Skip to main content
Log in

Analysis Perspective Views of Grid Simulation Tools

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Due to the high complexity of Grid computing systems, experimentation on a real Grid system is challenging and time consuming. Moreover, deploying a Grid system demands a lot of efforts, money, and skills. Therefore, a simulation based approach of experimentation and research is adopted by many researchers. Many simulation tools are available supporting diverse research studies in the Grid computing area. However, researchers need to choose the most appropriate one for the intended study, and taking that decision requires that the researchers understand all relevant details pertaining to the Grid simulation tools. Therefore, to guide a researcher in choosing a particular Grid simulation tool, we pose important questions that the researcher needs to consider. To answer the posed questions, we provide analysis perspective views of 12 important Grid simulation tools with emphasis on different users. Furthermore, we share our experience of working with SimGrid and GridSim. Our results with 31 comparison criteria on the selected Grid simulation tools would become very useful to users to get insights on the tools. Furthermore, we expect that the presented work will guide the authors of prospective simulation tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Foster, I., Kesselman, C. (eds.): The grid 2: blueprint for a new computing infrastructure, 2nd ed., ser. The Elsevier Series in Grid Computing. Elsevier, New York (2003)

  2. Foster, I.: What is the grid? A three point checklist. GRIDtoday 1(6) (2002)

  3. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001)

    Article  Google Scholar 

  4. Németh, Z., Sunderam, V.: Characterizing grids: Attributes, definitions, and formalisms. J. Grid Comput. 1(1), 9–23 (2003)

    Article  Google Scholar 

  5. Prajapati, H.B., Dabhi, V.K.: Classification and characterization of core grid protocols for global grid computing. arXiv:1302.5481 preprint (2013)

  6. Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for computational grids. In: Proceedings of the 5th ACM Conference on Computer and communications security. New York, NY, USA: ACM, pp 83–92 (1998)

  7. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource management systems for distributed computing. Softw.: Pract. Experience 32(2), 135–164 (2002)

    MATH  Google Scholar 

  8. Pugliese, A., Talia, D., Yahyapour, R.: Modeling and supporting grid scheduling. J. Grid Comput. 6(2), 195–213 (2008)

    Article  Google Scholar 

  9. Prajapati, H.B., Shah, V.A.: Scheduling in grid computing environment. In: Procedings of the 4th International Conference on Advanced Computing Communication Technologies (ACCT), pp 315–324 (2014)

  10. von Laszewski, G., Hategan, M.: Workflow concepts of the java cog kit. J. Grid Comput. 3(3-4), 239–258 (2005)

    Article  Google Scholar 

  11. Taylor, I.J., Deelman, E., Gannon, D., Shields, M., et al.: Workflows for e-science scientific workflows for grids. Springer, Berlin Heidelberg (2007)

    Google Scholar 

  12. Buyya, R., Murshed, M.: Gridsim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing. Concurr. Comput.: Pract. Experience 14(13-15), 1175–1220 (2002). Available: doi:10.1002/cpe.710

    Article  MATH  Google Scholar 

  13. Prajapati, H.B., Shah, V.A.: Advance reservation based dag application scheduling simulator for grid environment. Int. J. Comput. Appl. 61(7), 45–51 (2013). published by Foundation of Computer Science, New York, USA

    Google Scholar 

  14. Sulistio, A., Yeo, C.S., Buyya, R.: A taxonomy of computer-based simulations and its mapping to parallel and distributed systems simulation tools. Softw.: Pract. Experience 34(7), 653–673 (2004)

    Google Scholar 

  15. Taheri, J., Zomaya, A., Khan, S.U.: Grid simulation tools for job scheduling and datafile replication. In: Khan, S. U., Zomaya, A. Y., Wang, L. (eds.) Scalable Computing and Communications: Theory and Practice, Wiley-IEEE Computer Society Press (2013)

  16. Casanova, H., Legrand, A., Quinson, M.: Simgrid: a generic framework for large-scale distributed experiments. In: Proceedings of the 10th International Conference on Computer Modeling and Simulation 2008. UKSIM 2008, pp 126–131 (2008)

