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Abstract This work proposes an automatic method­
ology for modeling complex systems. Our method­
ology is based on the combination of Grammatical 
Evolution and classical regression to obtain an opti­
mal set of features that take part of a linear and convex 
model. This technique provides both Feature Engi­
neering and Symbolic Regression in order to infer 
accurate models with no effort or designer's expertise 
requirements. As advanced Cloud services are becom­
ing mainstream, the contribution of data centers in the 
overall power consumption of modern cities is grow­
ing dramatically. These facilities consume from 10 
to 100 times more power per square foot than typi­
cal office buildings. Modeling the power consumption 

for these infrastructures is crucial to anticipate the 
effects of aggressive optimization policies, but accu­
rate and fast power modeling is a complex challenge 
for high-end servers not yet satisfied by analytical 
approaches. For this case study, our methodology min­
imizes error in power prediction. This work has been 
tested using real Cloud applications resulting on an 
average error in power estimation of 3.98 %. Our work 
improves the possibilities of deriving Cloud energy 
efficient policies in Cloud data centers being appli­
cable to other computing environments with similar 
characteristics. 

Keywords Automatic modeling • Complex 
systems • Grammatical evolution • Classical 
regression • Green data centers • Sustainable cloud 
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1 Introduction 

Analytical models, as closed form solution represen­
tations, require specific knowledge about the different 
contributions and their relationships, becoming hard 
and time-consuming techniques for describing com­
plex systems. Complex systems comprise a high num­
ber of interacting variables, so the association between 
their components is hard to extract and understand 
as they have non-linearity characteristics [4]. Also, 
input parameter limitations are barriers associated to 
classical modeling for these kind of problems. 



Otherwise, classical regressions as least absolute 
shrinkage and selection operator techniques provide 
models with linearity, convexity and differentiability 
attributes, which are highly appreciated for describing 
systems performance. However, the automatic gener­
ation of accurate models for complex systems is a 
difficult challenge that designers have not yet fulfilled 
by using analytical approaches. 

On the other hand, metaheuristics are higher-level 
procedures that make few assumptions about the opti­
mization problem, providing adequately good solu­
tions that could be based on fragmentary informa­
tion [6, 7]. They are particularly useful in solving 
optimization problems that are noisy, irregular and 
change over time. In this way, metaheuristics appear 
as a suitable approach to meet optimization problem 
requirements for complex systems. 

Some metaheuristics, as Genetic Programming 
(GP), perform Feature Engineering (FE) that is a 
particularly useful technique for selecting an opti­
mal set of features that best describe an optimization 
problem. Those features consist of measurable prop­
erties or explanatory variables of a phenomenon. FE 
methods select adequate characteristics avoiding the 
inclusion of irrelevant parameters that reduce problem 
generalization [32]. Finding relevant features typically 
helps with prediction; but correlations and combina­
tions of representative variables, also provided by FE, 
may offer a straightforward view of the problem thus 
generating better solutions. 

Grammatical Evolution (GE) is an evolutionary 
computation technique based on GP. This technique 
is particularly useful to solve optimization problems 
and provides solutions that include non-linear terms 
offering FE capabilities that remove analytical mod­
eling barriers. One of the main characteristics of GE 
is that it can be used to perform Symbolic Regression 
(SR) [29]. Also, designer's expertise is not required 
to process a high volume of data as GE is an auto­
matic method. However, GE provides a vast space of 
solutions that may be bounded to achieve algorithm 
efficiency. 

In this work we propose a novel methodology 
for the automatic inference of accurate models that 
combines the benefits offered by both classic and 
evolutionary strategies. Firstly, SR performed by a 
GE algorithm finds optimal sets of features that best 
describe the system behavior. Then, a classic regres­
sion is used to solve our optimization problem using 

this set of features providing the model coefficients. 
Finally, our approach provides an accurate model that 
is linear, convex and derivative and also uses the opti­
mal set of features. This methodology can be applied 
to a broad set of optimization problems of complex 
systems. This paper presents a case study for its appli­
cation in the area of Cloud power modeling as it is a 
relevant challenge nowadays. 

1.1 Motivation 

One of the big challenges in data centers is the power-
efficient management of system resources. Data cen­
ters consume from 10 to 100 times more power per 
square foot than typical office buildings [30] even 
consuming as much electricity as a city [23]. Conse­
quently, a careful management of the power consump­
tion in these infrastructures is required to drive the 
Green Cloud computing [11]. 

Cloud computing addresses the problem of costly 
computing infrastructures by providing dynamic 
resource provision on a pay-as-you-go basis, and 
nowadays it is considered as a valid alternative to 
owned high performance computing (HPC) clusters. 
There are two main appealing incentives for this 
emerging paradigm: firstly, the Clouds utility-based 
usage model allows clients to pay per use, increasing 
the user satisfaction; secondly, there is only a rela­
tively low investment required for the remote devices 
that access the Cloud resources [12]. 

Besides economic incentives, the Cloud model pro­
vides also benefits from the environmental perspec­
tive, since the computing resources are managed by 
Cloud service providers but shared among all users, 
which increases their overall utilization [5]. This fact 
is translated into a reduced carbon footprint per exe­
cuted task, diminishing C O2 emissions. The Schnei­
der Electric's report on virtualization and Cloud com­
puting efficiency [27] confirms that about 17 % of 
annual savings in energy consumption were achieved 
by 2011 through virtualization technologies. 

However, the proliferation of modern data cen­
ters is growing massively due to the current increase 
of applications offered through the Cloud. A sin­
gle data center, that houses the computer systems 
and resources needed to offer these services, has 
a power consumption comparable to 25000 house­
holds [21]. As a consequence, the contribution of data 
centers in the overall consumption of modern cities 



is increasing dramatically. Therefore, minimizing the 
energy consumption of these infrastructures is a major 
challenge to reduce both environmental and economic 
impact. 

