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Abstract Recently cloud computing is facing increas-

ing attention as it is applied in many business scenar-

ios by advertising the illusion of infinite resources to-

wards its customers. Nevertheless, it raises severe issues

with energy consumption: the higher levels of quality

and availability require irrational energy expenditures.

This paper proposes a Pliant system-based virtual ma-

chine scheduling approaches for reducing the energy

consumption of cloud datacenters. We have designed a

CloudSim-based simulation environment for task-based

cloud applications to evaluate our proposed solution,

and applied industrial workload traces for our experi-

ments. We show that significant savings can be achieved

in energy consumption by our proposed Pliant-based

algorithms, in this way a beneficial trade-off can be

reached by IaaS providers between energy consumption

and execution time.

Keywords Cloud Computing · Energy Awareness ·
VM scheduling · Pliant system · Simulation

1 Introduction

Cloud computing incorporates many aspects of shar-

ing software and hardware solutions, including comput-

ing and storage resources, application runtimes or com-

plex application functionalities. The cloud paradigm

A. Kertesz
MTA SZTAKI,
H-1518 Budapest, P.O. Box 63, Hungary
E-mail: kertesz.attila@sztaki.mta.hu
J. D. Dombi, A. Benyi
University of Szeged,
6720 Szeged, Dugonics ter 13, Hungary
E-mail: dombijd@inf.u-szeged.hu, benyi.attila@stud.u-
szeged.hu

changed the way people look at computing infrastruc-

tures. First, one does not need to be expert in infras-

tructure administration, operation and maintenance even

if large scale systems are utilized. Second, the elasticity

of Infrastructure as a Service clouds allows these sys-

tems to better follow the users’ actual demands. How-

ever, there is also an adversary effect: the virtualized

nature of these systems detaches users from several op-

erational issues like energy efficient usage, that has been

addressed previously in the context of parallel and dis-

tributed systems, and largely remains unnoticed [?,?].

The cloud computing technology made a qualita-

tive breakthrough as it is present in many consumer

appliances including various mobile devices. They ad-

vertise the illusion of infinite resources towards the con-

sumers, meanwhile it also raises severe issues with en-

ergy consumption: the higher levels of quality and avail-

ability require irrational energy expenditures, according

to some experts the consumed energy of resources spent

for idling represent a considerable amount [?]. Current

trends are claimed to be clearly unsustainable with re-

spect to resource utilisation, CO2 footprint and overall

energy efficiency. It is anticipated that further growth

is limited by energy consumption, furthermore compet-

itiveness of companies are and will be strongly tied to

these issues.

As cloud services become more and more popular,

small- and medium-sized cloud service providers will

soon face increasing user demands that cannot be met

with their current infrastructures. These user demands

range from occasional needs for extreme amount of re-

sources (compared to the provider’s current infrastruc-

ture) to the need for multi-site virtual machine (VM)

deployment options that enable enhanced services such

as disaster recovery. Thus these providers need to in-

crease the size of their infrastructure by introducing
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multiple datacenters covering various locations, and of-

fering unprecedented amount of resources. Current IaaS

solutions provide the opportunity for service providers

to satisfy these needs by focusing their attention to

non-technical issues like the increased operating cost

of their datacenters. Despite energy consumption is a

major component of these operating costs, current IaaS

solutions barely handle the infrastructure with energy

aware solutions. Therefore providers were restricted to

reduce their consumption on the hardware level so far,

independently from the applied IaaS solution. Energy

costs are also increasing, and datacenter equipment is

stressing power and cooling infrastructures, thus the

main issue is not the current amount of data center

emissions but the fact that these emissions are rais-

ing faster than any other carbon emission [?]. Although

these improvements in hardware are crucial, we believe

that the energy consumption could also be significantly

reduced with software in over-provisioned IaaS systems.

Over-provisioning is a key behaviour at smaller sized

providers, who offer services for users with occasional

peaks in resource demands.

