
Enhancing Regression Models for Complex Systems
Using Evolutionary Techniques for Feature Engineering

Patricia Arroba • José L. Risco-Martín •
Marina Zapater • José M. Moya • José L. Ayala

Abstract This work proposes an automatic method­
ology for modeling complex systems. Our method­
ology is based on the combination of Grammatical
Evolution and classical regression to obtain an opti­
mal set of features that take part of a linear and convex
model. This technique provides both Feature Engi­
neering and Symbolic Regression in order to infer
accurate models with no effort or designer's expertise
requirements. As advanced Cloud services are becom­
ing mainstream, the contribution of data centers in the
overall power consumption of modern cities is grow­
ing dramatically. These facilities consume from 10
to 100 times more power per square foot than typi­
cal office buildings. Modeling the power consumption

for these infrastructures is crucial to anticipate the
effects of aggressive optimization policies, but accu­
rate and fast power modeling is a complex challenge
for high-end servers not yet satisfied by analytical
approaches. For this case study, our methodology min­
imizes error in power prediction. This work has been
tested using real Cloud applications resulting on an
average error in power estimation of 3.98 %. Our work
improves the possibilities of deriving Cloud energy
efficient policies in Cloud data centers being appli­
cable to other computing environments with similar
characteristics.

Keywords Automatic modeling • Complex
systems • Grammatical evolution • Classical
regression • Green data centers • Sustainable cloud
computing • Power modeling

1 Introduction

Analytical models, as closed form solution represen­
tations, require specific knowledge about the different
contributions and their relationships, becoming hard
and time-consuming techniques for describing com­
plex systems. Complex systems comprise a high num­
ber of interacting variables, so the association between
their components is hard to extract and understand
as they have non-linearity characteristics [4]. Also,
input parameter limitations are barriers associated to
classical modeling for these kind of problems.

Otherwise, classical regressions as least absolute
shrinkage and selection operator techniques provide
models with linearity, convexity and differentiability
attributes, which are highly appreciated for describing
systems performance. However, the automatic gener­
ation of accurate models for complex systems is a
difficult challenge that designers have not yet fulfilled
by using analytical approaches.

On the other hand, metaheuristics are higher-level
procedures that make few assumptions about the opti­
mization problem, providing adequately good solu­
tions that could be based on fragmentary informa­
tion [6, 7]. They are particularly useful in solving
optimization problems that are noisy, irregular and
change over time. In this way, metaheuristics appear
as a suitable approach to meet optimization problem
requirements for complex systems.

Some metaheuristics, as Genetic Programming
(GP), perform Feature Engineering (FE) that is a
particularly useful technique for selecting an opti­
mal set of features that best describe an optimization
problem. Those features consist of measurable prop­
erties or explanatory variables of a phenomenon. FE
methods select adequate characteristics avoiding the
inclusion of irrelevant parameters that reduce problem
generalization [32]. Finding relevant features typically
helps with prediction; but correlations and combina­
tions of representative variables, also provided by FE,
may offer a straightforward view of the problem thus
generating better solutions.

Grammatical Evolution (GE) is an evolutionary
computation technique based on GP. This technique
is particularly useful to solve optimization problems
and provides solutions that include non-linear terms
offering FE capabilities that remove analytical mod­
eling barriers. One of the main characteristics of GE
is that it can be used to perform Symbolic Regression
(SR) [29]. Also, designer's expertise is not required
to process a high volume of data as GE is an auto­
matic method. However, GE provides a vast space of
solutions that may be bounded to achieve algorithm
efficiency.

In this work we propose a novel methodology
for the automatic inference of accurate models that
combines the benefits offered by both classic and
evolutionary strategies. Firstly, SR performed by a
GE algorithm finds optimal sets of features that best
describe the system behavior. Then, a classic regres­
sion is used to solve our optimization problem using

this set of features providing the model coefficients.
Finally, our approach provides an accurate model that
is linear, convex and derivative and also uses the opti­
mal set of features. This methodology can be applied
to a broad set of optimization problems of complex
systems. This paper presents a case study for its appli­
cation in the area of Cloud power modeling as it is a
relevant challenge nowadays.

1.1 Motivation

One of the big challenges in data centers is the power-
efficient management of system resources. Data cen­
ters consume from 10 to 100 times more power per
square foot than typical office buildings [30] even
consuming as much electricity as a city [23]. Conse­
quently, a careful management of the power consump­
tion in these infrastructures is required to drive the
Green Cloud computing [11].

Cloud computing addresses the problem of costly
computing infrastructures by providing dynamic
resource provision on a pay-as-you-go basis, and
nowadays it is considered as a valid alternative to
owned high performance computing (HPC) clusters.
There are two main appealing incentives for this
emerging paradigm: firstly, the Clouds utility-based
usage model allows clients to pay per use, increasing
the user satisfaction; secondly, there is only a rela­
tively low investment required for the remote devices
that access the Cloud resources [12].

Besides economic incentives, the Cloud model pro­
vides also benefits from the environmental perspec­
tive, since the computing resources are managed by
Cloud service providers but shared among all users,
which increases their overall utilization [5]. This fact
is translated into a reduced carbon footprint per exe­
cuted task, diminishing C O2 emissions. The Schnei­
der Electric's report on virtualization and Cloud com­
puting efficiency [27] confirms that about 17 % of
annual savings in energy consumption were achieved
by 2011 through virtualization technologies.

However, the proliferation of modern data cen­
ters is growing massively due to the current increase
of applications offered through the Cloud. A sin­
gle data center, that houses the computer systems
and resources needed to offer these services, has
a power consumption comparable to 25000 house­
holds [21]. As a consequence, the contribution of data
centers in the overall consumption of modern cities

is increasing dramatically. Therefore, minimizing the
energy consumption of these infrastructures is a major
challenge to reduce both environmental and economic
impact.

The management of energy-efficient techniques
and aggressive optimization policies requires a reli­
able prediction of the effects caused by the different
procedures throughout the data center. Server hetero­
geneity and diversity of data center configurations
difficult to infer general models. Also, power depen­
dency with non-traditional factors (like the static con­
sumption and its dependence on temperature, among
others) that affect consumption patterns of these facili­
ties may be devised in order to achieve accurate power
models.

These power models facilitate the analysis of sev­
eral architectures from the perspective of the power
consumption, and allow to devise efficient techniques
for energy optimization. Data center designers have
collided with the lack of accurate power models for the
energy-efficient provisioning and the real-time man­
agement of the computing facilities. Therefore, a fast
and accurate method is required to achieve overall
power consumption prediction.