The management of energy-efficient techniques 
and aggressive optimization policies requires a reli­
able prediction of the effects caused by the different 
procedures throughout the data center. Server hetero­
geneity and diversity of data center configurations 
difficult to infer general models. Also, power depen­
dency with non-traditional factors (like the static con­
sumption and its dependence on temperature, among 
others) that affect consumption patterns of these facili­
ties may be devised in order to achieve accurate power 
models. 

These power models facilitate the analysis of sev­
eral architectures from the perspective of the power 
consumption, and allow to devise efficient techniques 
for energy optimization. Data center designers have 
collided with the lack of accurate power models for the 
energy-efficient provisioning and the real-time man­
agement of the computing facilities. Therefore, a fast 
and accurate method is required to achieve overall 
power consumption prediction. 

The work proposed in this paper makes substan­
tial contributions in the area of power modeling of 
Cloud servers taking into account these factors. We 
envision a powerful method for the automatic identi­
fication of fast and accurate power models that target 
high-end Cloud server architectures. Our methodol­
ogy considers the main sources of power consump­
tion as well as the architecture-dependent param­
eters that drive today's most relevant optimization 
policies. 

1.2 Contributions 

Our work makes the following contributions: 

- We propose a method for the automatic genera­
tion of fast and accurate models adapted to the 
behavior of complex systems. 

- Resulting models include combination and cor­
relation of variables due to the FE and SR per­
formed by GE. Therefore, the models incorporate 
the optimal selection of representative features 
that best describe system performance. 

- Through the combination of GE and classical 
regression provided by our approach, the inferred 

models have linearity, convexity and differentia­
bility properties. 

- As a case study, different power models have been 
built and tested for a high-end server architecture 
running several real applications that can be com­
monly found in nowadays' Cloud data centers, 
achieving low error when compared to real mea­
surements. 

- Testing for different applications (web search 
engines, and both memory and CPU-intensive 
applications) shows an average error of 3.98 % in 
power estimation. 

The remainder of this paper is organized as fol­
lows: Section 2 gives further information on the 
related work on this topic. Section 3 provides the 
background algorithms used for the model optimiza­
tion. The methodology description is presented in 
Section 4. In Section 5 we provide a case study where 
our optimization modeling methodology is applied. 
Section 6 describes profusely the experimental results. 
Finally, in Section 7 the main conclusions are drawn. 

2 Related Work 

A complex system can be described as an intercon­
nected agents system exhibiting a global behavior that 
results from agents interactions [8]. Nowadays, the 
number of agents in a system grows in complexity, 
from data traffic scenarios to multisensor systems, as 
well as the possible interactions between them. There­
fore, infering the global behavior, not imposed by a 
central controller, is a complex and time-consuming 
challenge that requires a deep knowledge of the sys­
tem performance. Due of these facts, new automatic 
techniques are required to facilitate the fast genera­
tion of models that are suitable for complex systems 
presenting a large number of variables. 

The case study presented in this work exhibits 
high complexity in terms of number of variables 
and possible traditional and non-traditional sources of 
power consumption. This issue demands the following 
review of the state-of-the-art. 

In the last years, there has been a rising interest 
in developing simple techniques that provide basic 
power management for servers operating in a Cloud, 
i.e. turning on and off servers, putting them to sleep 
or using Dynamic Voltage and Frequency Scaling 



(DVFS) to adjust servers' power states by reduc­
ing clock frequency. Many of these recent research 
works have focused on reducing power consumption 
in cluster systems [1, 15, 20, 35]. 

In general, these techniques take advantage of the 
fact that application performance can be adjusted to 
utilize idle time on the processor to save energy [13]. 
However, their application in Cloud servers is difficult 
to achieve in practice as the service provider usually 
over-provisions its power capacity to address worst 
case scenarios. This often results in either waste of 
power or severe under-utilization of resources. Thus, it 
is critical to quantitatively understand the relationship 
between power consumption, temperature and load at 
the system level by the development of a power model 
that helps in optimizing the use of the deployed Cloud 
services. 

Currently the state-of-the-art offers various ana­
lytical power models. However, these models are 
architecture-dependant and do not include the contri­
bution of static power consumption, or the capabil­
ity of switching the frequency modes (DVFS). The 
authors develop linear regression models that present 
the power consumption of a server as a linear function 
of its CPU usage [22, 28]. Some other models can be 
found where server power is formulated as a quadratic 
function of the CPU usage [24,34]. Still, as opposed to 
ours, these models do not include the estimation of the 
static power consumption (which has turned to have a 
great impact due to the current server technology). 

Bohra et al. [9] propose a robust fitting to calcu­
late their model that takes into account the correlation 
between the total system power consumption and 
component utilization. Our work follows a similar 
approach but also incorporates the contribution of the 
static power consumption, its dependence on tempera­
ture, and the effect of applying voltage and frequency 
scaling techniques. 

Interestingly, one key aspect in the management of 
a data center is still not very well understood: con­
trolling the ambient temperature at which the data 
center operates. Data centers operate in a broad tem­
perature range from 18°C to 24°C but some can be 
as cold as 13°C [10, 25]. However, due to the lack 
of accurate power models, the effect of ambient tem­
perature on the power consumption of the servers has 
not been clearly analyzed, preventing the application 
of optimization models to save energy. On the con­
trary, the experimental work presented in this paper 

has been performed in ambient temperatures ranging 
from 18°C to 25°C. The range selected follows nowa­
days' practice of operating at higher temperatures [17] 
and close to the limits recommended by ASHRAE. 
Although this practice obtains energy savings in the 
cooling expense [14], the lack of a detailed power 
model prevents to apply optimization policies. 