  17. The Network Simulator: NS-2 Last accessed on 20 August 2014. Available: http://www.isi.edu/nsnam/ns/ (2014)

  18. Issariyakul, T.: Introduction to network simulator NS2. Springer Science+ Business Media (2012)

  19. Liu, J., Nicol, D.M.: Dassf 3.1 user’s manual, Dartmouth College (2001)

  20. Varga, A, et al.: The omnet++ discrete event simulation system. In: Proceedings of the European Simulation Multiconference (ESM’2001) (2001)

  21. Chang, X.: Network simulations with opnet. In: Proceedings of the 31st Conference on Winter simulation: Simulation—a bridge to the future-Vol. 1. ACM, pp. 307–314 (1999)

  22. Carbone, M., Rizzo, L.: Dummynet revisited. ACM SIGCOMM Comput. Commun. Rev. 40(2), 12–20 (2010)

    Article  Google Scholar 

  23. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb, C., Joglekar, . A.: An integrated experimental environment for distributed systems and networks. ACM SIGOPS Oper. Sys. Rev. 36(SI), 255–270 (2002)

    Article  Google Scholar 

  24. PlanetLab: Last accessed on 20 August 2014. Available: http://www.planet-lab.org/ (2014)

  25. Carson, M., Santay, D.: Nist net: a linux-based network emulation tool. ACM SIGCOMM Comput. Commun. Rev. 33(3), 111–126 (2003)

    Article  Google Scholar 

  26. Vishwanath, K.V., Gupta, D., Vahdat, A., Yocum, K.: Modelnet: towards a datacenter emulation environment. In: Proceedings of the 9th IEEE International Conference on Peer-to-Peer Computing, 2009. P2P’09, pp 81–82 (2009)

  27. Eriksen, M.A.: Trickle: a userland bandwidth shaper for unix-like systems. In: USENIX Annual Technical Conference, FREENIX Track, pp 61–70 (2005)

  28. Canon, L., Jeannot, E.: Wrekavoc: a tool for emulating heterogeneity. In: Proceedings of the 20th International Conference on Parallel and Distributed Processing Symposium, 2006. IPDPS 2006 (2006)

  29. Rosenblum, M., Bugnion, E., Devine, S., Herrod, S.A.: Using the simos machine simulator to study complex computer systems. ACM Trans. Model. Comput. Simul.(TOMACS) 7(1), 78–103 (1997)

    Article  Google Scholar 

  30. Howell, F., McNab, R.: Simjava: a discrete event simulation library for java. Simul. Ser. 30, 51–56 (1998)

    Google Scholar 

  31. Bagrodia, R., Meyer, R., Takai, M., Chen, Y.-a., Zeng, X., Martin, J., Song, H.Y.: Parsec: a parallel simulation environment for complex systems. Computer 31(10), 77–85 (1998)

    Article  Google Scholar 

  32. Zeng, X., Bagrodia, R., Gerla, M.: Glomosim: a library for parallel simulation of large-scale wireless networks. In: Proceedings of the 12th IEEE Workshop Conference on Parallel and Distributed Simulation, 1998. PADS 98, pp 154–161 (1998)

  33. Takefusa, A.: Bricks: a performance evaluation system for scheduling algorithms on the grids. In: JSPS Workshop on Applied Information Technology for Science (JWAITS 2001) (2001)

  34. Song, H.J., Liu, X., Jakobsen, D., Bhagwan, R., Zhang, X., Taura, K., Chien, A.: The microgrid: a scientific tool for modeling computational grids. In: Proceedings of the IEEE Conference on Supercomputing, ACM/IEEE 2000 , pp 53–53 (2000)

  35. Liu, X., Xia, H., Chien, A.A.: Validating and scaling the microgrid: a scientific instrument for grid dynamics. J. Grid Comput. 2(2), 141–161 (2004)

