
Noname manuscript No.
(will be inserted by the editor)

Static and Dynamic Data Models for the Storage Resource
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Abstract We present a conceptual model for the Storage Resource Manager, the standard
interface adopted for the storage systems of the Worldwide LHC Computing Grid. This
model provides a clear and concise definition of the structural and behavioral concepts un-
derlying the interface specification and is meant to support service and application develop-
ment. Different languages (natural language, UML diagrams, and simple set-theoretic and
logical notation) are used to describe different aspects of the model.
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1 Introduction

The High Energy Physics community at CERN and several other laboratories will use the
data acquired by the Large Hadron Collider (LHC) to explore the fundamental laws of the
Universe. Several (10–15) Petabytes of data will be collected by the 4 experiment detec-
tors every year. The computational and storage facilities needed to process the data will be
provided by the Worldwide LHC Computing Grid (WLCG), one of the largest Grid infras-
tructures dedicated to high-performance scientific computation, counting today more than
200 sites all over the world.

The WLCG must provide, among other facilities, a Grid storage service featuring sev-
eral storage management functions, including dynamic space allocation, the negotiation of
file access protocols, support for quality of storage, authentication and authorization mech-
anisms, storage and file management, scheduling of space and file operations, and support
for temporary files. This service relies on a few different types of high-end storage systems
deployed at many Grid sites.
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In order to provide uniform, site-independent access to the service, a standard interface,
called the Storage Resource Manager (SRM) was proposed [13].

The WLCG has coordinated an international collaboration that has produced the SRM
v2.2 Interface Specification [14], submitted to the OGF as a proposed RFC. The SRM v2.2
is currently in production service in the WLCG infrastructure and is being used in data
management and access exercises in view of the upcoming data acquisition when the LHC
begins operating.

This interface is specified primarily as an application programming interface (API), i.e.,
a set of requests whereby an application may obtain the desired storage management ser-
vices. These requests imply a structural and behavioral model of the SRM that is an abstrac-
tion of the actual implementations of the interface.

In this paper we propose a conceptual model for the SRM that should supplement the
API and other specifications with an explicit, clear and concise definition of its underlying
structural and behavioral concepts. This model has been used in the definition of the service
semantics and has supported a more rigorous validation of its implementations. In the future,
it can be a tool for service development.

The proposed model addresses both service and application developers, and it is meant
to strike a satisfactory compromise between clarity and formality. Different notations (e.g.,
basic set-theoretic and logical formalism, UML [11] diagrams, and plain English) are used
as appropriate to define different aspects of the model.

This paper is an amply extended version of the one presented at the ISGC 2007 Confer-
ence [6].

2 Storage elements

A Storage Element (SE) is a Grid Service implemented on a mass storage system (MSS)
that may be based on a pool of disk servers, on more specialized high-performing disk-based
hardware, or on a disk cache front-end backed by a tape system, or some other reliable, long-
term storage medium. Remote data access is provided by a GridFTP service [1] and possibly
by other data transfer services, while local (intra-cluster) access is provided by POSIX-like
input/output calls. Authentication, authorization and audit/accounting facilities are also part
of a SE.

A Storage Element provides spaces where users create and access files. A file is a logical
set of data that is embodied in one or more physical copies (much like a book is a logical
piece of literature that is embodied in the copies sold in bookstores).

Storage spaces may be of different qualities, related to reliability and accessibility, and
support different data transfer protocols. Different users may have different requirements
on space quality and access protocol, therefore, in addition to the basic data transfer and
file access functions, a SE must support more advanced resource management services,
including dynamic space allocation. Clients must be able to access the resource management
services through a standard interface, independent of the underlying MSS. This interface is
offered by the Storage Resource Manager.