In our previous work, we have applied the bene­
fits of Particle Swarm Optimization algorithms (PSO) 
to identify an analytical model that provides accu­
rate results for power estimation [2]. PSO simplifies 
the power model by significantly reducing the num­
ber of predefined parameters and variables used in the 
analytical formulation. However, as a parameter iden­
tification mechanism, this technique does not provide 
an optimal search of the features that best describe 
the system power performance, so additional features 
could be incorporated. 

The work presented in this paper outperforms pre­
vious approaches in the area of power modeling for 
enterprise servers in Cloud facilities in several aspects: 

- Our approach consists on an automatic method 
for the identification of an accurate power model 
particularized for each target architecture. We pro­
pose an extensive power model consistent with 
current architectures. 

- The proposed methodology takes into account 
the main power consumption sources resulting in 
a multiparametric model to allow the develop­
ment of power optimization approaches. Different 
parameters are combined by Feature engineer­
ing assuring that the optimal set of features is 
considered. 

- Optimal features are included in a classical regres­
sion resulting in a specific model instance for 
every target architecture that is linear, convex 
and derivable. Also the execution of the result­
ing power model is fast, making it suitable for 
run-time optimization techniques. 

3 Algorithm Description 

3.1 Grammatical Evolution 

As previously stated, we work on FE to obtain math­
ematical expressions that represent different power 
consumption contributions. These expressions, or 



features, are derived from the combination of previ­
ously collected experimental parameters (in our case 
of study, they correspond to processor and mem­
ory temperatures, fan speeds, processor and memory 
utilizations, processor frequencies and voltages). We 
deal with a kind of SR problem to select the rel­
evant features. SR tries to simultaneously obtain a 
mathematical expression while including the relevant 
parameters to reproduce a set of discrete data. Besides, 
GP has proven to be effective in a number of SR 
problems [33]. However, GP presents some limita­
tions like bloating of the evolution (excessive growth 
of memory computer structures), often produced in 
the phenotype of the individual. During the last years, 
variants to GP like GE appeared as a simpler opti­
mization process [26]. In our approach, GE allows the 
generation of a new set of optimized features by apply­
ing SR. This feature generation is achieved thanks to 
the use of grammars that define the rules for obtain­
ing mathematical expressions. More concretely, we 
will use grammars expressed in Backus Naur Form 
(BNF) [26]. 

A BNF specification is a set of derivation rules, 
expressed in the form: 

<symbol>::=<expression> 

The rules are composed of sequences of terminals 
and non-terminals. Symbols that appear at the left are 
non-terminals while terminals never appear on a left 
side. In this case we can affirm that < symbol > is a 
non-terminal and, although this is not a complete BNF 
specification, we can affirm also that < exprés s i on> 
will be also a non-terminal, since those are always 
enclosed between the pair < >. Therefore, in this case 
the non-terminal < symbol > will be replaced (indi­
cated : : =) by an expression. The rest of the grammar 
must define the different alternatives. 

A grammar is represented by the 4-tuple 
JVc Tc Pc S, being N the non-terminal set, T is the ter­
minal set, P the production rules for the assignment 
of elements on N and T, and S is a start symbol that 
should appear in N. The options within a production 
rule are separated by a "4» symbol. 

Figure 1 represents an example of a grammar in 
BNF, designed for symbolic regression. The final 
obtained expression will consist of elements of the set 
of terminals T. These have been combined with the 
rules of the grammar, as explained previously. Also, 
grammars can be adapted to bias the search of the 

N = {EXPR, OP, PREOP, VAR, NUM. DIG} 
T = {+, -, *, /, sin, cos, exp, x, y, z, 

0, 1, 2, 3, 4, 5, (, ), .} 
S = {EXPR} 
P = {I, II ,IH ,IV ,V ,VI} 
I <EXPR> ::= <EXPRX0PXEXPR> 

I <PRE0P>(<EXPR>) 
I <VAR> 

II <0P> ::= + I - I * I / 
III <PRE0P>::= sin I cos I exp 
IV <VAR> ::= x | y | z | <NUM> 
V <NUM> ::= <DIG>.<DIG> I <DIG> 
VI <DIG> : : = 0 | 1 | 2 | 3 | 4 | 5 

Fig. 1 Example of a grammar in BNF format designed for 
symbolic regression 

relevant features because there is a finite number of 
options in each production rule. 

Regarding both the structure and the internal oper­
ators, GE works exactly like a classic Genetic Algo­
rithm (GA) [3]. GE evolves a population formed 
by a set of individuals, each one constituted by a 
chromosome and a fitness value. In SR, the fitness 
value is usually a regression metric like Root Mean 
Square Deviation (RMSD), Coefficient of Variation 
(CV), Mean Squared Error (MSE), etc. In GE, a chro­
mosome is a string of integers. In the optimization 
process, GA operators named selection, crossover and 
mutation are iteratively applied to improve the fit­
ness value of each individual. In order to compute 
the fitness function for every iteration and to extract 
the mathematical expression given by an individual, 
a decoding process is applied. We refer the reader 
to [16] to understand the different GA operators. In the 
following, we explain through an example the decod­
ing process performed in GE, since it clearly explains 
how better features are automatically selected. Let us 
suppose that we have the BNF grammar provided in 
Fig. 1 and the following 7-gene chromosome: 

2 1 - 6 4 - 1 7 - 6 2 - 3 8 - 2 5 4 - 2 

According to Fig. 1, the start symbol is s= {EXPR} , 
hence the decoded expression will begin with this non­
terminal: 

Solution <EXPR> 

Now, we use the first gene of the chromosome (also 
called codon, equal to 21 in the example) in rule I of 



the grammar. The number of choices in that rule is 3. 
Hence, a mapping function (the modulus operator) is 
applied: 

2 1 MOD 3 = 0 

and the first option is selected <EXPR><OP><EXPR>. 