The work proposed in this paper makes substan­
tial contributions in the area of power modeling of
Cloud servers taking into account these factors. We
envision a powerful method for the automatic identi­
fication of fast and accurate power models that target
high-end Cloud server architectures. Our methodol­
ogy considers the main sources of power consump­
tion as well as the architecture-dependent param­
eters that drive today's most relevant optimization
policies.

1.2 Contributions

Our work makes the following contributions:

- We propose a method for the automatic genera­
tion of fast and accurate models adapted to the
behavior of complex systems.

- Resulting models include combination and cor­
relation of variables due to the FE and SR per­
formed by GE. Therefore, the models incorporate
the optimal selection of representative features
that best describe system performance.

- Through the combination of GE and classical
regression provided by our approach, the inferred

models have linearity, convexity and differentia­
bility properties.

- As a case study, different power models have been
built and tested for a high-end server architecture
running several real applications that can be com­
monly found in nowadays' Cloud data centers,
achieving low error when compared to real mea­
surements.

- Testing for different applications (web search
engines, and both memory and CPU-intensive
applications) shows an average error of 3.98 % in
power estimation.

The remainder of this paper is organized as fol­
lows: Section 2 gives further information on the
related work on this topic. Section 3 provides the
background algorithms used for the model optimiza­
tion. The methodology description is presented in
Section 4. In Section 5 we provide a case study where
our optimization modeling methodology is applied.
Section 6 describes profusely the experimental results.
Finally, in Section 7 the main conclusions are drawn.

2 Related Work

A complex system can be described as an intercon­
nected agents system exhibiting a global behavior that
results from agents interactions [8]. Nowadays, the
number of agents in a system grows in complexity,
from data traffic scenarios to multisensor systems, as
well as the possible interactions between them. There­
fore, infering the global behavior, not imposed by a
central controller, is a complex and time-consuming
challenge that requires a deep knowledge of the sys­
tem performance. Due of these facts, new automatic
techniques are required to facilitate the fast genera­
tion of models that are suitable for complex systems
presenting a large number of variables.

The case study presented in this work exhibits
high complexity in terms of number of variables
and possible traditional and non-traditional sources of
power consumption. This issue demands the following
review of the state-of-the-art.

In the last years, there has been a rising interest
in developing simple techniques that provide basic
power management for servers operating in a Cloud,
i.e. turning on and off servers, putting them to sleep
or using Dynamic Voltage and Frequency Scaling

(DVFS) to adjust servers' power states by reduc­
ing clock frequency. Many of these recent research
works have focused on reducing power consumption
in cluster systems [1, 15, 20, 35].

In general, these techniques take advantage of the
fact that application performance can be adjusted to
utilize idle time on the processor to save energy [13].
However, their application in Cloud servers is difficult
to achieve in practice as the service provider usually
over-provisions its power capacity to address worst
case scenarios. This often results in either waste of
power or severe under-utilization of resources. Thus, it
is critical to quantitatively understand the relationship
between power consumption, temperature and load at
the system level by the development of a power model
that helps in optimizing the use of the deployed Cloud
services.

Currently the state-of-the-art offers various ana­
lytical power models. However, these models are
architecture-dependant and do not include the contri­
bution of static power consumption, or the capabil­
ity of switching the frequency modes (DVFS). The
authors develop linear regression models that present
the power consumption of a server as a linear function
of its CPU usage [22, 28]. Some other models can be
found where server power is formulated as a quadratic
function of the CPU usage [24,34]. Still, as opposed to
ours, these models do not include the estimation of the
static power consumption (which has turned to have a
great impact due to the current server technology).

Bohra et al. [9] propose a robust fitting to calcu­
late their model that takes into account the correlation
between the total system power consumption and
component utilization. Our work follows a similar
approach but also incorporates the contribution of the
static power consumption, its dependence on tempera­
ture, and the effect of applying voltage and frequency
scaling techniques.

Interestingly, one key aspect in the management of
a data center is still not very well understood: con­
trolling the ambient temperature at which the data
center operates. Data centers operate in a broad tem­
perature range from 18°C to 24°C but some can be
as cold as 13°C [10, 25]. However, due to the lack
of accurate power models, the effect of ambient tem­
perature on the power consumption of the servers has
not been clearly analyzed, preventing the application
of optimization models to save energy. On the con­
trary, the experimental work presented in this paper

has been performed in ambient temperatures ranging
from 18°C to 25°C. The range selected follows nowa­
days' practice of operating at higher temperatures [17]
and close to the limits recommended by ASHRAE.
Although this practice obtains energy savings in the
cooling expense [14], the lack of a detailed power
model prevents to apply optimization policies.

In our previous work, we have applied the bene­
fits of Particle Swarm Optimization algorithms (PSO)
to identify an analytical model that provides accu­
rate results for power estimation [2]. PSO simplifies
the power model by significantly reducing the num­
ber of predefined parameters and variables used in the
analytical formulation. However, as a parameter iden­
tification mechanism, this technique does not provide
an optimal search of the features that best describe
the system power performance, so additional features
could be incorporated.

The work presented in this paper outperforms pre­
vious approaches in the area of power modeling for
enterprise servers in Cloud facilities in several aspects:

- Our approach consists on an automatic method
for the identification of an accurate power model
particularized for each target architecture. We pro­
pose an extensive power model consistent with
current architectures.

- The proposed methodology takes into account
the main power consumption sources resulting in
a multiparametric model to allow the develop­
ment of power optimization approaches. Different
parameters are combined by Feature engineer­
ing assuring that the optimal set of features is
considered.

- Optimal features are included in a classical regres­
sion resulting in a specific model instance for
every target architecture that is linear, convex
and derivable. Also the execution of the result­
ing power model is fast, making it suitable for
run-time optimization techniques.