3 The Storage Resource Manager interface

The Storage Resource Manager (SRM) is a middleware component whose function is to
provide dynamic space allocation and file management on shared storage components on



the Grid. More precisely, the SRM is a Grid service associated with a Storage Element,
with several different implementations, each targeted to a specific Mass Storage System. Its
interface is defined by the SRM Interface Specification [14] that lists the service requests
that a client application may issue, along with the data types for their arguments and results.

Request signatures are given in an implementation-independent language and grouped
by functionality:

– Space management requests allow the client to reserve, release, and manage spaces,
specifying or negotiating their qualitiy and lifetime.

– Data transfer requests have the purpose of getting files into SRM spaces either from the
client’s space or from other remote storage systems on the Grid, and to retrieve them.

– Directory requests create, populate, list, or delete directories.
– Permission requests set or list read and write permissions on files and directories.
– Discovery functions allow applications to query the availability and characteristics of

the storage system behind the SRM interface.

We will mention only the requests that will be referred to in the rest of the paper. Among
them, the following space management requests:

srmReserveSpace allows the requester to allocate space with specified properties.
srmReleaseSpace releases an occupied space. If the space contains copies of a file, the

system must check if those copies can be deleted.
srmChangeSpaceForFiles is used to change the space where the files are stored.
srmExtendFileLifeTimeInSpace is used to extend the lifetime of files that have a copy in

the space.

And then we list the following data transfer requests:

srmPrepareToPut creates a handle, i.e., a reference that clients can use to create new files
in a storage space or overwrite existing ones.

srmPutDone tells the SRM that the write operations are done.
srmCopy allows an SRM server to copy a local file to another SRM server or to retrieve a

file from it.
srmBringOnline is used to make files ready for future use. The system may stage copies

from a slow medium such as a tape system to a faster one such as a disk.
srmPrepareToGet returns a handle to an online copy of the requested file.
srmReleaseFiles marks as releasable the copies generated by srmPrepareToGet or srm-

BringOnline.
srmAbortRequest, srmAbortFiles force termination of asynchronous requests.
srmExtendFileLifeTime extends the (pin) lifetime of files, copies, or handles.

4 A model for the Storage Resource Manager

The main specification documents for the SRM are the above mentioned Interface Specifica-
tion and the Storage Element Model for SRM 2.2 and GLUE schema description [2]. Other
relevant documents are [13,12,7].

The Interface Specification has the purpose of defining the SRM API, therefore it is
not meant to provide an overall view of the underlying concepts, while the GLUE schema
is a UML model meant to define only the SRM properties relevant for the Information
Service, so it cannot fully represent the SRM and particularly its behavior. Initially, the
work on the SRM was focused on interface definition and implementation, but now the



SRM development has reached a stage where an explicit model of the service semantics is
useful for interface designers, service developers, testers, and users.

This model should be a synthetic description of a user’s view of the service, with the ba-
sic entities (such as space, file. . . ), their relationships, and the changes they may go through.

We have chosen to use two models, with different levels of formality. The semi-formal
model uses plain English and UML diagrams, and it is meant to give an overall view of
the system, identifying its main components, their relationships and behavior, and to define
and clarify the terms that users and developers read in the Interface Specification. A more
formal model uses the well-known set-theoretic and logical notation to express constraints.
This model is meant to resolve ambiguities that might remain in the semi-formal model, and
to support the design and testing of SRM implementations. Note that not even this model
is completely formal, since several details have been left out: For example, the concept of
time has not been formalized. A complete axiomatization would be needed in order to use
some automatic proof system, but usage of such sophisticated methods is left for future
development, after the initial version of the model has been validated by its users.

4.1 Describing concepts and properties

The SRM model has been built according to the classical object-oriented approach: The most
relevant concepts have been identified and represented as object classes, their properties and
reciprocal relationshisps being modeled by attributes and associations subject to various
constraints. All this information constitutes the static model.

When the SRM Interface Specification document and the GLUE Schema are considered,
some basic concepts, such as space and file, are immediately evident. However, finding
the best way of characterizing them is not quite obvious. The documents provide informal
definitions for them, but in order to define their attributes it was often necessary to go through
the Interface Specification and see what input parameters in the API affect the SRM behavior
with respect to the given entities.