The selected option substitutes the decoded non­
terminal. As a consequence, the current expression is 
the following: 

S o l u t i o n = <EXPRxOPxEXPR> 

The process continues with the next codon, 64, which 
is used to decode the first non-terminal of the cur­
rent expression, namely, <EXPR>. Again, the mapping 
function is applied to rule I: 

6 4 MOD 3 = 1 

and the second option <PREOP> ( <EXPR> ) is selected. 
So far, the current expression is: 

S o l u t i o n = <PREOPR> (<EXPR>) <OPxEXPR> 

The next gene, 17, is now taken for decoding. At 
this point, the first non-terminal in the current expres­
sion is <PREOP>. Therefore, we apply the mapping 
function to rule I I I , which also has 3 different 
choices: 

1 7 MOD 3 = 2 

and the third option exp is selected. The resulting 
expression is 

S o l u t i o n = exp(<EXPR>) <OPxEXPR> 

Next codon, 62, decodes <EXPR> with rule I: 

6 2 MOD 3 = 2 

Value 2 means to select the third option, <VAR>. The 
resulting expression is: 

S o l u t i o n = exp(<VAR>) <OPxEXPR> 

Codon 38 decodes <VAR> with rule IV: 

3 8 MOD 4 = 2 

selecting the third option, non-terminal z: 

S o l u t i o n = exp (z ) <OPxEXPR> 

Non-terminal <OP> is decoded with codon 254 and 
rule 11: 

2 5 4 MOD 4 = 2 

This value selects the third option, terminal *: 

S o l u t i o n = exp(z)*<EXPR> 

The last codon, decodes <EXPR> with rule I: 

2 MOD 3 = 2 

Value 2 selects the third option, non-terminal <VAR>. 

So far, the current expression is: 

S o l u t i o n = exp(z)*<VAR> 

At this point, the decoding process has run out of 
codons. That is, we have not arrived to an expres­
sion with terminals in all of its components. In GE, 
the solution to this problem is to reuse codons start­
ing from the first one. In fact, it is possible to reuse 
the codons more than once. This technique is known 
as wrapping and mimics the gene-overlapping phe­
nomenon in many organisms [18]. Thus, applying 
wrapping to our example, the process goes back to the 
first gene, 21, which is used to decode <VAR> with 
rule IV: 

2 1 MOD 4 = 1 

This result selects the second option, non-terminal y, 
giving the final expression of the phenotype: 

S o l u t i o n = e x p ( z ) * y 

As can be seen, the process does not only perform 
parameter identification like in a classic regression 
method. In conjunction with a well-defined fitness 
function, the evolutionary algorithm is also computing 
an optimized set of features as mathematical expres­
sions by combining the set of parameters that best fits 
the target system. Thus, GE is defining the optimal 
set of features that will derive into the most accurate 
power model. 



3.2 Least Absolute Shrinkage and Selection Operator 

Tibshirani proposes the least absolute shrinkage and 
selection operator algorithm (lasso) [31] that mini­
mizes residual summation of squares according to the 
summation of the absolute value of the coefficients 
that are less than constant. 

The algorithm combines the favourable features of 
both subset selection and ridge regression like stabil­
ity, and offers a linear, convex and derivable solution. 
Lasso provides interpretable models shrinking some 
of the coefficients and setting others to exactly zero 
values for generalized regression problems. 

For a given non-negative value of A, the lasso 
algorithm solves the following problem: 

where: 

- j8: vector of p components. Lasso algorithm 
involves the L1 norm of /3 

- Po'- scalar value. 
- N: number of observations. 
- y i: response at observation i. 
- XÍ : vector of p values at observation i. 
- A: non-negative regularization parameter corre­

sponding to one value of Lambda. The num­
ber of nonzero components of j3 decreases as A 
increases. 

At the end, we combine the use of GE that gen­
erates the set of relevant features with lasso that 
computes the coefficients and the independent term in 
the final linear model. 

As a result, our GE+lasso framework solves our 
optimization problem that targets the generation of 
accurate power models for high-end servers. 

4 Devised Methodology 

The fast and accurate modeling of complex systems 
is a relevant target nowadays. Modeling techniques 
allow designers to estimate the effects of variations 
in the performance of a system. Complex systems 
present non-linear characteristics as well as a high 
number of potential variables. Also, the optimal set of 

features that impacts the system performance is not 
well known as many mathematical relationships can 
exist among them. 

Hence, we propose a methodology that considers 
all these factors by combining the benefits of both 
GE algorithms and classical lasso regressions. This 
technique provides a generic and effective modeling 
approach that could be applied to numerous prob­
lems regarding complex systems, where the number 
of relevant variables or their interdependence are not 
known. 

Figure 2 shows the proposed methodology 
approach for the optimization of system modeling 
problem. Detailed explanations of the different phases 
are summarized in the following subsections. 

4.1 GE Feature Selection 

Given an extensive set of parameters that may cause 
an effect on system performance, FE selects the opti­
mal set that best describes the system behavior. Also, 
this technique, which is provided by GE, avoids the 
inclusion of irrelevant features while incorporating 
correlations and combinations of representative vari­
ables. 

The input to our approach consists of a vector of 
initial data that includes the entire set of variables x„ 
extracted from the system. 

y = g\^x\c-x2
c-x^-{{{'-xn^- (2) 

All these parameters are entered in the GE algorithm 
to start the optimization process. 

Each individual of the GE encodes its own set of 
candidate features f\c fic hc (((c fm- The candidate 
features follow the rules imposed by a BNF grammar 
allowing the occurrence of a wide variety of oper­
ations and operands to favor building optimal sets 
of features. Figure 3 shows an example of a BNF 
grammar for this approach. 

This grammar provides the operations +, —, *, ) 
and preoperators exp, sin, cos, In. The space of solu­
tions is easily modified by incorporating a broader 
set of relationships between operands to the BNF 
grammar. 