3 Algorithm Description

3.1 Grammatical Evolution

As previously stated, we work on FE to obtain math­
ematical expressions that represent different power
consumption contributions. These expressions, or

features, are derived from the combination of previ­
ously collected experimental parameters (in our case
of study, they correspond to processor and mem­
ory temperatures, fan speeds, processor and memory
utilizations, processor frequencies and voltages). We
deal with a kind of SR problem to select the rel­
evant features. SR tries to simultaneously obtain a
mathematical expression while including the relevant
parameters to reproduce a set of discrete data. Besides,
GP has proven to be effective in a number of SR
problems [33]. However, GP presents some limita­
tions like bloating of the evolution (excessive growth
of memory computer structures), often produced in
the phenotype of the individual. During the last years,
variants to GP like GE appeared as a simpler opti­
mization process [26]. In our approach, GE allows the
generation of a new set of optimized features by apply­
ing SR. This feature generation is achieved thanks to
the use of grammars that define the rules for obtain­
ing mathematical expressions. More concretely, we
will use grammars expressed in Backus Naur Form
(BNF) [26].

A BNF specification is a set of derivation rules,
expressed in the form:

<symbol>::=<expression>

The rules are composed of sequences of terminals
and non-terminals. Symbols that appear at the left are
non-terminals while terminals never appear on a left
side. In this case we can affirm that < symbol > is a
non-terminal and, although this is not a complete BNF
specification, we can affirm also that < exprés s i on>
will be also a non-terminal, since those are always
enclosed between the pair < >. Therefore, in this case
the non-terminal < symbol > will be replaced (indi­
cated : : =) by an expression. The rest of the grammar
must define the different alternatives.

A grammar is represented by the 4-tuple
JVc Tc Pc S, being N the non-terminal set, T is the ter­
minal set, P the production rules for the assignment
of elements on N and T, and S is a start symbol that
should appear in N. The options within a production
rule are separated by a "4» symbol.

Figure 1 represents an example of a grammar in
BNF, designed for symbolic regression. The final
obtained expression will consist of elements of the set
of terminals T. These have been combined with the
rules of the grammar, as explained previously. Also,
grammars can be adapted to bias the search of the

N = {EXPR, OP, PREOP, VAR, NUM. DIG}
T = {+, -, *, /, sin, cos, exp, x, y, z,

0, 1, 2, 3, 4, 5, (,), .}
S = {EXPR}
P = {I, II ,IH ,IV ,V ,VI}
I <EXPR> ::= <EXPRX0PXEXPR>

I <PRE0P>(<EXPR>)
I <VAR>

II <0P> ::= + I - I * I /
III <PRE0P>::= sin I cos I exp
IV <VAR> ::= x | y | z | <NUM>
V <NUM> ::= <DIG>.<DIG> I <DIG>
VI <DIG> : : = 0 | 1 | 2 | 3 | 4 | 5

Fig. 1 Example of a grammar in BNF format designed for
symbolic regression

relevant features because there is a finite number of
options in each production rule.

Regarding both the structure and the internal oper­
ators, GE works exactly like a classic Genetic Algo­
rithm (GA) [3]. GE evolves a population formed
by a set of individuals, each one constituted by a
chromosome and a fitness value. In SR, the fitness
value is usually a regression metric like Root Mean
Square Deviation (RMSD), Coefficient of Variation
(CV), Mean Squared Error (MSE), etc. In GE, a chro­
mosome is a string of integers. In the optimization
process, GA operators named selection, crossover and
mutation are iteratively applied to improve the fit­
ness value of each individual. In order to compute
the fitness function for every iteration and to extract
the mathematical expression given by an individual,
a decoding process is applied. We refer the reader
to [16] to understand the different GA operators. In the
following, we explain through an example the decod­
ing process performed in GE, since it clearly explains
how better features are automatically selected. Let us
suppose that we have the BNF grammar provided in
Fig. 1 and the following 7-gene chromosome:

2 1 - 6 4 - 1 7 - 6 2 - 3 8 - 2 5 4 - 2

According to Fig. 1, the start symbol is s= {EXPR} ,
hence the decoded expression will begin with this non­
terminal:

Solution <EXPR>

Now, we use the first gene of the chromosome (also
called codon, equal to 21 in the example) in rule I of

the grammar. The number of choices in that rule is 3.
Hence, a mapping function (the modulus operator) is
applied:

2 1 MOD 3 = 0

and the first option is selected <EXPR><OP><EXPR>.

The selected option substitutes the decoded non­
terminal. As a consequence, the current expression is
the following:

S o l u t i o n = <EXPRxOPxEXPR>

The process continues with the next codon, 64, which
is used to decode the first non-terminal of the cur­
rent expression, namely, <EXPR>. Again, the mapping
function is applied to rule I:

6 4 MOD 3 = 1

and the second option <PREOP> (<EXPR>) is selected.
So far, the current expression is:

S o l u t i o n = <PREOPR> (<EXPR>) <OPxEXPR>

The next gene, 17, is now taken for decoding. At
this point, the first non-terminal in the current expres­
sion is <PREOP>. Therefore, we apply the mapping
function to rule I I I , which also has 3 different
choices:

1 7 MOD 3 = 2

and the third option exp is selected. The resulting
expression is

S o l u t i o n = exp(<EXPR>) <OPxEXPR>

Next codon, 62, decodes <EXPR> with rule I:

6 2 MOD 3 = 2

Value 2 means to select the third option, <VAR>. The
resulting expression is:

S o l u t i o n = exp(<VAR>) <OPxEXPR>

Codon 38 decodes <VAR> with rule IV:

3 8 MOD 4 = 2

selecting the third option, non-terminal z:

S o l u t i o n = exp (z) <OPxEXPR>

Non-terminal <OP> is decoded with codon 254 and
rule 11:

2 5 4 MOD 4 = 2

This value selects the third option, terminal *:

S o l u t i o n = exp(z)*<EXPR>

The last codon, decodes <EXPR> with rule I:

2 MOD 3 = 2

Value 2 selects the third option, non-terminal <VAR>.

So far, the current expression is:

S o l u t i o n = exp(z)*<VAR>

At this point, the decoding process has run out of
codons. That is, we have not arrived to an expres­
sion with terminals in all of its components. In GE,
the solution to this problem is to reuse codons start­
ing from the first one. In fact, it is possible to reuse
the codons more than once. This technique is known
as wrapping and mimics the gene-overlapping phe­
nomenon in many organisms [18]. Thus, applying
wrapping to our example, the process goes back to the
first gene, 21, which is used to decode <VAR> with
rule IV:

2 1 MOD 4 = 1

This result selects the second option, non-terminal y,
giving the final expression of the phenotype:

S o l u t i o n = e x p (z) * y

As can be seen, the process does not only perform
parameter identification like in a classic regression
method. In conjunction with a well-defined fitness
function, the evolutionary algorithm is also computing
an optimized set of features as mathematical expres­
sions by combining the set of parameters that best fits
the target system. Thus, GE is defining the optimal
set of features that will derive into the most accurate
power model.