In the following we define the concepts that have been deemed necessary to model the
SRM and we describe their attributes and associations, possibly with related constraints.
Fig. 1 shows a partial UML class diagram for the SRM static model, where the Storage
Element has been left out.

In the diagram, the attribute names are usually related to the names of parameters (or
fields of structured parameters) occurring in the request signatures published in the Interface
Specification. The attribute types are the types defined in the Interface Specification.

4.1.1 Storage Class and File Storage Type

The execution of most SRM operations depends on a few properties of the involved files
and of the spaces where their copies reside. In this section we introduce the properties of
storage class and (file) storage type. The former is defined in terms of two other properties,
retention policy and access latency.

The properties of retention policy and access latency may or must be specified for most
SRM requests involving the reservation or creation of spaces and files. Retention policy de-
scribes the reliability of a storage medium, while access latency says if data are immediately
accessible or must be staged from a slow medium (e.g., tape) to a faster one.

Retention policy is a qualitative indication of the likelihood that a file copy may be lost
in a given storage space. This likelihood may be high, intermediate, or low. A space with a
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Fig. 1 Static model of the SRM.

Table 1 Storage classes

Retention policy Access latency
ONLINE NEARLINE

REPLICA Tape0Disk1 Tape0Disk0
CUSTODIAL Tape1Disk1 Tape1Disk0

high likelihood of file loss is said to have a REPLICA retention policy, since it is satisfactory
for replicated files that can be accessed with a limited performance penalty if a single copy
is lost. A space with an intermediate likelihood of file loss has an OUTPUT retention policy,
since it is satisfactory for files that are not replicated but can be recreated as the output of
some computation. Finally, the CUSTODIAL retention policy applies to storage that has a
low likelihood of file loss, and is therefore appropriate for files whose recovery would be
very costly or even impossible.

Access latency is a classification of storage media according to the timeliness of data
access. A space where data are immediately accessible is ONLINE, otherwise it is NEAR-
LINE. A NEARLINE space is supported by a medium, such as tape or DVD libraries, that
uses mechanical operations (beyond disk spinning) to retrieve the data, that are then staged to
temporary disk storage. The SRM specification considers also an OFFLINE category of ac-
cess latency, for data requiring manual intervention to be made accessible, but this category
is not supported by the current SRM implementations and will be ignored in the following.
Also the OUTPUT value of retention policy is currently unsupported, and therefore ignored.

The possible combinations of these properties supported within the WLCG are shown
in Table 4.1.1. In WLCG such combinations are referred to as storage classes and called
Tape0Disk0, Tape0Disk1, etc.

While the storage class is a property of spaces, the storage type is a property of files
that refers to their lifecycle. A VOLATILE file has a limited lifetime, and it is deleted after
the lifetime has expired. A DURABLE file also has a limited lifetime, but the SRM may
not delete it automatically, instead it must be removed explicitly by the file owner. A PER-



MANENT file has an unlimited lifetime, and may be removed explicitly by the file owner.
Durable files are not supported by the current WLCG implementations and will be ignored
in the following.

4.1.2 Storage Element

A storage element can be seen as an aggregate of storage media, possibly with different
charcteristics: for example, a single storage element might have both tapes and disks, or
disks of different kinds. Further, different media might be accessed through diferent pro-
tocols (such as GridFTP or RFIO). The characteristics of the storage media determine the
storage classes of the allocated spaces. The main properties of the storage element are then
its identifier, the size of the available storage, the supported storage classes, and the sup-
ported protocols.

To save space, the UML class modeling the storage element is not shown in Fig. 1.
In the complete diagram, it is linked to the Space class through a composition (i.e., strong
ownership) relationship.