The output of the GE stage consists of a matrix that 
includes all the candidate features provided by indi­
viduals. Each individual output vector has its own set 



Fig. 2 Optimized modeling 
using GE+lasso 
methodology 
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fitness function provided for the system optimization. 
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4.2 Lasso Generic Model Generation 

(3) 

Modeling procedures usually intend to interpret sys­
tems' behavior. They have the purpose of acquiring 
additional knowledge from the final models once these 
have been derived. Linearity, convexity and differ­
entiability offered by lasso classic regression helps 
modeling to be a more explanatory and repeatable pro­
cess. In addition, whereas GE is able to find complex 
symbolic expressions, GE does not perform well in 
parameter identification, mainly because the explo­
ration of real numbers is not easily representable in 
BNFs. Due to these facts, we have included lasso 
algorithm in our methodology in order to manage the 
coefficient generation of the system model. 

<list_features> 

<feature> 

<op> 

<preop> 

<var> 

= <feature> 

I <feature>;<list_features> 

= (<feature><op><feature>) 

I <preop>(<feature>) 

I <var> 

= + I - I * I / 

= exp I sin I cos I In 

= x[0] I x [ l ] I x[2] I x[3] 
I x[4] I x[5] I . . . I x[n] 

Fig. 3 Grammar in BNF format, x variables, with i = 0 (((«, 
represent each parameter obtained from the system 

As can be seen in Fig. 2, each individual of the GE 
provides a set of candidate features to lasso. This clas­
sical regression is in charge of deriving the optimized 
model for each individual by solving the following 
equation. 

aifl + a2fi + 03/3 H h amfm + k (4) 

Lasso offers the set of optimized coefficients 
(a\, Ü2, 03, (((, am, k) for each individual that min­
imizes the fitness function. This process provides 
the goodness of each individual. All this information 
feeds back the GE algorithm to generate the next pop­
ulation of individuals through selection, crossover and 
mutation, creating a loop. The loop continues exe­
cuting until it completes the number of generations 
defined by the GE. This process results in the set of 
models that best fits system performance. 

4.3 Fitness Evaluation 

As our main target is to build accurate models, our 
fitness function includes the error resulting in the esti­
mation process. The fitness function presented in (5) 
leads the evolution to obtain optimized solutions thus 
minimizing Root Mean Square Error or RMSD. 

'¿S>° 
P^n^ 1 < n < N 

(5) 

(6) 

Estimation error en represents the deviation 
between the measure given by system monitoring P, 



and the estimation obtained by the model P. n repre­
sents each sample of the entire set of N samples used 
to train the algorithms. 

5 Case Study 

In this section we describe a particular case study for 
the application of the devised methodology presented 
in Section 4. The problem to be solved is the fast 
and accurate estimation of the power consumption in 
virtualized enterprise servers performing Cloud appli­
cations. Our power model considers heterogeneity of 
servers, as well as specific technological features and 
non-traditional parameters of the target architecture 
that affect power consumption. Hence, we propose 
our modeling technique that considers all these factors 
by combining the benefits of both GE algorithms and 
classical lasso regressions. 

Firstly, a GE algorithm is applied to extract those 
relevant features that best describe power consump­
tion sources. Features may also include correlations 
and combinations of representative variables due to 
FE performed by GE. Then, the lasso algorithm takes 
the optimal set of features in order to infer an expres­
sion that characterizes the power behavior of the target 
architecture of a Cloud server. As a result, we derive 
a highly accurate, linear and convex power model, 
targeting a specific server architecture, that is automat­
ically generated by our evolutionary methodology. 

We apply our methodology described in Section 4 
to real measures gathered from a high-end Cloud 
server in order to infer an accurate power model. Also, 
we provide an experimental scenario for various work­
loads with the purpose of building and testing our 
methodology. 

5.1 Data Compilation 

Data have been collected gathering real measures from 
a Fujitsu RX300 S6 server based on an Intel Xeon 
E5620 processor. This high-end server has a RAM 
memory of 16GB and is running a 64bit CentOS 
6.4 OS virtualized by the QEMU-KVM hypervisor. 
Physical resources are assigned to four KVM virtual 
machines, each one with a CPU core and a 4GB RAM 
block. 

The power consumption of a high-end server 
usually depends on several factors that affect both 

dynamic and static behavior [2]. Our proposed case 
study takes into account the following 7 variables: 

- Ucpu: CPU utilization (%) 
- Tcpu: CPU temperature (Kelvin) 
- Fcpu: CPU frequency (GHz) 
- Vcpu: CPU voltage (V) 
- Umem: Main memory utilization (Memory 

accesses per cycle) 
- Tmem: Main memory temperature (Kelvin) 
- Fan: Fan speed (RPM) 

Power consumption is measured with a current 
clamp with the aim of validating our approach. CPU 
and main memory utilization are monitored using 
hardware counters collected with perf monitoring 
tool. On board sensors are checked via IPMI to get 
both CPU and memory temperatures and fan speed. 
CPU frequency and voltage are monitored via cpufreq-
utils Linux package. To build a model that includes 
power dependance with these variables, we use this 
software tool to modify CPU DVFS modes during 
workload execution. Also room temperature has been 
modified in run-time with the goal of finding non-
traditional consumption sources that are influenced by 
this variable. 

5.2 Experimental Workload 

We define three workload profiles (i) synthetic, (ii) 
Cloud and (iii) HPC over Cloud as they emulate differ­
ent utilization patterns that could be found in typical 
Cloud infrastructures. 

5.2.1 Synthetic Benchmarks 

The use of synthetic load allows to specifically stress 
different server resources. The importance of using 
synthetic load is to include situations that do not 
meet the actual real workloads that we have selected. 
Thus, the range of possible values of the different 
variables is extended in order to adapt the model to 
fit future workload characteristics and profiles. Look-
busy1 stresses different CPU hardware threads to a 
certain utilization avoiding memory or disk usage. The 
memory subsystem is also stressed separately using a 
modified version of RandMem2. We have developed 

http://www.devin.com/lookbusy/ 
2http://www.roylongbottom.org.uk 

http://www.devin.com/lookbusy/
http://www.roylongbottom.org.uk


a program based on this benchmark to access random 
memory regions individually, with the aim of explor­
ing memory performance. Lookbusy and RandMem 
have been executed, in a separated and combined 
fashion, onto 4 parallel Virtual Machines that con­
sume entirely the available computing resources of the 
server. 

