	 J.B. Grimbleby, Automatic analogue network synthesis using genetic algorithms. in Proc. GALESIA
1995, pp. 53–58 (Sheffield, 1995)

	33.	 A. Manazir, K. Raza, Recent developments in cartesian genetic programming and its variants. ACM
Comput. Surv. 51(6), 1–29 (2019)

	34.	 J.R. Woodward, Ga or gp? that is not the question. In: The 2003 Congress on Evolutionary Compu-
tation, 2003. CEC’03., vol. 2, pp. 1056–1063. IEEE (2003)

	35.	 J.R. Koza, Survey of genetic algorithms and genetic programming. In: Wescon conference record,
pp. 589–594. WESTERN PERIODICALS COMPANY (1995)

	36.	 T. Sripramong, The invention of cmos amplifiers using genetic programming and current-flow anal-
ysis. IEEE Trans. Comput Aided Des. Integr. Circ. Syst. 21(11), 1237–1252 (2002)

	37.	 W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming (Springer, New York,
1998)

	38.	 J.F. Miller, S.L. Smith, Redundancy and computational efficiency in cartesian genetic programming.
IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

	39.	 D. Chen, T. Aoki, N. Homma, T. Terasaki, T. Higuchi, Graph-based evolutionary design of arithme-
tic circuits. IEEE Trans. Evol. Comput. 6(1), 86–100 (2002)

	40.	 T. Aoki, N. Homma, T. Higuchi, Evolutionary synthesis of arithmetic circuit structures. Artif. Intell.
Rev. 20(3–4), 199–232 (2003)

	41.	 M. Natsui, N. Homma, T. Aoki, T. Higuchi, Topology-oriented design of analog circuits based on
evolutionary graph generation. inProc. PPSN, pp. 342–351 (Birmingham, 2004)

	42.	 J.A. Walker, J.A. Hilder, A.M. Tyrrell, Evolving variability-tolerant cmos designs. in International
Conference on Evolvable Systems, pp. 308–319. Springer (2008)

	43.	 J.R. Koza et al., Genetic Programming II, vol. 17 (MIT Press, Cambridge, 1994)
	44.	 F. Wang, Y. Li, L. Li, K. Li, Automated analog circuit design using two-layer genetic programming.

Appl. Math. Comput. 185(2), 1087–1097 (2007)
	45.	 A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a

tantalum oxide memristor. Nanotechnology 22(48), 485203 (2011)
	46.	 I. Gupta, A. Serb, A. Khiat, R. Zeitler, S. Vassanelli, T. Prodromakis, Real-time encoding and com-

pression of neuronal spikes by metal-oxide memristors. Nat. Commun. 7(1), 1–9 (2016)

https://doi.org/10.1109/TNNLS.2019.2899262
http://arxiv.org/abs/1705.06963

492	 Genetic Programming and Evolvable Machines (2022) 23:453–493

1 3

	47.	 H. Kim, M.P. Sah, C. Yang, T. Roska, L.O. Chua, Memristor bridge synapses. Proc. IEEE 100(6),
2061–2070 (2011)

	48.	 S. Silva, E. Costa, Dynamic limits for bloat control in genetic programming and a review of past and
current bloat theories. Genet. Program. Evol. Mach. 10(2), 141–179 (2009)

	49.	 M. O’Neill, R. Poli, W.B. Langdon, F. Nicholas, mcphee: a field guide to genetic programming
(2009)

	50.	 H. Vogt, M. Hendrix, P. Nenzi, Ngspice user’s manual version 31 (describes ngspice release ver-
sion) (2019)

	51.	 L. Nagel, D.O. Pederson, Spice (simulation program with integrated circuit emphasis) (1973)
	52.	 A.E. Eiben, J.E. Smith et al., Introduction to Evolutionary Computing, vol. 53 (Springer, Cham,

2003)
	53.	 A.P. Brokaw, A simple three-terminal IC bandgap reference. IEEE J. Solid-State Circ. 9(6), 388–

393 (1974)
	54.	 G.C. Meijer, Thermal sensors based on transistors. Sens. Actuators 10(1–2), 103–125 (1986)
	55.	 C. Popa, Low-voltage improved accuracy gaussian function generator with fourth-order approxima-

tion. Microelectron. J. 43(8), 515–520 (2012)
	56.	 D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature

453(7191), 80–83 (2008)
	57.	 A. Bofil l-iPetit, A.F. Murray, Synchrony detection and amplification by silicon neurons with STDP

synapses. IEEE Trans. Neural Netw. 15(5), 1296–1304 (2004)
	58.	 G. Indiveri, A low-power adaptive integrate-and-fire neuron circuit. in Proc. IEEE ISCAS 2003.,

vol. 4, pp. IV–IV (Bangkok, 2003)
	59.	 J.M. Cruz-Albrecht, M.W. Yung, N. Srinivasa, Energy-efficient neuron, synapse and STDP inte-

grated circuits. IEEE Trans. Biomed. Circ. Syst. 6(3), 246–256 (2012)
	60.	 F.T. Zohora, S. Debnath, A.H.U. Rashid, Memristor-cmos hybrid implementation of leaky integrate

and fire neuron model. in 2019 International Conference on Electrical, Computer and Communica-
tion Engineering (ECCE), pp. 1–5. IEEE (2019)

	61.	 I. Vourkas, A. Batsos, G.C. Sirakoulis, Spice modeling of nonlinear memristive behavior. Int. J.
Circ. Theory Appl. 43(5), 553–565 (2015)

	62.	 D. Batas, H. Fiedler, A memristor spice implementation and a new approach for magnetic flux-
controlled memristor modeling. IEEE Trans. Nanotechnol. 10(2), 250–255 (2010)

	63.	 B. Li, G. Shi, A native spice implementation of memristor models for simulation of neuromorphic
analog signal processing circuits. ACM Trans. Design Autom. Electr. Syst. (TODAES) 27(1), 1–24
(2021)

	64.	 Y.N. Joglekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys.
30(4), 661 (2009)

	65.	 J. Zheng, Z. Zeng, Y. Zhu, Memristor-based nonvolatile synchronous flip-flop circuits. in 2017 sev-
enth international conference on information science and technology (ICIST), pp. 504–508. IEEE
(2017)

	66.	 Z. Wang, X. Wang, Z. Lu, W. Wu, Z. Zeng, The design of memristive circuit for affective multi-
associative learning. IEEE Trans. Biomed. Circuits Syst. 14(2), 173–185 (2020)

	67.	 M.R. Azghadi, B. Linares-Barranco, D. Abbott, P.H. Leong, A hybrid cmos-memristor neuromor-
phic synapse. IEEE Trans. Biomed. Circuits Syst. 11(2), 434–445 (2016)

	68.	 C. Wu, T.W. Kim, H.Y. Choi, D.B. Strukov, J.J. Yang, Flexible three-dimensional artificial synapse
networks with correlated learning and trainable memory capability. Nat. Commun. 8(1), 1–9 (2017)

	69.	 V. Keshmiri, A study of the memristor models and applications (2014)
	70.	 R. Williams, Finding the missing memristor. http://​www.​casttv. http://​wn.​com/​Calit​2ube (2010)
	71.	 J.H. Wijekoon, P. Dudek, Compact silicon neuron circuit with spiking and bursting behaviour. Neu-

ral Netw. 21(2–3), 524–534 (2008)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations

http://www.casttv
http://wn.com/Calit2ube

493

1 3

Genetic Programming and Evolvable Machines (2022) 23:453–493	

Authors and Affiliations

Xinming Shi1,2 · Leandro L. Minku2 · Xin Yao1,2 

	 Xinming Shi
	 xxs972@cs.bham.ac.uk

	 Leandro L. Minku
	 l.l.minku@cs.bham.ac.uk

1	 Guangdong Provincial Key Laboratory of Brain‑inspired Intelligent Computation, Department
of Computer Science and Engineering, Southern University of Science and Technology
(SUSTech), Shenzhen, China

2	 School of Computer Science, University of Birmingham, Birmingham, UK

http://orcid.org/0000-0001-8837-4442

	A novel tree-based representation for evolving analog circuits and its application to memristor-based pulse generation circuit
	Abstract
	1 Introduction
	2 Related work
	2.1 Automated analog circuit design algorithms
	2.2 Circuit representation
	2.3 Automated memristor-based circuit design

	3 A novel tree-based circuit representation
	3.1 Circuit representation and netlist transformation
	3.2 Three types of structure check
	3.3 Advantages of our proposed tree-based representation

	4 Evolutionary design of analog circuits based on GP
	4.1 Overall flowchart
	4.2 Population initialization
	4.3 Circuit topology evolution
	4.4 Device value optimization

	5 Experimental studies
	5.1 Experimental setup
	5.1.1 Experimental setup for voltage reference circuit
	5.1.2 Experimental setup for temperature sensor circuit
	5.1.3 Experimental setup for Gaussian function generator

	5.2 Experiment results
	5.2.1 Fitness evaluation results
	5.2.2 Validating the benefits of our proposed tree-Based crossover operators and feasibility checks
	5.2.3 Evolved circuits
	5.2.4 Comparison with existing approaches

	6 Evolving a memristor-based pulse generation circuit
	6.1 Experimental setup
	6.1.1 Memristor model
	6.1.2 Circuit configuration and evolutionary algorithm

	6.2 Experiment results

	7 Conclusion
	Acknowledgements
	References