Reducing the carbon footprint of European coun-

tries is also a must and expected by the European Com-

mission, as well as to increase the number and size

of European cloud providers [?]. By federating these

providers, more competitive initiatives can be founded,

that can be sophistically managed to meet these expec-

tations [?]. Cloud federation refers to a mesh of cloud

providers that are interconnected based on open stan-

dards to provide a universal decentralized computing

environment where everything is driven by constraints

and agreements in a ubiquitous, multi-provider infras-

tructure. The general goal of the management layer in a

cloud federation is to distribute load among the partic-

ipating cloud providers, to enhance user satisfaction by

filtering out underperforming providers, and schedule

and execute service calls with minimized energy con-

sumption within the selected IaaS system. Concerning

related solutions both hierarchical and horizontal fed-

eration types are used, and heterogeneity within the

participating providers is mostly present in hierarchi-

cal solutions. We have already proposed an architec-

ture called Federated Cloud Management (FCM [?])

belonging to the hierarchical category, where a holistic

approach with a two-level brokering solution is used:

a meta-brokering component is used to direct service

calls to providers, and then a cloud-brokering compo-

nent to map these calls onto an optimized number of

virtual machines.

In this paper we target the later, cloud-brokering

layer, and we focus on the energy-aware management of

datacenters of single cloud providers specialized for pro-

visioning task-based cloud applications. In order to en-

able experimentation in this field, we have developed a

CloudSim-based simulation environment. To cope with

the high uncertainty and unpredictable load present in

these heterogeneous, virtualized large-scale systems, we

apply Pliant system-based approaches [?] to the man-

agement of these systems, which is similar to a fuzzy

system [?]. The difference between the Pliant system

and a fuzzy system lies in the choice of operators. The

Pliant system can be applied to a wide variety of real

world problems. It is possible to use it as a dynamic sys-

tem, we can create a system like the Fuzzy Cognitive

Map. We can apply the Pliant system to problems by

introducing function approximation techniques, which

have useful and practical aspects. We can also apply it

in problems that need decision-making techniques.

The main contributions of this paper are: (i) the de-

velopment of a cloud simulation environment for task-

based cloud applications, (ii) the design of energy-aware

Pliant-based virtual machine scheduling algorithms for

IaaS cloud management, and (iii) the evaluation of the

proposed algorithms in the extended simulation envi-

ronment with real-world traces.

The remainder of this paper is as follows: Section ??

presents the related VM management approaches in

datacenters; Section ?? introduces our extended simu-

lation architecture; Section ?? introduces the advanced

scheduling algorithms using the Pliant method for VM

scheduling; and Section ?? describes the evaluation me-

thodology and the simulation results. Finally, Section ??

summarizes the main contributions of the paper.

2 Related work

Regarding energy efficiency in a single cloud, Cioara

et al. [?] introduced an energy aware scheduling policy

to consolidate power management by using reinforce-

ment learning techniques to restore a service center to

an energy efficient state. Feller et al. proposed a dy-

namic cluster manager called Snooze [?], which is able

to dynamically consolidate the workload of a heteroge-

neous large-scale cluster composed of resources using

virtualization. In a later work [?], they use power me-

ters to monitor energy usage of cloud resources, and

estimate the resource usage of VMs. Their mechanisms

address VM placement, relocation and migration by

keeping VMs on as few nodes as possible. Also, IBM

has proposed pMapper [?], which is a power-aware ap-

plication placement controller in the context of an en-

vironment with heterogeneous virtualized server clus-

ters. The placement component of the application man-

agement middleware takes into account the power and

migration costs in addition to the performance benefit
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while placing the application containers on the physical

servers.

Cardosa et al. [?] presented a novel suite of tech-

niques for placement and power consolidation of VMs

in datacentres taking advantage of the min-max and

shares features inherent in virtualization technologies,

like VMware and Xen. These features allow to specify

the minimum and maximum amount of resources that

can be allocated to a VM, and provide a shares based

mechanism for the hypervisor to distribute spare re-

sources among contending VMs. Lee et al. [?] discuss

service request scheduling in clouds based on achiev-

able profits. They propose a pricing model using pro-

cessor sharing for composite services in clouds. Berral

et al. [?] present a framework to address energy effi-

ciency using an intelligent consolidation methodology,

which applies various techniques such as machine learn-

ing, power-aware consolidation algorithms, and turning

on/off machines. Their work applies machine learning

techniques on scheduling algorithms to improve server

workload predictions thus achieving a better job con-

solidation in order to turn off spare servers and thereby

saving energy in a datacenter.

J. L. Lucas-Simarro et al. [?] proposed different schedul-

ing strategies for optimal deployment of services across

multiple clouds based on various optimization crite-

ria. The examined scheduling policies include budget,

performance, load balancing and other dynamic condi-

tions, but they neglected energy efficiency, which is the

aim of our work.