On the other hand, real workload of a Cloud data 
center is represented by the execution of Web Search, 
from CloudSuite3, as well as by SPECXPU2006 mcf 
and SPEC JCPU2006 perlbench [19]. 

5.2.2 Cloud Workload 

Web Search characterizes web search engines, which 
are typical Cloud applications. This benchmark pro­
cesses client requests by indexing data collected from 
online sources. Our Web Search benchmark is com­
posed of three VMs performing as index serving nodes 
(ISNs) of Nutch 1.2. Data are collected in the dis­
tributed file system with a data segment of 6 MB, and 
an index of 2 MB that is crawled from the public Inter­
net. One of this ISNs also executes a Tomcat 7.0.23 
frontend in charge of sending index search requests to 
all the ISNs. The frontend also collects ISNs responses 
and sends them back to the requesting client. Client 
behavior is generated by Faban 0.7 performing in a 
fourth VM. Resource utilization depends proportion­
ally on the number of clients accessing Web Search. 
Our number of clients configuration ranges from 100 
to 300 to expose more information about the applica­
tion performance. The four VMs use all the memory 
and CPU resources available in each server. 

5.2.3 HPC Over Cloud 

In order to represent HPC over a Cloud com­
puting infrastructure, we choose SPEC-CPU2006 
mcf and perlbench as they are memory and CPU-
intensive, and CPU-intensive applications, respec­
tively. SPEC-CPU2006 mcf consists on a network 
simplex algorithm accelerated with a column genera­
tion that solves large-scale minimum-cost flow prob­
lems. On the other hand, a mail-based benchmark is 
performed by SPEC.CPU2006 perlbench. This pro­
gram applies a spam checking software to randomly 
generated email messages. Both SPEC applications 

3http://parsa.epfl.ch/cloudsuite 

are run in parallel in 4 VMs using entirely the available 
resources of the server. 

Instead of restricting the use of synthetic work­
loads only for training the algorithms, and limiting the 
use of real Cloud benchmarks exclusively for testing, 
we have used both workloads for the two purposes. 
This procedure provides automation for the progres­
sive incorporation of additional benchmarks to the 
model. 

For each run of the combined GE+lasso approach, 
we randomly select 50 % of each data set (synthetic, 
Web Search, SPECXPU2006 mcf and perlbench) for 
training and the remaining 50 % for testing stage. This 
technique validates the variability and versatility of the 
system, by analyzing the occurrence of local minima 
in optimization scenarios. 

6 Experimental Results 

As we stated in Section 5, tests have been conducted 
gathering real data from our Fujitsu server. Our experi­
ments present high variability for the different features 
compiled from the server. 

- CPU operation frequency (Fcpu) is fixed to f\ = 
1(73 GHz, h = 1(86 GHz, / 3 = 2(13 GHz, f4 = 
2(26 GHz, f5 = 2(39 GHz and f6 = 2(40 GHz; 
thus modifying CPU voltage (Vcpu) from 1.73 V 
to 2.4 V. 

- Room temperature has been modified in run-time, 
from 17°C to 27°C. Therefore, temperatures of 
CPU and memory (Tcpu and Tmem) range from 
306 K to 337 K, and from 298 K to 318 K 
respectively. 

- CPU and memory utilizations (Vcpu and I]mem) 
take values from 0 % to 100 % and from 0 to 0.508 
memory accesses (cache-misses) per CPU cycle 
respectively. 

- Finally, due to both room temperature, and CPU 
and memory utilization variations, fan speed val­
ues (Fan) range from 3540 RPM to 7200 RPM. 

Data have been split into training and testing sets. 
Training stage performs feature selection and builds 
the power model according to our grammar and 
fitness function. Next, the testing stage examines the 
power model accuracy. The algorithm proposed by our 
methodology is executed completely 20 rounds using 

http://parsa.epfl.ch/cloudsuite


the same grammar and fitness function configuration. 
For each run, we randomly select 50 % of each data 
set for training and 50 % for testing stage, thus obtain­
ing 20 final power models. This procedure validates 
the variability and versatility of the system, by ana­
lyzing the occurrence of local minima in optimization 
scenarios. 

6.1 Algorithm Setup 

6.1.1 GE setup Parameters 

We use GE to obtain a set of candidate features that 
best describe our optimization problem. To obtain 
adequate solutions we tune the algorithm using the 
following parameters: 

- Population size: 250 individuals 
- Number of generations: 3000 
- Chromosome length: 100 codons 
- Mutation probability: inversely proportional to the 

number of rules, 1)4 in our case. 
- Crossover probability: 0.9 
- Maximum wraps: 3 
- Codon size: 256 
- Tournament size: 2 (binary) 

As we strictly seek for simple combination of fea­
tures, our proposed BNF grammar only provides the 
operations +A- 4fe A. The space of solutions is easily 
increased by incorporating more complex relation­
ships between operands to the BNF grammar. Figure 4 
shows the BNF grammar proposed for this case study. 

6.1.2 Lasso Setup Parameters 

We use the lasso algorithm to obtain a set of candi­
date solutions with low error, when compared with 

<list_features> ::= <feature> 

I <feature>;<list_features> 

<feature> ::= (<feature><op><feature>) 

I <var> 
<op> : := + I - I * | / 
<var> : := x [ 0 ] I x [ l ] I x [ 2 ] I x [ 3 ] 

I x [ 4 ] I x [ 5 ] I i [ 6 ] 

Fig. 4 Grammar in BNF format, x variables, with i = 0 (((6, 
represent processor and memory temperatures, fan speed, pro­
cessor and memory utilization percentages, processor frequency 
and voltage, respectively 

the real power consumption measures in order to 
solve our optimization modeling problem. Lasso setup 
parameters are the following: 

- Number of observations: 100 
- A regularization parameter: Geometric sequence 

of 100 values, the largest just sufficient to produce 
zero coefficients. 