4.1.3 Space

A space is a part of a storage medium that can be reserved for a user. Users reserve space of a
given requested size with a given storage class, i.e., with given values of retention policy and
access latency, and then may store files on them. Space reservation works on a best-effort
basis: If the user asks for a given amount of space to be reserved, the system might respond
with a smaller amount of reserved space that the user can decide to release if insufficient.

The value of attribute totalReservedSpace may then be different from the requested size.
Further, the availability of this amount of space is not guaranteed. The user may request
a guaranteed amount of space, and the value of attribute guaranteedReservedSpace is the
amount of space actually guaranteed.

Each space is uniquely identified by a space token, represented as an opaque string
returned by the space reservation operation.

Finally, a space has a lifetime, limited or unlimited.

4.1.4 File

A file is a logical dataset that resides on a space. More precisely, a file has one or more
physical instances, or copies. One of the copies is the master, or primary, copy, and a file is
said to reside in the space containing the master copy.

A file is identified by a Site URL (SURL), a string of the form:

���������	� host[ � port] � [soap end point path 
���
���� ]site file name

where the parts in square brackets are optional.
The locality of a file describes where its copies reside: the copies of an ONLINE file are

all in ONLINE spaces, those of a NEARLINE file are in NEARLINE spaces, while an ON-
LINENEARLINE file has copies in both kinds of spaces. The UNAVAILABLE and LOST
values of locality mean that a file’s copies are temporarily or, respectively, permanently
unavailable due to hardware failures.

A file has a storage type (see above) and also a retention policy and access latency. These
latter properties, requested by the user when the file is created, specify a constraint on the



corresponding properties of the space containing the master copy: the space must have a
better or equal value of retention policy and access latency than the specified file properties.

Volatile (and durable) files are initially assigned a lifetime (fileLifetimeAssigned). The
value of attribute fileLifetimeLeft is the remaining lifetime at the time when a user request is
serviced, and its value is returned by several SRM calls.

4.1.5 Copy

Most user requests referring to files (through their SURLs) affect their copies, but the copies
themselves are not managed directly by the user. Instead, they are controlled by the SRM
according to its space management strategies, compatibly with the space and file properties.
The SRM distinguishes among the copies of a given file through the request token, an opaque
string associated with the user request that caused the copy to be created.

Copies, too, have a retention policy, an access latency, and a storage type. Their retention
policy and access latency are related to the space storage class with the same constraints seen
for files. The storage type may be different from the storage tipe of the file.

A copy may be pinned, i.e., it may be guaranteed to be kept in a space for a given time,
the pin lifetime.

4.1.6 Handle

Users do not know the location of a file’s copies within a storage element, so that the SRM
be free to create, move, and destroy copies according to its space management policies.
When a user need to access the data, the SRM returns the needed information, consisting in
the physical location of a copy in the storage element, and in the protocol to be used for data
access. This information is encoded in a Transport URL (TURL), a kind of URI of the form:

protocol ����� host[ � port] � physical file name

where the parts in square brackets are optional.
The TURL is valid only for a given timespan. A TURL and its validity timespan make

a handle for an accessible copy. The value of the handlePinTime attribute is the validity
timespan of the TURL.

4.2 Describing behavior

The static model is a vocabulary that defines the components of the SRM, with their prop-
erties and relationships. We can now refer to this vocabulary to describe the behavior of
the SRM, i.e., its dynamic model. This behavioral description is arguably the most rele-
vant contribution of the model for application developers, since it enables them to ascertain
what sequences of requests are allowed by the SRM and what responses are expected. The
dynamic model can then be used as a protocol for the SRM service.

We describe the dynamic model with the Statecharts formalism [8,11] adopted in the
UML. In this formalism, a state machine has a hierarchical structure, i.e., any of its states
can be decomposed into substates, or, conversely, states can be composed into superstates.