Regarding fuzzy approaches, Salleh et al. [?] have

shown how to set up and use fuzzy logic in a tradi-

tional way for dynamic task scheduling in multiproces-

sor systems. We have already published a paper [?] on

applying the Pliant approach to job scheduling in Grids.

In this current paper we would like to show that it is

also possible to use Pliant system for scheduling, with

only a few rules. The novelty of this contribution lies in

the way we apply the Pliant system to clouds: the way

we select cloud-specific properties as parameters of the

Pliant system.

Concerning cloud simulations, Berge et al. [?] have

designed a simulator called SVD within the CoolEmAll

project for investigating energy consumption in data-

centers. It is an extended version of the GSSIM sim-

ulator, and they are planning to support application

modeling and profiling through benchmarks. Regarding

federation-wide simulations, Sotiriadis et al. [?] investi-

gated inter-cloud simulations by developing the SimIC

simulation toolkit that is able to mimic the inter-cloud

service formation to enable the investigation of service-

oriented cloud utilization, but they also neglect energy

efficiency.

3 Simulation of clouds

We have used the CloudSim simulator [?] to develop a

simulation environment for our research, since it is a

widely accepted, used and referred solution. Beloglazov

and Buyya [?] have already started to examine how

energy efficiency could be investigated within this sim-

ulator. Datacenters consume huge amounts of energy

resulting in high operating costs and increased carbon

dioxide emissions. The dynamic consolidation of VMs

using live migration and switching off idle nodes can

be used to optimize resource usage and reduce energy

consumption, but they argue that aggressive consolida-

tion may lead to performance degradation. They pro-

posed adaptive heuristics for dynamic consolidation of

VMs based on an analysis of historical data from the re-

source usage by VMs, while ensuring a high level of ad-

herence to the Service Level Agreements (SLA). They

used PlanetLab trace files [?] workload logs to simu-

late load changes of continuously running services in

VMs. These traces contain records of each VM’s peri-

odic utilization, thus the simulation assumes each VM

is going to process only one task (called as cloudlet in

CloudSim) at a time as a service.

In this work our goal was to investigate task-based

(HPC/HTC) cloud applications executed by a single

cloud provider possibly having more than one data-

center. Since CloudSim is tailored to the evaluation of

continuously running web-based applications [?], we de-

cided to extend this simulation environment to suite our

needs.

Our approach is slightly different to the one used by

the original version of CloudSim, as we tried sending

cloudlets with varying parameters, such as start time

and length at random intervals. For that purpose we

used the log files provided by Prezi Inc. [?] (discussed

in detail in Section ??). These log files contain detailed

data on each cloudlet received, such as its start time,

length and queue type. To adapt CloudSim to the new

features, several changes had to be made. One of the

crucial changes was in the CloudletScheduler compo-

nent, so each VM could handle multiple cloudlets at

the same time. As long as the VM’s utilization is be-

low 100%, it can process new cloudlets, and once a VM

reaches its full utilization, further cloudlets get queued.

Once a VM has no cloudlets left to process, it is shut

down, and if a host has no remaining VMs, it is shut

down as well. Each host’s power consumption is based

on a power model, which is based on a benchmark result

provided by SPEC [?]. We used 5 different power mod-

els to make the difference between varying algorithms

more obvious. Each datacenter sums up the power con-

sumed by its hosts for every timeframe a cloudlet is
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Listing 1 Pseudo code of the default OptUtil algorithm

lowestVm = f i r s t VM with the same queue type
as the c l o u d l e t ;

FOREACH ( vml i s t as vm)
IF (vm. u t i l i z a t i o n ( ) < lowestVm .

u t i l i z a t i o n ( )
AND vm. queueType == lowestVm .

queueType )
lowestVm=vm;

IF ( lowestVm . u t i l i z a t i o n > 100)
IF ( t ry to c r e a t e a new vm)

lowestVm = new vm;
c l o u d l e t . setVm = lowestVm ;

being processed, giving us a close approximation of the

amount of power and time needed to complete all the

requested cloudlets. For each cloudlet a VM is chosen

by our default VM scheduling algorithm called ’OptU-

til’ shown in Listing ??. The hosts (physical machines)

created during the simulations differ in their character-

istics, altogether 5 types of hosts were used. However,

while there are different hosts, only one type of VM was

used in all simulations.