- A regularization parameter: 1 • 10~4 

6.2 Training Stage 

We have performed variable standardization for every 
feature (in the range 11c 2]) to assure the same prob­
ability of appearance for all the variables and to 
enhance the GE symbolic regression. Experiments 
with more than 4 features do not provide better values 
for RMSD. Hence, we have bounded their occurrence 
to a maximum of 4 by penalizing higher number of 
features in our fitness evaluation function. This also 
facilitates the generation of simpler models, which 
are faster and easy to be applied, in order to be 
used for real-time power optimizations. Table 1 shows 
phenotypes of each feature combined with the coef­
ficients provided by lasso that are obtained for 20 
complete executions of our methodology algorithm. 
Fitness results, that correspond to the RMSD between 
measured and estimated power consumption (see (5)), 
are shown in Table 2 for the training stage. Both 
Tables 1 and 2 present the results for the best model of 
each execution. 

As can be seen in Table 1, power model solu­
tions combine features that correspond to a single 
variable with others that merge a combination of sev­
eral parameters. On the one hand, there are single 
variable features that appear in up to 50 % of the 
power model solutions. This shows that there are lin­
ear dependencies with certain parameters, as Ucpu, 
Tpcu, and Tmem that are consistent regardless of the 
workload that is used for training and testing. On the 
other hand, variables as Vcpu, Fcpu and Umem are 
seldom treated as a feature in the model solutions. 
However, they systematically appear when combined 
with other variables. These results show how there 
exist input parameters that are not relevant for the 
modeling or they are correlated to other features, and 
their inclusion could decrease the model accuracy. 
Model training for run 10 shows the lowest RMSD 
error of 0.1067. 



Table 1 Power models obtained by combining GE features and lasso coefficients for 20 executions 

Run ax • ft + a2 • f2 + a3 • f3 + aA • f4+ K 

1 0.288 • Tcpu 

+0(127- (((Tcpu*Ucpu)-Umem)*Fan) 

+0(220- (Fan*Tmem) 

+ -0(450-Fan+1(043 

2 0.173 • Ucpu 

+0(438- Tcpu 

+ - 0(209- Fan 

+0(070- (Tmem/(Umem/(Fan*Tmem))) +0(636 

3 0.256 • (Fan/(Ucpu/Tmem)) 

+0(346- Ucpu 

+ - 0(694- (Fan/Tcpu) +1(151 

4 -0(376- Tmem 

+ - 0(033- ((((Fan/Tcpu)/(Fcpu+Fcpu))/((Fan/(Vcpu+Umem))/Ucpu))*Fan) 

+0(606- ((Fan/((Umem+(Fan+(Fcpu/Fcpu)))*(Fan/Ucpu)))+(Fan+Tmem)) 

+0(786- ((Fcpu-(Fcpu+Fan))/Tcpu) +0(810 

5 0.181 • Ucpu 

+0(254- (Fan*Tmem) 

+0(378- Umem 

+ - 0(345- (((Umem+Umem)*Fan)/Tcpu) +0(939 

6 0.483 • (Ucpu-Fan) 

+0(030- ((Tmem+Fan)*((Fan-(Tmem/((Ucpu+Vcpu)+(Fan+Fan))))*(Fan*Fan))) 

+0(220- Tmem 

+0(430- (Tcpu/Ucpu) +0(402 

7 0.506 • Tcpu 

+0(195- ((Ucpu/(Vcpu+(Tmem-Umem)))*Vcpu) 

+ -0(319-Fan 

+ - 0(199- (((Fan+Umem)*((Umem-Tmem)/Tcpu))*Fan) +0(704 

8 0.084 • (Ucpu/Vcpu) 

+0(473- Tmem 

+0(499- (Ucpu/(Ucpu*(((Fcpu-Vcpu)+Tmem)/Tcpu))) 

+ - 0(019- (Fan-(((Fan+Vcpu)*Tcpu)*((Ucpu*Tmem)-(Vcpu-Fcpu)))) +0(046 

9 0.927 • Ucpu 

+ - 0(380- Fan 

(((Tmem*((Fan+Umem)—Ucpu))+(Tcpu—(Ucpu*Umem)))—Ucpu) 

Tcpu +0(365 

Tmem 

(((Tmem+Fan)*Fan)—Umem) 

(Ucpu+Tmem) 

(Tcpu-Fan) +0(665 

(Tmem* (Ucpu—(Tmem*Fan))) 

Ucpu 

(Tcpu-Fan) +0(810 

Umem 

+0(174- Ucpu 

+0(647- (Tcpu/Tmem) 

+0(647- Tmem + -0 (318 

+0(232 

+0(180 

10 -0(073 

+0(106 

+0(194 

+0(437 

11 -0(117 

+0(317 

+0(377 

12 -0(070 



Table 1 (continued) 

Run ax • ft + a2 • f2 + a3 • f3 + aA • f4+ K 

13 0.291 • (Tmem+Fan) 

+ - 0(409- (Fan/Tcpu) 

+0(234- Tcpu 

+0(423- (Ucpu/(Tmem+Umem)) +0(442 

14 0.093 • (Ucpu+(Ucpu+(Tmem*Tmem))) 

+ - 0(019- ((Tcpu-((Tmem*Fan)-Vcpu))-Vcpu) 

+ - 0(081- (Tmem+Umem) 

+0(462- Tcpu +0(526 

15 -0(004 • Fcpu 

+0(380- (Ucpu/(Umem+Fan)) 