    Article  Google Scholar 

  36. Brooks, C., Lee, E.A., Liu, X., Neuendorffer, S., Zhao, Y., Zheng, H., Bhattacharyya, S.S., Cheong, E., Davis, I., Goel, M., et al.: Heterogeneous concurrent modeling and design in java (volume 1: Introduction to ptolemy ii), DTIC Document Tech. Rep. (2008)

  37. Dumitrescu, C., Foster, I.: Gangsim: a simulator for grid scheduling studies. In: Proceedings of the IEEE International Symposium on Cluster Computing and the Grid, 2005. CCGrid 2005, vol. 2, pp 1151–1158 (2005)

  38. Legrand, I.C., Newman, H., Dobre, C., Stratan, C.: Monarc simulation framework. In: International Workshop on Advanced Computing and Analysis Techniques in Physics Research, Tsukuba, Japan (2003)

  39. Bell, W.H., Cameron, D.G., Millar, A.P., Capozza, L., Stockinger, K., Zini, F.: Optorsim: a grid simulator for studying dynamic data replication strategies. Int. J. High Perform. Comput. Appl. 17(4), 403–416 (2003)

    Article  Google Scholar 

  40. Quetier, B., Cappello, F.: A survey of grid research tools: simulators, emulators and real life platforms. In: Proceedings of the 17th IMACS World Congress (2005)

  41. Taura, K.: Grid explorer: A tool for discovering, selecting, and using distributed resources efficiently. IPSJ SIG Tech. Rep. 2004, 235–240 (2004)

    Google Scholar 

  42. Grid computing on DAS-2: Last accessed on 20 August 2014. Available: http://www.cs.vu.nl/das2/das2-grid.html (2014)

  43. Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot, E., Jégou, Y., Lanteri, S., Leduc, J., Melab, N., et al.: Grid’5000: a large scale and highly reconfigurable experimental grid testbed. Int. J. High Perform. Comput. Appl. 20(4), 481–494 (2006)

    Article  Google Scholar 

  44. Curiel, M., Alvarez, G., Flores, L.: Evaluating tools for performance modeling of grid applications. In: Frontiers of High Performance Computing and Networking–ISPA 2006 Workshops. Springer, pp 854–863 (2006)

  45. El-khatib, Y., Edwards, C., Damjanovic, D., Heiß, W., Welzl, M., Stiller, B., Gonċalves, P., Loiseau, P., Vicat-Blanc Primet, P., Fan, L., et al.: Survey of grid simulators, a network-level analysis of grid applications. EC-GIN Deliverable 2 (2008)

  46. Chicsim (the chicago grid simulator): Last accessed on 13 December 2013. Available: http://people.cs.uchicago.edu/krangana/ChicSim.html (2013)

  47. Iosup, A., Epema, D.: Grenchmark: a framework for analyzing, testing, and comparing grids. In: Proceedings of the 6th IEEE International Symposium on Cluster Computing and the Grid, 2006. CCGRID 06, vol. 1, pp 313–320 (2006)

  48. Lamehamedi, H., Shentu, Z., Szymanski, B., Deelman, E.: Simulation of dynamic data replication strategies in data grids. In: Parallel and Distributed Processing Symposium, Proceedings. International. IEEE, 2003, pp. 10–pp. (2003)

  49. Jin, H., Huang, J., Xie, X., Zhang, Q.: Jfreesim: a grid simulation tool based on mtmsmr model. In: Advanced Parallel Processing Technologies. Springer, pp 332–341 (2005)

  50. Thysebaert, P., Volckaert, B., De Turck, F., Dhoedt, B., Demeester, P.: Evaluation of grid scheduling strategies through nsgrid: a network-aware grid simulator. Neural, Parallel Scientific Computations 12(3), 353–378 (2004)

    Google Scholar 

  51. Kondo, D.: Simboinc: A simulator for desktop grids and volunteer computing systems. Last accessed on 20 August 2014. Available: http://simboinc.gforge.inria.fr/ (2014)