In case the utilization of all VMs is over 100%, the

algorithm will try to create a new one, thus ensuring

the lowest process time. For each new VM the host is

chosen based on its power model, and we are assuming

that every host will be fully utilized, so the host with

the lowest power consumption on 100% utilization will

be submitted, ensuring the lowest power consumption.

In the following section we discuss the Pliant-based VM

scheduling solution.

4 Pliant scheduling approach

Fuzzy sets were introduced by Lofti Zadeh in 1965 with

the aim of reconciling mathematical modeling and hu-

man knowledge in the engineering sciences. Most of the

building blocks of the theory of fuzzy sets were proposed

by him, especially fuzzy extensions of classical basic

mathematical notions like logical connectives, rules, re-

lations and quantifiers.

Over the last century, fuzzy sets and fuzzy logic have

become more popular areas for research, and they are

being applied in fields such as computer science, math-

ematics and engineering. This has led to a truly enor-

mous literature, where there are presently over thirty

thousand published papers dealing with fuzzy logic, and

several hundreds books have appeared on the various

facets of the theory and the methodology. However,

there is not a single, superior fuzzy logic or fuzzy rea-

soning method available, although there are numerous

competing theories.

The Pliant system is a kind of fuzzy theory that is

similar to a fuzzy system [?]. The difference between the

two systems lies in the choice of operators. In fuzzy the-

ory the membership function plays an important role,

but the exact definition of this function is often un-

clear. In Pliant systems we use a so-called distending

function, which represents a soft inequality. In the Pli-

ant system the various operators, which are called the

conjunction, disjunction and aggregative operators, are

closely related to each other. We usually have a gen-

erator function and using this function we can create

aggregation operator, conjunctive operator or disjunc-

tive operator. In the Pliant Systems the corresponding

aggregative operators of the strict t-norm and strict t-

conorm are equivalent, and DeMorgans law is obeyed

with the corresponding strong negation of the strict t-

norm or t-conorm.

The Pliant system has a strict, monotonously in-

creasing t-norm and t-conorm, and the following ex-

pression is valid for the generator function:

fc(x)fd(x) = 1, (1)

where fc(x) and fd(x) are the generator functions for

the conjunctive and disjunctive logical operators, re-

spectively. This system is defined in the [0,1] interval.

The operators of the Pliant system are

c(x) =
1

1 +

(
n∑
i=1

wi

(
1−xi

xi

)α)1/α
(2)

d(x) =
1

1 +

(
n∑
i=1

wi

(
1−xi

xi

)−α)−1/α
(3)

aν∗(x) =
1

1 +
(

1−ν∗
ν∗

)∏n
i=1

(
1−xi

xi

1−ν∗
ν∗

)wi
(4)

n(x) =
1

1 +
(

1−ν∗
ν∗

)2
x

1−x

, (5)

κ(λ)ν (x) =
1

1 + 1−ν0
ν0

(
ν

1−ν
1−x
x

)λ
where ν∗ ∈]0, 1[, with generator functions

fc(x) =

(
1− x
x

)α
fd(x) =

(
1− x
x

)−α

, (6)
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where α > 0.

The operators c, d and n fulfill the DeMorgan iden-

tity for all ν, a and n fulfill the self-DeMorgan iden-

tity for all ν, and the aggregative operator is distribu-

tive with the strict t-norm or t-conorm. The ν value

express the expected value of the given context. This

means that if the given x value is greater than ν, then

the operators increase the value of x. The opposite is

true when x is smaller than ν. Later we will define the

value of ν in the virtual machine environment.

In fuzzy concepts the most powerful term is the

membership function. In the Pliant concept this func-

tion is connected to the operator system. We can also

introduce the distending function and the notation of

the distending function is

δ(x) = truth(0 < x) x ∈ R

We can generalize this in the following way

δ(g(x)) = truth
(
0 < g(x)

)
xεRn

Instead of a strict relation, we can define a func-

tion which provides information on the validity of the

relation.