3.2 Least Absolute Shrinkage and Selection Operator

Tibshirani proposes the least absolute shrinkage and
selection operator algorithm (lasso) [31] that mini­
mizes residual summation of squares according to the
summation of the absolute value of the coefficients
that are less than constant.

The algorithm combines the favourable features of
both subset selection and ridge regression like stabil­
ity, and offers a linear, convex and derivable solution.
Lasso provides interpretable models shrinking some
of the coefficients and setting others to exactly zero
values for generalized regression problems.

For a given non-negative value of A, the lasso
algorithm solves the following problem:

where:

- j8: vector of p components. Lasso algorithm
involves the L1 norm of /3

- Po'- scalar value.
- N: number of observations.
- y i: response at observation i.
- XÍ : vector of p values at observation i.
- A: non-negative regularization parameter corre­

sponding to one value of Lambda. The num­
ber of nonzero components of j3 decreases as A
increases.

At the end, we combine the use of GE that gen­
erates the set of relevant features with lasso that
computes the coefficients and the independent term in
the final linear model.

As a result, our GE+lasso framework solves our
optimization problem that targets the generation of
accurate power models for high-end servers.

4 Devised Methodology

The fast and accurate modeling of complex systems
is a relevant target nowadays. Modeling techniques
allow designers to estimate the effects of variations
in the performance of a system. Complex systems
present non-linear characteristics as well as a high
number of potential variables. Also, the optimal set of

features that impacts the system performance is not
well known as many mathematical relationships can
exist among them.

Hence, we propose a methodology that considers
all these factors by combining the benefits of both
GE algorithms and classical lasso regressions. This
technique provides a generic and effective modeling
approach that could be applied to numerous prob­
lems regarding complex systems, where the number
of relevant variables or their interdependence are not
known.

Figure 2 shows the proposed methodology
approach for the optimization of system modeling
problem. Detailed explanations of the different phases
are summarized in the following subsections.

4.1 GE Feature Selection

Given an extensive set of parameters that may cause
an effect on system performance, FE selects the opti­
mal set that best describes the system behavior. Also,
this technique, which is provided by GE, avoids the
inclusion of irrelevant features while incorporating
correlations and combinations of representative vari­
ables.

The input to our approach consists of a vector of
initial data that includes the entire set of variables x„
extracted from the system.

y = g\^x\c-x2
c-x^-{{{'-xn^- (2)

All these parameters are entered in the GE algorithm
to start the optimization process.

Each individual of the GE encodes its own set of
candidate features f\c fic hc (((c fm- The candidate
features follow the rules imposed by a BNF grammar
allowing the occurrence of a wide variety of oper­
ations and operands to favor building optimal sets
of features. Figure 3 shows an example of a BNF
grammar for this approach.

This grammar provides the operations +, —, *,)
and preoperators exp, sin, cos, In. The space of solu­
tions is easily modified by incorporating a broader
set of relationships between operands to the BNF
grammar.

The output of the GE stage consists of a matrix that
includes all the candidate features provided by indi­
viduals. Each individual output vector has its own set

Fig. 2 Optimized modeling
using GE+lasso
methodology

W, '-•* n

Transformed
_ data _

4\

Lasso

- z = a.f.+ a,f,+ a,f,+...+ a f +k
1 1 2 2 3 3 m m

Grammatical Evolution

f2 - x3 / x2

f 3 = X 2

L = x , * xn
m 2 n_

Set of candidate
features

(GE+lasso look for
the optimal)

X 1 ' X 2 ' X 3 X n ' V

Initial data
y = g(x1,x2,x3 xn)

^ > (a i -a2. a
3
 a

m . k)

RMSE

<c
Loop

GE+lasso

of m candidate features that intends to minimize the
fitness function provided for the system optimization.

z = g2^ñc hc hc (((c fm^-

4.2 Lasso Generic Model Generation

(3)

Modeling procedures usually intend to interpret sys­
tems' behavior. They have the purpose of acquiring
additional knowledge from the final models once these
have been derived. Linearity, convexity and differ­
entiability offered by lasso classic regression helps
modeling to be a more explanatory and repeatable pro­
cess. In addition, whereas GE is able to find complex
symbolic expressions, GE does not perform well in
parameter identification, mainly because the explo­
ration of real numbers is not easily representable in
BNFs. Due to these facts, we have included lasso
algorithm in our methodology in order to manage the
coefficient generation of the system model.

<list_features>

<feature>

<op>

<preop>

<var>

= <feature>

I <feature>;<list_features>

= (<feature><op><feature>)

I <preop>(<feature>)

I <var>

= + I - I * I /

= exp I sin I cos I In

= x[0] I x [l] I x[2] I x[3]
I x[4] I x[5] I . . . I x[n]

Fig. 3 Grammar in BNF format, x variables, with i = 0 (((«,
represent each parameter obtained from the system

As can be seen in Fig. 2, each individual of the GE
provides a set of candidate features to lasso. This clas­
sical regression is in charge of deriving the optimized
model for each individual by solving the following
equation.

aifl + a2fi + 03/3 H h amfm + k (4)

Lasso offers the set of optimized coefficients
(a\, Ü2, 03, (((, am, k) for each individual that min­
imizes the fitness function. This process provides
the goodness of each individual. All this information
feeds back the GE algorithm to generate the next pop­
ulation of individuals through selection, crossover and
mutation, creating a loop. The loop continues exe­
cuting until it completes the number of generations
defined by the GE. This process results in the set of
models that best fits system performance.

4.3 Fitness Evaluation

As our main target is to build accurate models, our
fitness function includes the error resulting in the esti­
mation process. The fitness function presented in (5)
leads the evolution to obtain optimized solutions thus
minimizing Root Mean Square Error or RMSD.

'¿S>°
P^n^ 1 < n < N

(5)

(6)

Estimation error en represents the deviation
between the measure given by system monitoring P,

and the estimation obtained by the model P. n repre­
sents each sample of the entire set of N samples used
to train the algorithms.

5 Case Study

In this section we describe a particular case study for
the application of the devised methodology presented
in Section 4. The problem to be solved is the fast
and accurate estimation of the power consumption in
virtualized enterprise servers performing Cloud appli­
cations. Our power model considers heterogeneity of
servers, as well as specific technological features and
non-traditional parameters of the target architecture
that affect power consumption. Hence, we propose
our modeling technique that considers all these factors
by combining the benefits of both GE algorithms and
classical lasso regressions.