  52. Phatanapherom, S., Uthayopas, P., Kachitvichyanukul, V.: Dynamic scheduling ii: fast simulation model for grid scheduling using hypersim. In: Proceedings of the 35th Conference on Winter simulation: driving innovation. Winter Simulation Conference, pp 1494–1500 (2003)

  53. Jain, R.: The art of computer systems performance analysis. Wiley, New York (2008)

    Google Scholar 

  54. Simatos, C.: The simjava tutorial, University of Edinburgh, (http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/guide/tutorial.html, email: C.Simatos@sms. ed.ac.uk) (2002)

  55. Kaminsky, A.: Simulation simplified, Creative Commons (2011)

  56. Ingalls, R.G.: Introduction to simulation. In: Proceedings of the 40th Conference on Winter Simulation. Winter Simulation Conference, pp 17–26 (2008)

  57. Versatile yet Scalable and Accurate Simulation of Distributed Applications and Systems: The SimGrid Project by Arnaud Legrand et al. at Grenoble University, CNRS, France on March 07 2013. Last accessed on 20 August 2014. Available: http://mescal.imag.fr/membres/arnaud.legrand//blog/2013/03/06/130307-keynote-simutools.pdf (2014)

  58. Travassos, G.H., Barros, M.O.: Contributions of in virtuo and in silico experiments for the future of empirical studies in software engineering. In: Proceedings of the 2nd Workshop on Empirical Software Engineering the Future of Empirical Studies in Software Engineering (2003)

  59. Singh, V.P: System Modeling and Simulation. New Age International Publishers (2009)

  60. Jones, D.W.: An empirical comparison of priority-queue and event-set implementations. Commun. ACM 29(4), 300–311 (1986)

    Article  Google Scholar 

  61. Rönngren, R., Ayani, R., Fujimoto, R.M., Das, S.R.: Efficient implementation of event sets in time warp. SIGSIM Simul. Dig. 23(1), 101–108 (1993)

    Article  Google Scholar 

  62. Nikolopoulos, S.D., MacLeod, R.: An experimental analysis of event set algorithms for discrete event simulation. Microprocessing and Microprogramming 36(2), 71–81 (1993)

    Article  Google Scholar 

  63. Steinman, J.S.: Discrete-event simulation and the event horizon part 2: event list management. SIGSIM Simul. Dig. 26(1), 170–178 (1996)

    Article  Google Scholar 

  64. Sleator, D.D., Tarjan, R.E.: Self-adjusting heaps. SIAM J. Comput. 15(1), 52–69 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  65. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM (JACM) 32(3), 652–686 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  66. Tang, W.T., Goh, R.S.M., Thng, I. L.-J.: Ladder queue: An o(1) priority queue structure for large-scale discrete event simulation. ACM Trans. Model. Comput. Simul. 15(3), 175–204 (2005)

    Article  Google Scholar 

  67. Brown, R.: Calendar queues: A fast o(1) priority queue implementation for the simulation event set problem. Commun. ACM 31(10), 1220–1227 (1988)

    Article  Google Scholar 

  68. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. McGraw Hill, New York (1991)

    Google Scholar 

  69. Kernighan, B.W., Pike, R.: The UNIX Programmig Environment. Prentice-Hall of India (2002)

  70. Klusáċek, D., Rudová, H.: Alea 2: job scheduling simulator. In: Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques. (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), p 61 (2010)

  71. Dahl, O.-J., Nygaard, K.: Simula: an algol-based simulation language. Commun. ACM 9(9), 671–678 (1966)

    Article  MATH  Google Scholar 

  72. Kiviat, P.J., Villanueva, R., Markowitz, H.M: The simscript ii programming language, DTIC Document, Tech. Rep. (1968)

  73. Hands-on: Lifecycle of a Grid job by Fotis Georgatos <fotis@mail.cern.ch> on April 23, 2007. Last accessed on 20 August 2014. Available: http://grid.ucy.ac.cy/egee/doc/training/Lifecycleofagridjob.pdf (2014)

  74. Christodoulopoulos, K., Gkamas, V., Varvarigos, E.A.: Statistical analysis and modeling of jobs in a grid environment. J. Grid Comput. 6(1), 77–101 (2008)