In fuzzy logic theory, the membership function has

a different interpretation. In the Pliant concept, the

membership function is replaced by a soft interval. Its

mathematical description is

δλ1,λ2

a,b (x) = truth(a <λ1
x <λ2

b)

Definition 1 In a pliant system if the initial condi-

tions are

δλ1,λ2

a,b (a) = ν0 δλ1,λ2

a,b (b) = ν0, (7)

then the distending interval is

δλ1,λ2

a,b (x) = f−1

(
1

A

(
A1e

−λ1(x−a) +A2e
−λ2(b−x)

))
,

(8)

where

A =
1

f(ν0)

(
1− e−(λ1+λ2)(b−a)

)
A1 = 1− e−λ2(b−a)

A2 = 1− e−λ1(b−a)

(9)

In our earlier work [?], we developed a meta-brokering

component that uses the Pliant system to select a good

performing Grid broker for a user’s job even under con-

ditions of high uncertainty. In this paper we address

energy consumption of VMs in clouds, therefore we cre-

ated scheduling algorithms in order to handle the en-

ergy aware management case with a similar approach.

These algorithms calculate a score for each cloudlet

using the cloud’s properties. The calculation step in-

cludes a normalization step, where we apply a special

Sigmoid function. In the normalization step it should be

mentioned that if the normalized value is close to one, it

means it is a more valuable property, and if the normal-

ized value is close to zero, it means it is a less prioritized

property. For example, if the counter of power consump-

tion is high, the normalization algorithm should give a

value close to zero.

One of these algorithms considers time and the other

considers energy for optimization. There are hosts in

the simulated datacenters, and each host can run sev-

eral VMs. This environment can be described with the

same three properties, namely a power usage counter

(PUC), the power consumption counter (PCC) and the

number of processors (PROC):

– The power usage counter gives performance of the

CPU usages of the given simulation time. The value

can be larger than 100, which means that there are

more cloudlets in the VM’s queue.

– The power consumption counter gives the energy

usage of the given host at a given time. The value

is generally between 40 and 120 W, but it depends

on the actual physical processor.

– The number of processors gives the available num-

ber of processors of a host.

We have developed Pliant decision making algorithms

that take into account the above-mentioned properties

and decide to which VM a cloudlet should be submit-

ted: one optimizes cloudlet executions for time, and the

other one for energy. We use different normalization for

these two strategies. First we start with a normalization

step and we apply different kinds of Sigmoid functions

to normalize the environment’s property value. We ex-

amine the environment’s variable and check the inter-

val of the given properties. The interval determine the

α parameter of the Sigmoid function. The λ parame-

ter expresses our knowledge of the system environment.

Using this information we define the value of the Sig-

moid’s parameter. In Figure ??, ?? and ?? we show

three different kinds of normalization functions we use.

Table ?? shows the predefined values of the param-

eters of the normalization functions.
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Table 1 Parameters of the Sigmoid function

Property Time Energy
Property Alpha Lambda Alpha Lambda
PUC 0.5 -4.0 0.5 -4.0
PCC 85.0 -0.08 75.0 -0.08
PROC 1.0 0.8 1.0 0.8

Fig. 1 Utilized normalized function for the power consump-
tion (PCC)

In the simulation environment (to be discussed later

in Section ??) every host has 4 processors, so after

the normalization the normalized property value is the

same for all instances. We would like to emphasize that

it is better if we use less power, therefore we created

two different parameter sets: one for time-aware and

one for energy-aware scheduling. As we can see in Fig-

ure ??, the minimum energy usage in this environment

is around 40 and the maximum is around 120 W. In

Figure ?? we can see that if the number of power con-

sumption is increasing then the value of the normalized

function is decreasing. The opposite is true for the num-

ber of processors (in Figure ??).

We should also emphasize that the closer the value

to one, the better the property is, and if the value is

close to zero, it means that the property is not so good.

For example if the power usage is high, the normaliza-

tion algorithm should give a value close to zero, because

it is not a good thing if the cloudlet uses a lot of power.

The opposite is true for the processor number.

After the normalization step we modify the normal-

ized value to emphasize the importance of the result.