Firstly, a GE algorithm is applied to extract those
relevant features that best describe power consump­
tion sources. Features may also include correlations
and combinations of representative variables due to
FE performed by GE. Then, the lasso algorithm takes
the optimal set of features in order to infer an expres­
sion that characterizes the power behavior of the target
architecture of a Cloud server. As a result, we derive
a highly accurate, linear and convex power model,
targeting a specific server architecture, that is automat­
ically generated by our evolutionary methodology.

We apply our methodology described in Section 4
to real measures gathered from a high-end Cloud
server in order to infer an accurate power model. Also,
we provide an experimental scenario for various work­
loads with the purpose of building and testing our
methodology.

5.1 Data Compilation

Data have been collected gathering real measures from
a Fujitsu RX300 S6 server based on an Intel Xeon
E5620 processor. This high-end server has a RAM
memory of 16GB and is running a 64bit CentOS
6.4 OS virtualized by the QEMU-KVM hypervisor.
Physical resources are assigned to four KVM virtual
machines, each one with a CPU core and a 4GB RAM
block.

The power consumption of a high-end server
usually depends on several factors that affect both

dynamic and static behavior [2]. Our proposed case
study takes into account the following 7 variables:

- Ucpu: CPU utilization (%)
- Tcpu: CPU temperature (Kelvin)
- Fcpu: CPU frequency (GHz)
- Vcpu: CPU voltage (V)
- Umem: Main memory utilization (Memory

accesses per cycle)
- Tmem: Main memory temperature (Kelvin)
- Fan: Fan speed (RPM)

Power consumption is measured with a current
clamp with the aim of validating our approach. CPU
and main memory utilization are monitored using
hardware counters collected with perf monitoring
tool. On board sensors are checked via IPMI to get
both CPU and memory temperatures and fan speed.
CPU frequency and voltage are monitored via cpufreq-
utils Linux package. To build a model that includes
power dependance with these variables, we use this
software tool to modify CPU DVFS modes during
workload execution. Also room temperature has been
modified in run-time with the goal of finding non-
traditional consumption sources that are influenced by
this variable.

5.2 Experimental Workload

We define three workload profiles (i) synthetic, (ii)
Cloud and (iii) HPC over Cloud as they emulate differ­
ent utilization patterns that could be found in typical
Cloud infrastructures.

5.2.1 Synthetic Benchmarks

The use of synthetic load allows to specifically stress
different server resources. The importance of using
synthetic load is to include situations that do not
meet the actual real workloads that we have selected.
Thus, the range of possible values of the different
variables is extended in order to adapt the model to
fit future workload characteristics and profiles. Look-
busy1 stresses different CPU hardware threads to a
certain utilization avoiding memory or disk usage. The
memory subsystem is also stressed separately using a
modified version of RandMem2. We have developed

http://www.devin.com/lookbusy/
2http://www.roylongbottom.org.uk

http://www.devin.com/lookbusy/
http://www.roylongbottom.org.uk

a program based on this benchmark to access random
memory regions individually, with the aim of explor­
ing memory performance. Lookbusy and RandMem
have been executed, in a separated and combined
fashion, onto 4 parallel Virtual Machines that con­
sume entirely the available computing resources of the
server.

On the other hand, real workload of a Cloud data
center is represented by the execution of Web Search,
from CloudSuite3, as well as by SPECXPU2006 mcf
and SPEC JCPU2006 perlbench [19].

5.2.2 Cloud Workload

Web Search characterizes web search engines, which
are typical Cloud applications. This benchmark pro­
cesses client requests by indexing data collected from
online sources. Our Web Search benchmark is com­
posed of three VMs performing as index serving nodes
(ISNs) of Nutch 1.2. Data are collected in the dis­
tributed file system with a data segment of 6 MB, and
an index of 2 MB that is crawled from the public Inter­
net. One of this ISNs also executes a Tomcat 7.0.23
frontend in charge of sending index search requests to
all the ISNs. The frontend also collects ISNs responses
and sends them back to the requesting client. Client
behavior is generated by Faban 0.7 performing in a
fourth VM. Resource utilization depends proportion­
ally on the number of clients accessing Web Search.
Our number of clients configuration ranges from 100
to 300 to expose more information about the applica­
tion performance. The four VMs use all the memory
and CPU resources available in each server.

5.2.3 HPC Over Cloud

In order to represent HPC over a Cloud com­
puting infrastructure, we choose SPEC-CPU2006
mcf and perlbench as they are memory and CPU-
intensive, and CPU-intensive applications, respec­
tively. SPEC-CPU2006 mcf consists on a network
simplex algorithm accelerated with a column genera­
tion that solves large-scale minimum-cost flow prob­
lems. On the other hand, a mail-based benchmark is
performed by SPEC.CPU2006 perlbench. This pro­
gram applies a spam checking software to randomly
generated email messages. Both SPEC applications

3http://parsa.epfl.ch/cloudsuite

are run in parallel in 4 VMs using entirely the available
resources of the server.

Instead of restricting the use of synthetic work­
loads only for training the algorithms, and limiting the
use of real Cloud benchmarks exclusively for testing,
we have used both workloads for the two purposes.
This procedure provides automation for the progres­
sive incorporation of additional benchmarks to the
model.

For each run of the combined GE+lasso approach,
we randomly select 50 % of each data set (synthetic,
Web Search, SPECXPU2006 mcf and perlbench) for
training and the remaining 50 % for testing stage. This
technique validates the variability and versatility of the
system, by analyzing the occurrence of local minima
in optimization scenarios.

6 Experimental Results

As we stated in Section 5, tests have been conducted
gathering real data from our Fujitsu server. Our experi­
ments present high variability for the different features
compiled from the server.

- CPU operation frequency (Fcpu) is fixed to f\ =
1(73 GHz, h = 1(86 GHz, / 3 = 2(13 GHz, f4 =
2(26 GHz, f5 = 2(39 GHz and f6 = 2(40 GHz;
thus modifying CPU voltage (Vcpu) from 1.73 V
to 2.4 V.

- Room temperature has been modified in run-time,
from 17°C to 27°C. Therefore, temperatures of
CPU and memory (Tcpu and Tmem) range from
306 K to 337 K, and from 298 K to 318 K
respectively.

- CPU and memory utilizations (Vcpu and I]mem)
take values from 0 % to 100 % and from 0 to 0.508
memory accesses (cache-misses) per CPU cycle
respectively.