    Article  Google Scholar 

  75. Kurdi, H., Li, M., Al-Raweshidy, H.: A classification of emerging and traditional grid systems. Distrib. Syst. Online, IEEE 9(3), 1–1 (2008)

    Article  Google Scholar 

  76. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The data grid: towards an architecture for the distributed management and analysis of large scientific datasets. J. Netw. Comput Appl. 23(3), 187–200 (2000)

    Article  Google Scholar 

  77. Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: Ourgrid: an approach to easily assemble grids with equitable resource sharing. In: Job scheduling strategies for parallel processing. Springer, pp 61–86 (2003)

  78. Iamnitchi, A., Foster, I.: A peer-to-peer approach to resource location in grid environments. In: Grid Resource Management. Springer, pp 413–429 (2004)

  79. Cameron, D.G., Millar, A.P., Nicholson, C., Carvajal-Schiaffino, R., Stockinger, K., Zini, F.: Analysis of scheduling and replica optimisation strategies for data grids using optorsim. J. Grid Comput. 2(1), 57–69 (2004)

    Article  Google Scholar 

  80. Bondi, A.B.: Characteristics of scalability and their impact on performance. In: Proceedings of the 2nd International Workshop on Software and Performance, ser. WOSP ’00. New York, NY, USA: ACM, pp 195–203 (2000)

  81. Depoorter, W., De Moor, N., Vanmechelen, K., Broeckhove, J.: Scalability of grid simulators: an evaluation. In: Euro-Par 2008–Parallel Processing, Springer, pp 544–553 (2008)

  82. Bobelin, L., Legrand, A., Marquez, D., Navarro, P., Quinson, M., Suter, F., Thiery, C.: Scalable multi-purpose network representation for large scale distributed system simulation. In: Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) 2012, pp 220–227 (2012)

  83. Robinson, S.: Simulation model verification and validation: increasing the users’ confidence. In: Proceedings of the 29th IEEE Computer Society Conference on Winter simulation, pp 53–59 (1997)

  84. Sargent, R.G.: Verification and validation of simulation models. In: Proceedings of the 37th Conference on Winter simulation. Winter Simulation Conference, pp 130–143 (2005)

  85. Feinstein, A.H., Cannon, H.M.: Constructs of simulation evaluation. Simul. Gaming 33(4), 425–440 (2002)

    Article  Google Scholar 

  86. Velho, P., Schnorr, L.M., Casanova, H., Legrand, A.: On the validity of flow-level tcp network models for grid and cloud simulations. ACM Trans. Model. Comput. Simul. (TOMACS) 23(4), 23:1–23:26 (2013)

    Article  MathSciNet  Google Scholar 

  87. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Gssim–grid scheduling simulator. Comput. Methods Sci. Technol. 13(2), 121–129 (2007)

    Article  Google Scholar 

  88. Huang, Y., Brocco, A., Courant, M., Hirsbrunner, B., Kuonen, P.: Magate simulator: a simulation environment for a decentralized grid scheduler. In: Advanced Parallel Processing Technologies. Springer, pp 273–287 (2009)

  89. Huang, Y., Brocco, A., Courant, M., Hirsbrunne, B., Kuonen, P.: Magate: an interoperable, decentralized and modular high-level grid scheduler. Int. J. Distrib. Syst. Technol. (IJDST) 1(3), 24–39 (2010)

    Article  Google Scholar 

  90. Chen, W., Deelman, E.: Workflowsim: A toolkit for simulating scientific workflows in distributed environments. In: IEEE 8th International Conference on E-Science (e-Science), 2012, pp 1–8 (2012), doi:10.1109/eScience.2012.6404430

  91. Pegasus Workflow Management System: Last accessed on 23 August 2014. Available: http://pegasus.isi.edu/projects/pegasus (2014)

  92. Yu, J., Buyya, R.: A taxonomy of workflow management systems for grid computing. J. Grid Comput. 3(3-4), 171–200 (2005)