+0(054- (Tmem*(Tmem+Fan)) 

+0(454- Tcpu +0(347 

16 -0(010 • Fan 

+ - 0(155- (((Fan/Tmem)-(Tmem/Ucpu))*Fan) 

+0(282- Ucpu 

+0(417- Tcpu +0(393 

17 0.242 • (Fan*(Tmem/Ucpu)) 

+0(396- (Tcpu-Fan) 

+0(001-Fcpu 

+0(344- Ucpu +0(508 

18 0.448 • Tmem 

+ - 0(178- Umem 

+ - 0(221- (((((Tcpu/(Vcpu/(Fcpu-Vcpu)))-Ucpu)+Fan)/Tmem)-(Tcpu-(Tmem-(Tcpu+Fan)))) 

+ 0.100 • (Umem/Fan) +0(271 

19 0.134-Ucpu 

+0(241- (Tmem*Fan) 

+0(066- Ucpu 

+ - 0(403- ((Fan-Tcpu)/Umem) +0(653 

20 -0(433 • (((Fan-(Ucpu+Umem))/Fan)-(Tcpu+Fan)) 

+ - 0(295- Umem 

+ - 0(102- Fan 

+0(235- (((Tmem-Umem)-Ucpu)+Fan) +0(184 

6.3 Model Testing data sets. These values have been obtained according 
to the following formulation: 

At this stage, we analyze the quality of the models 
that we have simultaneously tested for the 20 complete 
executions of our methodology algorithm. Results are 
also analyzed particularly for the testing data that cor­
responds to each benchmark dataset in order to verify 
the estimation reliability of the models for different 

<?AVG 

1 ^ 4 P ^ - P ^ l 100 
— • > ^\<n<N (7) 

workloads. Table 2 shows testing average error per- where P is the power measure given by the current 
centages particularized for the different benchmark clamp and P is the power estimated by the model 



Table 2 RMSD and Average testing error percentages for 20 executions 

Run 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Train (RMSD) 

0.1069 

0.1068 

0.1070 

0.1070 

0.1069 

0.1071 

0.1070 

0.1071 

0.1072 

0.1067 

0.1073 

0.1071 

0.1070 

0.1072 

0.1071 

0.1071 

0.1079 

0.1081 

0.1082 

0.1082 

Validation (RMSD) 

0.1068 

0.1067 

0.1068 

0.1071 

0.1069 

0.1068 

0.1072 

0.1072 

0.1072 

0.1072 

0.1075 

0.1076 

0.1070 

0.1072 

0.1070 

0.1070 

0.1057 

0.1060 

0.1060 

0.1059 

Synthetic {°, 

3.985 

3.984 

3.995 

4.007 

3.991 

3.988 

3.995 

3.994 

4.033 

4.052 

4.023 

4.098 

4.073 

4.088 

4.083 

4.060 

3.951 

3.981 

3.953 

3.974 

phenotype. n represents each sample of the entire set 
of N samples. 

Total average error for the testing dataset shows 
lowest error of 3.98 % (as shown in Table 2). Best 
testing error corresponds to the solution with lower 
training error. Solutions can be broken down for 
those samples that belong to different tests, achiev­
ing testing errors of 4.052 %, 3.894 %, 3.969 % 
and 4.031 % for synthetic, SPECXPU2006 mcf, 
SPEC-CPU2006 perlbench and WebSearch workloads 
respectively. This fact confirms that our methodology 
works well for our scenario, extracting optimized sets 
of features and coefficients that are consistent even 
for 20 runs with random selection of both training and 
testing dataset. 

Our methodology application shows very accurate 
testing results for all of the whole executions rang­
ing from 3.98 % to 4.18 %. The obtained results are 
robust, as they have been obtained for a heteroge­
neous mix of workloads so the power models are not 
workload-dependant. According to these results, we 
can infer that our methodology is effective for per­
forming feature selection and building accurate multi-
parametric, linear, convex and differentiable power 

mcf(%) 

4.097 

4.099 

4.110 

4.085 

4.106 

4.085 

4.042 

3.996 

3.884 

3.894 

3.926 

3.896 

3.939 

3.935 

3.922 

3.937 

4.136 

4.171 

4.190 

4.205 

perlb (%) 

4.463 

4.463 

4.504 

4.469 

4.494 

4.459 

4.462 

4.559 

3.990 

3.969 

3.963 

3.951 

4.173 

4.174 

4.161 

4.164 

4.208 

4.180 

4.224 

4.178 

WebSearch (%) 

4.147 

4.110 

4.145 

4.155 

4.113 

4.153 

4.101 

4.101 

4.059 

4.031 

4.063 

4.030 

4.243 

4.184 

4.246 

4.217 

4.056 

4.050 

4.212 

4.074 

Total (%) 

4.173 

4.164 

4.189 

4.179 

4.176 

4.171 

4.150 

4.162 

3.991 

3.986 

3.994 

3.994 

4.107 

4.096 

4.103 

4.095 

4.088 

4.095 

4.145 

4.108 

models for high-end Cloud servers. This technique 
can be considered as a starting point for implement­
ing energy optimization policies for Cloud computing 
facilities. 

7 Conclusions 

This paper has presented a novel work in the field 
of FE and SR for the automatic inference of accu­
rate models. Resulting models include combination 
and correlation of variables due to the FE and 
SR performed by GE. Therefore, the models incor­
porate the optimal selection of representative fea­
tures that best describe the target problem while 
providing linearity, convexity and differentiability 
characteristics. 

As a proof of concept, the devised methodology 
has been applied to a current computing problem, 
the power modeling of high-end servers in a Cloud 
environment. In this context, the proposed method­
ology has shown relevant benefits with respect to 
state-of-the-art approaches, like better accuracy and 
the opportunity to consider a broader number of input 



parameters that can be exploited by further power 
optimization techniques. 
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