Transitions are labeled by triggers, i.e., events that enable the transition, and possibly
by guards, i.e., conditions that must hold for the enabled transition to take place. Trigger
events may be occurrences of requests, denoted by the request name and possibly by request
arguments, or time events, denoted by when clauses. An unlabeled transition is triggered by



the completion of the activity carried out by the system in the source state. In the diagrams,
we have dropped the “srm” prefix from the names of requests.

Some conventions allow for a compact graphical representation: drawing a transition
originating from the border of a superstate icon is equivalent to drawing transitions originat-
ing from each of the substate icons, with the same target and the same trigger and guard.

4.2.1 File behavior

A file is created with a prepareToPut or a copy request (Fig. 2). A request may involve
several files and can be served asynchronously, so any file being created may remain for
some time in a waiting state (SURL Unassigned) before it is assigned a SURL. In this state,
the file can be destroyed by an abortFiles or abortRequest operation. Otherwise, after some
time a SURL is assigned and the file enters a state (SURL Assigned) where further requests
may affect it.

SURL_Unassigned

extendFileLifetime
extendFileLifetimeInSpace
setPermissions
prepareToPut [busy]
copy [busy]

SURL_Assigned

abortFilesabortRequest rm

releaseSpace [force]

when (fileLifetimeLeft = 0) [type = VOLATILE]

when (expiredCopy(c) and lastCopy(c)) [type = VOLATILE]

Fig. 2 State machine for File (1).

A file in the SURL Assigned state can be destroyed by an rm (remove) request, by a
releaseSpace request with the force (short for forceFileRelease) option, when its lifetime
expires and the file is volatile, or when the pin lifetime of its last copy expires and the file is
volatile.

Some requests are accepted in the SURL Assigned state, but they do not alter the be-
havior. Such requests are listed as internal transitions (shown inside the state icon in the
diagram) and leave the file in SURL Assigned and in its current substate, whichever it be.

Other requests do change the file state, but still keeping it in the SURL Assigned su-
perstate. The evolution of a file in this state is shown in Fig. 3. Please note that the SRM
standard allows implementations to exhibit a different behavior from the one shown here.
Namely, after a putDone request for a CUSTODIAL file, an online copy may be kept at least
temporarily, so that the file goes to the NearlineOnline state instead of the Nearline state.

When the SURL is first assigned, the file enters the Busy state. In this state, data can
be transferred to the storage element by an external application (e.g., GridFTP). When the
transfer is complete, the user notifies the SRM by issuing a putDone request. The next state
depends on the retention policy requested for the file: if it is CUSTODIAL, the master copy
is created in a NEARLINE space, and the file is, accordingly, in the Nearline state. This
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Fig. 3 State machine for File (2).

state then models a situation where all copies (typically, just the master copy) of the file are
in NEARLINE space.

Copies of a file with CUSTODIAL retention policy may also be created in an ONLINE
space, and the file is then in the NearlineOnline state. Some transitions may take it back to
Nearline; in particular, the expiration of the pin lifetime of the last online copy.

If the retention policy is not CUSTODIAL, the master copy is created in an ONLINE
space. When all copies of a file are in an ONLINE space, the file is in the Online state, where
it may remain until expiration of its lifetime.

5 A more formal static model

In the preceding section a model of the SRM has been described in plain English. This in-
formal description makes explicit many assumptions underlying the Interface Specification
and introduces (hopefully with appropriate clarity) the relevant concepts. UML diagrams
summarize the model in a synthetic, semi-formal manner.

While we feel that this informal and semi-formal representation is valuable for users and
developers of the SRM, a finer level of detail and a greater degree of formality are needed
to ensure interoperability and full compliance with the specification. Therefore we propose
an initial, still incomplete, formal model expressed in basic mathematical notation. Since
the SRM is still evolving and several issues are still being discussed among its developers,
the model is limited to fundamental features, upon which further extensions and refinements
can be built.