    Article  Google Scholar 

  93. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw.: Pract. Experience 41(1), 23–50 (2011)

    Google Scholar 

  94. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A., R. Cavanaugh, et al.: Mapping abstract complex workflows onto grid environments. J. Grid Comput. 1(1), 25–39 (2003)

    Article  Google Scholar 

  95. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.-H., Vahi, K., Livny, M.: Pegasus: mapping scientific workflows onto the grid. In: Grid Computing. Springer, pp 131–140 (2004)

  96. Frey, J.: Condor dagman: Handling inter-job dependencies, University of Wisconsin, Department of Computer Science, Tech. Rep (2002)

  97. The DataGrid Project: Last accessed on 20 August 2014. Available: http://eu-datagrid.web.cern.ch/eu-datagrid/ (2014)

  98. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system: design, implementation, and experience. Parallel Comput. 30(7), 817–840 (2004)

    Article  Google Scholar 

  99. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, 2004, pp 4–10 (2004), doi:10.1109/GRID.2004.14

  100. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@home: an experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002)

    Article  Google Scholar 

  101. WLCG Worldwide LHC Computing Grid: Last accessed on 23 August 2014. Available: http://home.web.cern.ch/about/computing/worldwide-lhc-computing-grid (2014)

  102. Casanova, H.: Simgrid: a toolkit for the simulation of application scheduling. In: Proceedings of the 1st IEEE/ACM International Symposium on Cluster Computing and the Grid, 2001, pp 430–437 (2001)

  103. SimGrid- Versatile Simulation of Distributed Systems: Last accessed on 23 August 2014. Available: http://simgrid.gforge.inria.fr/Usages.html (2014)

  104. Legrand, A., Marchal, L., Casanova, H.: Scheduling distributed applications: the simgrid simulation framework. In: Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. CCGrid 2003, pp 138–145 (2003)

  105. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scalable, and accurate simulation of distributed applications and platforms. J. Parallel Distrib. Comput 74(10), 2899–2917 (2014)

    Article  Google Scholar 

  106. Legrand, I.C., Newman, H. B: The monarc toolset for simulating large network-distributed processing systems. In: Proceedings of the 32nd Conference on Winter simulation, ser. WSC ’00. San Diego, CA, USA: Society for Computer Simulation International, pp 1794–1801 (2000)

  107. Dobre, C.: Monarc: a case study on simulation analysis for lhc activities. In: Proceedings of World Academy of Science, Engineering and Technology, no. 61. World Academy of Science, Engineering and Technology (2012)

  108. Legrand, I., Dobre, C., Voicu, R., Stratan, C., Cirstoiu, C., Musat, L.: A simulation study for t0/t1 data replication and production activities. arXiv:1106.5161 preprint (2011)

  109. Dobre, C., Stratan, C.: Monarc simulation framework. arXiv:1106.5158 preprint (2011)

  110. GridSim: A Grid Simulation Toolkit for Resource Modelling and Application Scheduling for Parallel and Distributed Computing. Last accessed on 23 August 2014. Available: http://www.buyya.com/gridsim/ (2014)

  111. Sulistio, A., Buyya, R.: A grid simulation infrastructure supporting advance reservation. In: Proceedings of the 16th International Conference on Parallel and Distributed Computing and Systems (PDCS 2004), pp 9–11 (2004)

  112. Caminero, A., Sulistio, A., Caminero, B., Carrion, C., Buyya, R.: Extending gridsim with an architecture for failure detection. In: Proceedings of the International Conference on Parallel and Distributed Systems, 2007, vol. 2, pp 1–8 (2007)

  113. Sulistio, A., Cibej, U., Venugopal, S., Robic, B., Buyya, R.: A toolkit for modelling and simulating data grids: an extension to gridsim. Concurrency and Computation: Practice and Experience 20(13), 1591–1609 (2008)