- Finally, due to both room temperature, and CPU
and memory utilization variations, fan speed val­
ues (Fan) range from 3540 RPM to 7200 RPM.

Data have been split into training and testing sets.
Training stage performs feature selection and builds
the power model according to our grammar and
fitness function. Next, the testing stage examines the
power model accuracy. The algorithm proposed by our
methodology is executed completely 20 rounds using

http://parsa.epfl.ch/cloudsuite

the same grammar and fitness function configuration.
For each run, we randomly select 50 % of each data
set for training and 50 % for testing stage, thus obtain­
ing 20 final power models. This procedure validates
the variability and versatility of the system, by ana­
lyzing the occurrence of local minima in optimization
scenarios.

6.1 Algorithm Setup

6.1.1 GE setup Parameters

We use GE to obtain a set of candidate features that
best describe our optimization problem. To obtain
adequate solutions we tune the algorithm using the
following parameters:

- Population size: 250 individuals
- Number of generations: 3000
- Chromosome length: 100 codons
- Mutation probability: inversely proportional to the

number of rules, 1)4 in our case.
- Crossover probability: 0.9
- Maximum wraps: 3
- Codon size: 256
- Tournament size: 2 (binary)

As we strictly seek for simple combination of fea­
tures, our proposed BNF grammar only provides the
operations +A- 4fe A. The space of solutions is easily
increased by incorporating more complex relation­
ships between operands to the BNF grammar. Figure 4
shows the BNF grammar proposed for this case study.

6.1.2 Lasso Setup Parameters

We use the lasso algorithm to obtain a set of candi­
date solutions with low error, when compared with

<list_features> ::= <feature>

I <feature>;<list_features>

<feature> ::= (<feature><op><feature>)

I <var>
<op> : := + I - I * | /
<var> : := x [0] I x [l] I x [2] I x [3]

I x [4] I x [5] I i [6]

Fig. 4 Grammar in BNF format, x variables, with i = 0 (((6,
represent processor and memory temperatures, fan speed, pro­
cessor and memory utilization percentages, processor frequency
and voltage, respectively

the real power consumption measures in order to
solve our optimization modeling problem. Lasso setup
parameters are the following:

- Number of observations: 100
- A regularization parameter: Geometric sequence

of 100 values, the largest just sufficient to produce
zero coefficients.

- A regularization parameter: 1 • 10~4

6.2 Training Stage

We have performed variable standardization for every
feature (in the range 11c 2]) to assure the same prob­
ability of appearance for all the variables and to
enhance the GE symbolic regression. Experiments
with more than 4 features do not provide better values
for RMSD. Hence, we have bounded their occurrence
to a maximum of 4 by penalizing higher number of
features in our fitness evaluation function. This also
facilitates the generation of simpler models, which
are faster and easy to be applied, in order to be
used for real-time power optimizations. Table 1 shows
phenotypes of each feature combined with the coef­
ficients provided by lasso that are obtained for 20
complete executions of our methodology algorithm.
Fitness results, that correspond to the RMSD between
measured and estimated power consumption (see (5)),
are shown in Table 2 for the training stage. Both
Tables 1 and 2 present the results for the best model of
each execution.

As can be seen in Table 1, power model solu­
tions combine features that correspond to a single
variable with others that merge a combination of sev­
eral parameters. On the one hand, there are single
variable features that appear in up to 50 % of the
power model solutions. This shows that there are lin­
ear dependencies with certain parameters, as Ucpu,
Tpcu, and Tmem that are consistent regardless of the
workload that is used for training and testing. On the
other hand, variables as Vcpu, Fcpu and Umem are
seldom treated as a feature in the model solutions.
However, they systematically appear when combined
with other variables. These results show how there
exist input parameters that are not relevant for the
modeling or they are correlated to other features, and
their inclusion could decrease the model accuracy.
Model training for run 10 shows the lowest RMSD
error of 0.1067.

Table 1 Power models obtained by combining GE features and lasso coefficients for 20 executions

Run ax • ft + a2 • f2 + a3 • f3 + aA • f4+ K

1 0.288 • Tcpu

+0(127- (((Tcpu*Ucpu)-Umem)*Fan)

+0(220- (Fan*Tmem)

+ -0(450-Fan+1(043

2 0.173 • Ucpu

+0(438- Tcpu

+ - 0(209- Fan

+0(070- (Tmem/(Umem/(Fan*Tmem))) +0(636

3 0.256 • (Fan/(Ucpu/Tmem))

+0(346- Ucpu

+ - 0(694- (Fan/Tcpu) +1(151

4 -0(376- Tmem

+ - 0(033- ((((Fan/Tcpu)/(Fcpu+Fcpu))/((Fan/(Vcpu+Umem))/Ucpu))*Fan)

+0(606- ((Fan/((Umem+(Fan+(Fcpu/Fcpu)))*(Fan/Ucpu)))+(Fan+Tmem))

+0(786- ((Fcpu-(Fcpu+Fan))/Tcpu) +0(810

5 0.181 • Ucpu

+0(254- (Fan*Tmem)

+0(378- Umem

+ - 0(345- (((Umem+Umem)*Fan)/Tcpu) +0(939

6 0.483 • (Ucpu-Fan)

+0(030- ((Tmem+Fan)*((Fan-(Tmem/((Ucpu+Vcpu)+(Fan+Fan))))*(Fan*Fan)))

+0(220- Tmem

+0(430- (Tcpu/Ucpu) +0(402

7 0.506 • Tcpu

+0(195- ((Ucpu/(Vcpu+(Tmem-Umem)))*Vcpu)

+ -0(319-Fan

+ - 0(199- (((Fan+Umem)*((Umem-Tmem)/Tcpu))*Fan) +0(704

8 0.084 • (Ucpu/Vcpu)

+0(473- Tmem

+0(499- (Ucpu/(Ucpu*(((Fcpu-Vcpu)+Tmem)/Tcpu)))

+ - 0(019- (Fan-(((Fan+Vcpu)*Tcpu)*((Ucpu*Tmem)-(Vcpu-Fcpu)))) +0(046

9 0.927 • Ucpu

+ - 0(380- Fan

(((Tmem*((Fan+Umem)—Ucpu))+(Tcpu—(Ucpu*Umem)))—Ucpu)

Tcpu +0(365

Tmem

(((Tmem+Fan)*Fan)—Umem)