An elementary mathematical notation was chosen instead of some more specialized lan-
guage, as most developers are familiar with standard set-theoretic and logical notation, while
probably only a few of them have a working knowledge of formal specification languages.
Otherwise, such languages as the UML Object Constraint Language [15] or the Z Specifi-



cation Language [16] would be attractive candidates. If the SRM community will consider
adopting such languages, it should be easy to translate from the notation adopted here.

5.1 Basic definitions

In order to describe the SRM in term of elementary mathematical concepts, we first in-
troduce some basic sets whose members are unstructured values, such as atomic symbols
(meant to represent names of objects or discrete values for their attributes) or numbers.
Then we define the constructed sets of storage elements, spaces, copies, handles, and files
as Cartesian products of some previouly defined sets. Hence, each element of one of these
constructed sets is a tuple with named components. We call the components attributes, and
we use the dot notation to refer to the value of an object’s component. For example, if a set
S is defined as B1 � B2, its elements are tuples of the form

�
attr1 � attr2 � , with attr1 � B1 and

attr2 � B2. If an object o belongs to S, the expression o � attr1 denotes the value of its first
component.

All sets defined in the following are mutually disjoined.
Only the most relevant attributes will be considered in this formalization. These at-

tributes usually match the attributes introduced in the UML model, but in some cases a
function replaces a UML attribute.

The sets corresponding to attributes will be introduced incrementally, i.e., when defining
a new constructed set we will mention only the constituent sets that have not been previously
introduced.

5.1.1 Common properties

We define the following basic sets:
Sizes Sz = IN
Lifetimes L = IN ���
	��
Retention policy Rp = ��
��
��� � ����������������� �!�"�$#!�%��&'� ��� �
Access latency Al = �$��(�� �)("�$� ("���*
+� �)("�,�

For set L, we have: -
t . L 0 / t /0	

where ‘ 	 ’ (top) denotes an unlimited value.
For sets Rp and Al we have, respectively:


��
��� � ���213�����������415�
�$#!�!��&'� ���
��(�� �)("�617("���*
+� �)("�8�

We define the set of storage classes as:

Sc 9 Rp � Al

and a storage class as a tuple of the form

�
retpol � latency �:�



5.1.2 Storage element

We define the following basic sets:
Storage element identifiers SEid a countable set of symbols
Protocols P = ��
��'� �!&��,�������
# � � ������� � ���

We define the set of storage properties as:

Prop 9 Sc � P

and the storage element properties as a tuple of the form

�
sclass � protocol � �

The set of supported properties is the powerset (i.e., the set of subsets) of the storage prop-
erties:

Sprop 9�� Prop �
We finally define the set of storage elements as:

SE 9 SEid � Sprop � Sz �
A storage element is a tuple of the form

�
id � sprops � size �:�

5.1.3 Space

We define the following basic sets:
Space Tokens T a countable set of symbols
Owners O a finite set of symbols
Space requests Rs a countable set of symbols

We finally define the set of spaces as:

S 9 T � L � Prop � Sz � O � Rs �
A space is a tuple of the form

�
token � lifetime � props � size � owner � request �:�

5.1.4 Copy

We define the following basic sets:
Physical File Names Pfn a countable set of symbols
Copy requests Rc a countable set of symbols

We define the set of copies as:
C 9 Pfn � L � Rc �

A copy is a tuple of the form

�
physname � pintime � request � �



5.1.5 Handle

We define the following basic sets:
TURLs Tr a countable set of symbols
Handle requests Rh a countable set of symbols

We define the set of handles as:

H 9 Tr � L � Rh �
A handle is a tuple of the form

�
turl � pintime � request �:�

5.1.6 File

We define the following basic sets:
SURLs Sr a countable set of symbols
File Types Ft � � � �
� &'�)
 �
Creation Times Tc IN
File Storage Types St � � �'� �$� �)� �$�!& ��
�� � � ��� �*�

�� ��("�"(�� �
File Localities Fl �"�'(�� �)("�"���'(�� �)("� ("���*
+� �)("��� ("���*
+� �)("�����("� � �*�)� � � � ��� � �*# � �

For sets St and Fl we have, respectively:

� ��� ��� �)� �615& ��
�� � � �61 ���

�� ��("�
(��
��(�� �)("�613��(�� �)("� ("���*
+� �)("�61 ("�,�*
�� �)("�617��("� � ���)� � � � � 17� �*# � �

We define the set of files as:

F 9 Sr � L � Ft � Sz � Tc � St � Sc � Fl �
A file is a tuple of the form

�
surl � lifetime � ftype � size � ctime � stype � sclass � locality �:�

5.2 Functions and relationships

After introducing sets that model entities and their properties, we can use functions to model
their relationships. In particular, one-to-may relationships are modeled by functions that map
to (sub)sets.

We define the following functionss:

stime Function stime is the start time of a space, copy, or handle, i.e., the time when its
(pin) lifetime starts to be counted down.

stime : S � C � H � IN �
lleft Function lleft is the remaining (pin) lifetime of a space, copy, or handle at a given

time.
lleft : � S � C � H � � IN � IN �



file Function file gives the file owning a copy.

file : C � F �
fcopies Function fcopies gives the set of copies of a file.

fcopies : F � � C �
space The space hosting a given copy.

space : C � S �
scopies Function scopies gives the set of copies hosted by a space.

scopies : S � � C

where
c � scopies � s ��� c � C � s 9 space � c � �

refcopy Function refcopy gives the the copy that is referred to by a handle.

refcopy : H � C �
fhandles Function fhandles gives the set of handles that refer to a copy of a file.

fhandles : F � � H

where

h � fhandles � f ��� h � H ��� c � c � fcopies � f ��� c 9 refcopy � h � � �
shandles Function shandles gives the set of handles that refer to a copy held by a space.

shandles : S � � H

where

h � shandles � s ��� h � H ��� c � s 9 space � c ��� c 9 refcopy � h � � �
master A file has one master copy.

master : F � C �
mspace The space holding a file’s master copy.

mspace : F � S

where

s 9 mspace � f ��� s � S ��� c � s 9 space � c ��� c 9 master � f � � �
resfiles A file is resident on a space if the space holds the file’s master copy. Function

resfiles gives the set of files resident on a space.

resfiles : S � � F

where
f � resfiles � s ��� f � F ��� c s 9 mspace � c � �



5.3 Constraints

With the sets and functions introduced above, we can now express some of the constraints
that must be satisfied by the SRM. The constraints are grouped by the main entity they refer
to, and for each entity they are grouped by the main attribute or relationship affected by the
constraint. Other constraints are grouped under the Integrity heading.

In the following, se denotes the storage element.

5.3.1 Space

Size The sum of all the space sizes on a storage elements cannot exceed the total available
space of the storage element:

∑
s . S

s � size / se � size �

Lifetimes The remaining lifetime of a space s at start time equals its assigned lifetime:-
s . S lleft � s � stime � s � � 9 s � lifetime �

Properties The properties of a space are supported by the storage element:-
s . S s � props � se � sprops �

5.3.2 Copy

Integrity A copy is hosted by exactly one space:-
c . C � 1s . S c � scopies � s � �

A copy belongs to exactly one file:-
c . C � 1 f . F c � fcopies � f � �

Pintime The pintime of a copy cannot exceed either the file’s or the space’s lifetime:-
c . C c � pintime / min � space � c �,� lifetime � file � c �,� lifetime � �

The remaining pin lifetime of a copy at start time equals its assigned pinlifetime:-
c . C lleft � c � stime � c � � 9 c � pintime �

A copy cannot outlive its file:-
c . C

-
t � stime � c � lleft � c � t � / lle f t � f ile � c �,� t � �

5.3.3 Handle

Integrity A handle must refer to exactly one copy:-
h . H � 1c . C c 9 refcopy � h � �



Pintime The pintime of a handle cannot exceed the copy’s pin lifetime:-
h . H h � pintime / refcopy � h �,� pintime �

The remaining pin lifetime of a handle at start time equals its assigned pinlifetime:-
h . H lleft � h � stime � h � � 9 h � pintime �

A handle cannot outlive its copy:-
h . H

-
t � stime � h � lleft � h � t � / lle f t � re f copy � h �,� t � �

5.3.4 File

Integrity A file resides in exactly one space:-
f . F � 1s . S f � resfiles � s � �

Policy The storage class of a file must be supported by the storage element:-
f . F f � sclass � se � sprops � sclass �

The retention policy of a file must match the space’s retention policy:-
f . F f � sclass � retpol 9 mspace � f ��� props � sclass � retpol �

The access latency of a file must be compatible with the space’s access latency:-
f . F f � sclass � latency � mspace � f �,� props � sclass � latency �

Lifetime The lifetime of a file cannot exceed the space’s lifetime:-
f . F f � lifetime / mspace � f �,� lifetime �

The remaining lifetime of a file at start time equals its assigned lifetime:-
f . H lleft � f � stime � f � � 9 f � lifetime �

A file cannot outlive its space:-
f . F

-
t � stime � f � lleft � f � t � / lle f t � mspace � f �,� t � �



6 Validation of existing SRM implementations

The SRM has currently been implemented for five different Mass Storage Systems, namely:

CASTOR developed at CERN [3] and used by many other laboratories to serve data on
automatic tape libraries and on disk servers used mainly as a front-end cache. The SRM
2.2 implementation for CASTOR has been made by RAL (UK).

dCache developed at DESY (Germany) [7], used by many sites with multiple MSS back-
ends, both custom and proprietary. dCache can be used also as a disk-only MSS. The
SRM 2.2 implementation for dCache has been made by FNAL.

DPM developed at CERN [4]. This is a disk-only based MSS. The SRM 2.2 implementation
has been made at CERN.

DRM/BeStMan is the LBNL disk-based storage system. LBNL has been the first promoter
of SRM. This storage system was the first prototype on which SRM has been tested.

StoRM is a disk-based system [5]. It offers an SRM 2.2 interface to parallel file systems
such as GPFS or PVFS. The SRM 2.2 implementation has been made at CNAF.

All these systems have been tested for compliance with the SRM Interface Specification.
Using various techniques of black-box testing [10], five families of test cases have been
designed:

Availability to check the availability in time of the SRM service end-points.
Basic to verify basic functionality of the implemented SRM APIs.
Use Cases to check boundary conditions, use cases derived by real usage, function interac-

tions, exceptions, etc.
Exhaustion to exhaust all possible values of input and output arguments such as length of

filenames, SURL format, optional arguments, strings, etc.
Stress tests to stress the systems, identify race conditions, study the behavior of the system

when critical concurrent operations are performed, etc.

The SRM model proposed in this paper has been used to derive several test cases in the
Basic and Use Cases test suites.

7 Conclusions

A comprehensive model of the SRM has been proposed to support the development and
verification of SRM implementations, using different notations and levels of formality in
order to satisfy the needs of different stakeholders in the SRM development. In spite of this
internal diversity, we trust that it is and will remain coherent, provided that the different
levels of formality are kept separated and reciprocally consistent.

The first draft of the model is available, and feedback from its users is awaited. In fact,
the model has already contributed to the validation of existing implementations by assist-
ing in the design of a few families of tests, and its development has helped in identifying
unanticipated behaviors and interactions.

The testing campaign itself has motivated the developers to reconsider many of the initial
assumptions and decisions, leading to solutions that seem to better satisfy the needs of the
users.

The model is still being developed with the aim to formalize the dynamic interactions,
and generate test sets automatically. The current SRM implementations must be further val-
idated for protocol compliance, since currently they do not reflect the full protocol but rather



a subset defined in the document known as Memorandum of Understanding, or MoU [9], an
agreement on the initial SRM requirements for WLCG.
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