    Article  Google Scholar 

  114. QosCosGrid: Last accessed on 23 August 2014. Available: http://www.qoscosgrid.org} (2014)

  115. Pl-Grid: Last accessed on 23 August 2014. Available: http://www.plgrid.pl/en} (2014)

  116. Federica: Last accessed on 23 August 2014. Available: http://www.fp7-federica.eu (2014)

  117. CoolEmAll: Last accessed on 23 August 2014. Available: http://www.coolemall.eu (2014)

  118. CoolEmAll: Last accessed on 23 August 2014. Available: http://www.coolemall.com (2014)

  119. GSSIM - Grid Scheduling Simulator, Publications and presentations: Last accessed on 23 August 2014. Available: http://www.gssim.org/content/publications (2014)

  120. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Grid scheduling simulations with gssim. In: Proceedings of the International Conference on Parallel and Distributed Systems, 2007, vol. 2, pp 1–8 (2007)

  121. Bȧk, S., Krystek, M., Kurowski, K., Oleksiak, A., Piȧtek, W., Wȧglarz, J.: Gssim–a tool for distributed computing experiments. Sci. Program. 19(4), 231–251 (2011)

    Google Scholar 

  122. Klusáċek, D., Matyska, L., Rudová, H.: Alea–grid scheduling simulation environment. In: Parallel Processing and Applied Mathematics. Springer, pp 1029–1038 (2008)

  123. CoreGRID: Last accessed on 23 August 2014. Available: http://coregrid.ercim.eu/mambo/ (2014)

  124. MetaCentrum: Last accessed on 23 August 2014. Available: http://www.metacentrum.cz (2014)

  125. CERIT-SC: Last accessed on 23 August 2014. Available: http://www.cerit-sc.cz/ (2014)

  126. SmartGrid: Last accessed on 23 August 2014. Available: http://diuf.unifr.ch/main/pai/research (2014)

  127. Cameron, D.G., Carvajal-Schiaffino, R., Millar, A.P., Nicholson, C., Stockinger, K., Zini, F.: Optorsim: a grid simulator for replica optimisation. In: UK e-science all hands conference, vol. 31 (2004)

  128. CLOC – Count Lines of Code: Last accessed on 20 August 2014. Available: http://cloc.sourceforge.net/ (2014)

  129. Quinson, M.: Simgrid: a generic framework for large-scale distributed experiments. In: Proceedings of the 9th IEEE International Conference on Peer-to-Peer Computing, 2009. P2P ’09, pp 95–96 (2009)

  130. Foster, I., Gieraltowski, J., Gose, S., Maltsev, N., May, E., Rodriguez, A., Sulakhe, D., Vaniachine, A., Shank, J., Youssef, S., et al.: The grid2003 production grid: Principles and practice. In: Proceedings of the 13th IEEE International Symposium on High performance Distributed Computing, 2004, pp 236–245 (2004)

  131. Riley, G.F.: The georgia tech network simulator. In: Proceedings of the ACM SIGCOMM workshop on Models, methods and tools for reproducible network research. ACM, pp 5–12 (2003)

  132. Vegda, D.C., Prajapati, H.B.: Scheduling of dependent tasks application using random search technique. . In: Proceedings of the IEEE International Conference on Advance Computing (IACC), 2014, pp 825–830 (2014)

  133. Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid computing. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in Distributed Computing Environments, ser. Studies in Computational Intelligence, vol. 146, pp 173–214. Springer, Berlin Heidelberg (2008)

  134. Naicken, S., Livingston, B., Basu, A., Rodhetbhai, S., Wakeman, I., Chalmers, D.: The state of peer-to-peer simulators and simulations. ACM SIGCOMM Comput. Commun. Rev. 37(2), 95–98 (2007)

    Article  Google Scholar 

  135. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Simgrid: a sustained effort for the versatile simulation of large scale distributed systems. arXiv:1309.1630 preprint (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshadkumar B. Prajapati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, H.B., Shah, V.A. Analysis Perspective Views of Grid Simulation Tools. J Grid Computing 13, 177–213 (2015). https://doi.org/10.1007/s10723-015-9328-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-015-9328-9

Keywords

Navigation