(Ucpu+Tmem)

(Tcpu-Fan) +0(665

(Tmem* (Ucpu—(Tmem*Fan)))

Ucpu

(Tcpu-Fan) +0(810

Umem

+0(174- Ucpu

+0(647- (Tcpu/Tmem)

+0(647- Tmem + -0 (318

+0(232

+0(180

10 -0(073

+0(106

+0(194

+0(437

11 -0(117

+0(317

+0(377

12 -0(070

Table 1 (continued)

Run ax • ft + a2 • f2 + a3 • f3 + aA • f4+ K

13 0.291 • (Tmem+Fan)

+ - 0(409- (Fan/Tcpu)

+0(234- Tcpu

+0(423- (Ucpu/(Tmem+Umem)) +0(442

14 0.093 • (Ucpu+(Ucpu+(Tmem*Tmem)))

+ - 0(019- ((Tcpu-((Tmem*Fan)-Vcpu))-Vcpu)

+ - 0(081- (Tmem+Umem)

+0(462- Tcpu +0(526

15 -0(004 • Fcpu

+0(380- (Ucpu/(Umem+Fan))

+0(054- (Tmem*(Tmem+Fan))

+0(454- Tcpu +0(347

16 -0(010 • Fan

+ - 0(155- (((Fan/Tmem)-(Tmem/Ucpu))*Fan)

+0(282- Ucpu

+0(417- Tcpu +0(393

17 0.242 • (Fan*(Tmem/Ucpu))

+0(396- (Tcpu-Fan)

+0(001-Fcpu

+0(344- Ucpu +0(508

18 0.448 • Tmem

+ - 0(178- Umem

+ - 0(221- (((((Tcpu/(Vcpu/(Fcpu-Vcpu)))-Ucpu)+Fan)/Tmem)-(Tcpu-(Tmem-(Tcpu+Fan))))

+ 0.100 • (Umem/Fan) +0(271

19 0.134-Ucpu

+0(241- (Tmem*Fan)

+0(066- Ucpu

+ - 0(403- ((Fan-Tcpu)/Umem) +0(653

20 -0(433 • (((Fan-(Ucpu+Umem))/Fan)-(Tcpu+Fan))

+ - 0(295- Umem

+ - 0(102- Fan

+0(235- (((Tmem-Umem)-Ucpu)+Fan) +0(184

6.3 Model Testing data sets. These values have been obtained according
to the following formulation:

At this stage, we analyze the quality of the models
that we have simultaneously tested for the 20 complete
executions of our methodology algorithm. Results are
also analyzed particularly for the testing data that cor­
responds to each benchmark dataset in order to verify
the estimation reliability of the models for different

<?AVG

1 ^ 4 P ^ - P ^ l 100
— • > ^\<n<N (7)

workloads. Table 2 shows testing average error per- where P is the power measure given by the current
centages particularized for the different benchmark clamp and P is the power estimated by the model

Table 2 RMSD and Average testing error percentages for 20 executions

Run

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Train (RMSD)

0.1069

0.1068

0.1070

0.1070

0.1069

0.1071

0.1070

0.1071

0.1072

0.1067

0.1073

0.1071

0.1070

0.1072

0.1071

0.1071

0.1079

0.1081

0.1082

0.1082

Validation (RMSD)

0.1068

0.1067

0.1068

0.1071

0.1069

0.1068

0.1072

0.1072

0.1072

0.1072

0.1075

0.1076

0.1070

0.1072

0.1070

0.1070

0.1057

0.1060

0.1060

0.1059

Synthetic {°,

3.985

3.984

3.995

4.007

3.991

3.988

3.995

3.994

4.033

4.052

4.023

4.098

4.073

4.088

4.083

4.060

3.951

3.981

3.953

3.974

phenotype. n represents each sample of the entire set
of N samples.

Total average error for the testing dataset shows
lowest error of 3.98 % (as shown in Table 2). Best
testing error corresponds to the solution with lower
training error. Solutions can be broken down for
those samples that belong to different tests, achiev­
ing testing errors of 4.052 %, 3.894 %, 3.969 %
and 4.031 % for synthetic, SPECXPU2006 mcf,
SPEC-CPU2006 perlbench and WebSearch workloads
respectively. This fact confirms that our methodology
works well for our scenario, extracting optimized sets
of features and coefficients that are consistent even
for 20 runs with random selection of both training and
testing dataset.

Our methodology application shows very accurate
testing results for all of the whole executions rang­
ing from 3.98 % to 4.18 %. The obtained results are
robust, as they have been obtained for a heteroge­
neous mix of workloads so the power models are not
workload-dependant. According to these results, we
can infer that our methodology is effective for per­
forming feature selection and building accurate multi-
parametric, linear, convex and differentiable power

mcf(%)

4.097

4.099

4.110

4.085

4.106

4.085

4.042

3.996

3.884

3.894

3.926

3.896

3.939

3.935

3.922

3.937

4.136

4.171

4.190

4.205

perlb (%)

4.463

4.463

4.504

4.469

4.494

4.459

4.462

4.559

3.990

3.969

3.963

3.951

4.173

4.174

4.161

4.164

4.208

4.180

4.224

4.178

WebSearch (%)

4.147

4.110

4.145

4.155

4.113

4.153

4.101

4.101

4.059

4.031

4.063

4.030

4.243

4.184

4.246

4.217

4.056

4.050

4.212

4.074

Total (%)

4.173

4.164

4.189

4.179

4.176

4.171

4.150

4.162

3.991

3.986

3.994

3.994

4.107

4.096

4.103

4.095

4.088

4.095

4.145

4.108

models for high-end Cloud servers. This technique
can be considered as a starting point for implement­
ing energy optimization policies for Cloud computing
facilities.

7 Conclusions

This paper has presented a novel work in the field
of FE and SR for the automatic inference of accu­
rate models. Resulting models include combination
and correlation of variables due to the FE and
SR performed by GE. Therefore, the models incor­
porate the optimal selection of representative fea­
tures that best describe the target problem while
providing linearity, convexity and differentiability
characteristics.

As a proof of concept, the devised methodology
has been applied to a current computing problem,
the power modeling of high-end servers in a Cloud
environment. In this context, the proposed method­
ology has shown relevant benefits with respect to
state-of-the-art approaches, like better accuracy and
the opportunity to consider a broader number of input

parameters that can be exploited by further power
optimization techniques.

Acknowledgments Research by Marina Zapater has been
partly supported by a PICATA predoctoral fellowship of the
Moncloa Campus of International Excellence (UCM-UPM).
This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness, under contracts
TIN2008-00508, TEC2012-33892 and IPT-2012-1041-430000,
and INCOTEC. The authors thankfully acknowledge the com­
puter resources, technical expertise and assistance provided by
the Centro de Supercomputacion y Visualization de Madrid
(CeSViMa).

References

1. Adiga, N., et al: An overview of the BlueGene/L Super­
computer Supercomputing, ACM/IEEE 2002 Conference,
pp. 60-60 (2002)

2. Arroba, P., Risco-Martín, J.L., Zapater, M., Moya, J.M.,
Ayala, J.L., Olcoz, K.: Proceedings of the 5th Interna­
tional Conference in Sustainability in Energy and Buildings
(SEB' 14) 2014. Accepted, to appear in (2014)

3. Back, T, Hammel, U., Schwefel, H.P: Evolutionary com­
putation: comments on the history and current state.
Evol. Comput., IEEE Trans, on 1(1), 3-17 (1997).
doi:10.1109/4235.585888

4. Bar-Yam, Y.: Dynamics of Complex Systems. Addison-
Wesley stydies in nonlinearity. Westview Press (1997)

5. Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De
Meer, H., Dang, M.Q., Pentikousis, K.: Energy-efficient
cloud computing. Comput. J. 53(7), 1045-1051 (2010)

6. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.:
A survey on metaheuristics for stochastic combinatorial
optimization. Natural Comput. An Int. J. 8(2), 239-287
(2009). doi:10.1007/sll047-008-9098-4

7. Blum, C , Roli, A.: Metaheuristics in combinatorial opti­
mization: Overview and conceptual comparison. ACM
Comput. Surv. 35(3), 268-308 (2003). doi:10.1145/
937503.937505

8. Boceara, N.: Modeling Complex Systems. Graduate Texts
in Physics. Springer (2010)

9. Bohra, A , Chaudhary, V: IPDPSW, pp. 1-8 (2010)
10. Brandon, J.: Going green in the data center: Practical steps

for your sme to become more environmentally friendly.
Processor 29(39), 1-30 (2007)

11. Buyya, R., et al.: PDPTA, p. 2010, Las Vegas (2010)
12. Chen, Q., et al.: DASC, pp. 768-775 (2011)
13. Contreras, G., Martonosi, M.: ISLPED, pp. 221-226, New

York (2005)
14. El-Sayed, N., Stefanovici, LA., Amvrosiadis, G., Hwang,

A.A., Schroeder, B.: Temperature management in data cen­
ters: why some (might) like it hot. SIGMETRICS Perform.
Eval. Rev. 40(1), 163-174 (2012)

15. Ge, R., et al.: Performance-constrained distributed dvs
scheduling for scientific applications on power-aware

clusters: In: Supercomputing Conference, SC '05, pp. 34-
34. IEEE Computer Society, Washington, DC (2005)

16. Goldberg, D.E.: Genetic algorithms in search, optimiza­
tion, and machine learning. Addison-Wesley Professional
(1989)

17. Google Data Centers: Efficiency: How we do it. Temper­
ature control (2014). http://www.google.com/intl/en_ALL/
about/datacenters/efficiency/internal/temperature

18. Hemberg, E., Ho, L., O'Neill, M., Claussen, H : A com­
parison of grammatical genetic programming grammars
for controlling femtocell network coverage. Gen. Prog.
Evol. Mach. 14(1), 65-93 (2013). doi: 10.1007/s 10710-012-
9171-8

19. Henning, J.L.: Spec cpu2006 benchmark descriptions.
SIGARCH Comput. Archit. News 34(4), 1-17 (2006).
doi: 10.1145/1186736.1186737

20. Hsu, C.H., Feng, W.C.: Supercomputing Conference, pp. 1-
1 (2005)

21. Kaplan, J., Forrest, W, Kindler, N.: Revolutionizing data
center energy efficiency. Tech. Rep. July. McKinsey &
Company (2008)

22. Lewis, A., et al.: HotPower, pp. 4^1, Berkeley (2008)
23. Markoff, J., Lohr, S.: Intel's huge bet turns iffy. New York

Times Technology Section (2002)
24. Meisner, D., et al.: ISLPED, pp. 319-324, New York (2010)
25. Miller, R.: Google: Raise your data center temperature

(2008). http://www.datacenterknowledge.com/archives/
2008/10/14/google-raise-your- data- center- temperature/

26. O'Neill, M., Ryan, C : Grammatical evolution. Evolution­
ary Computation, IEEE Transactions on 5(4), 349-358
(2001). doi: 10.1109/4235.942529

27. Niles, P., Donovan, P.: Virtualization and Cloud Comput­
ing: Optimized Power, Cooling, and Management Max­
imizes Benefits. White paper 118, Revision. Tech. rep.,
vol. 3. Schneider Electric (2011)

28. Pelley, S., et al.: WEED (2009)
29. Ryan, C , Collins, J., Neill, M.: Grammatical evolu­

tion: Evolving programs for an arbitrary language. In:
Banzhaf, W, Poli, R., Schoenauer, M., Fogarty, T. (eds.)
Genetic Programming, Lecture Notes in Computer Science,
vol. 1391, pp. 83-96. Springer Berlin Heidelberg (1998).
doi:10.1007/BFb0055930

30. Scheihing, P.: Data center facilities and engineering confer­
ence, Washington DC (2007)

31. Tibshirani, R.: Regression shrinkage and selection via the
lasso. J. R. Stat. Soc. Series B (Methodological) 58(1), 267-
288(1996)

32. Turner, C.R., Fuggetta, A., Lavazza, L., Wolf, A.L.: A
conceptual basis for feature engineering. J. Syst. Software
49(1), 3-15 (1999). doi:10.1016/S0164-1212(99)00062-X

33. Vladislavleva, E., Smits, G., den Hertog, D.: Order of non-
linearity as a complexity measure for models generated
by symbolic regression via pareto genetic programming.
Evol. Comput., IEEE Trans, on 13(2), 333-349 (2009).
doi: 10.1109/TEVC.2008.926486

34. Warkozek, G , et al.: ICIT, pp. 211-216 (2012)
35. Warren, M., et al.: Supercomputing Conference, pp. 61-61

(2002)

http://www.google.com/intl/en_ALL/
http://www.datacenterknowledge.com/archives/