This means that if the given x value is greater than our

expectation (ν) than we will increase the value of x.

the opposite is true when the given x is smaller than

ν. To achieve this we will modify the normalized value

Fig. 2 Utilized normalized function for the processor number
(PROC)

Fig. 3 Utilized normalized function for the power usage
(PUC)

by using the Kappa function shown in Figure ?? with

ν = 0.4 and λ = 3.0 parameters:

κλν (x) =
1

1 +
(

ν
1−ν

1−x
x

)λ (10)

Finally to calculate a VM’s score number for the

given cloudlet, we use the aggregation operator:

aν,ν0(x1, · · · , xn) =
1

1 + 1−ν0
ν0

ν
1−ν

∏n
i=1

1−xi

xi

, (11)

where ν is the neutral value and ν0 is the threshold

value of the corresponding negation. Here we don’t want

to threshold the result so both parameters have the
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Fig. 4 The kappa function

same value 0.5. The result of the calculation is always a

real number that lies in the [0,1] interval. So we calcu-

late the score for all VM to find which VM is the most

suitable for our strategy. If the best score value is very

low (the value depends on the strategy), then we try to

create a new VM.

5 Evaluation

In order to investigate the energy consumption of cloud

providers in our extended simulation environment, we

have used real-world trace files of an international com-

pany called Prezi Inc, who offers a presentation editing

service, which is available on multiple platforms, there-

fore they have to convert some of their created media

files to other formats before they can display them on

all devices. In April 2013, they launched a competi-

tion titled ”Scale Contest” [?] for university students

to test their knowledge of control and queueing the-

ories on real-life problems. Their conversion processes

are carried out on virtual machines: at peak times, they

need to launch more instances of these VMs, but over

the weekend they can stop most of them. This campaign

was initiated in order to find a suitable algorithm that

launches the exact number of VMs for a given work-

load. They published log files on their website contain-

ing workload traces for two weeks of utilization, which

serves as a basis for algorithmic experimentations.

They operate three queues in their cloud system for

the jobs participating in the conversion processes:

– export: contains jobs which result in downloadable

zipped prezi files.

– url: these jobs download an image from a URL and

insert them into a prezi file.

– general: all other conversion jobs (audio, video, pdf,

ppt, etc).

The lines of the published workload traces have the

following format:

”2012-12-14 21:35:12 237 general 9.134963”

This means that at the given time, a job enters the

general queue with the id 237, and the job will take

9.134963 seconds to run. These logs had to be used as

input by the competitors. They contain three weeks of

actual data accumulated by Prezis conversion system,

and the first two weeks of logs are publicly available.

They planned to use unpublished logs from the third

and fourth week to evaluate your submissions to the

competition. The available trace files having two weeks

of utilization contain more than 2000000 lines, and their

submitted (and processed) jobs highly varies over the

14 days. Table ?? shows the exact number of jobs per

day.

In the next subsections we detail our measurements.

In the first one we perform a preliminary evaluation

with a greedy strategy without using fuzzy methods.

In the second subsection we compare two extreme algo-

rithms (using minimum and maximum number of VMs)

with a smartly randomized VM selection to determine

the possible ranges of execution time and energy con-

sumption values. Finally in the third one, we present

the evaluation of our proposed Pliant-based algorithms.

Table 2 Jobs in the Perzi trace files

Days 1st week 2nd week

1 269344 253354
2 122438 116356
3 170136 158945
4 317481 302715
5 332769 331816
6 339371 328555
7 330854 318323

Table 3 Evaluation results for RoundRobin

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100
10000

1<

63.20 25200

50000
104.66 39000

500
143.62 48600

100000 381.37 70200

5.1 Preliminary evaluation

For a preliminary evaluation phase we used the trace

file of the first week. We have performed experiments
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Table 4 Evaluation results for OPTUTIL

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100
10000

1<

18.90 7500

50000
87.12 32400

500
90.41 7200

100000 197.26 15000

with datacenters having 100 to 500 hosts, and submit-

ted 10000 to 100000 jobs (i.e. cloudlets) from the log.

By default we used a round robin strategy to sched-

ule the logs to the available VMs (1 at the beginning),

and if no more available VM was present in the system

(that could execute the job without any delay) at a

given time, we have deployed another one continuously.

The results of this evaluation can be seen in Table ??.

We have also executed similar simulations by apply-

ing our proposed optimized utilization strategy called

”OPTUTIL”, that deploys another VM, if the available

ones are at least 80% loaded. The results of this second

evaluation can be seen in Table ??.

From this preliminary evaluation we can see that

our proposed algorithm performed better than the round

robin, both in energy consumption and execution time.

5.2 First evaluation round

To develop Pliant-based algorithms, in the first round

of experiments we created three initial strategies: the

first one uses only one VM to execute all submitted

jobs (referred to as MINIMUM), the second deploys

a new VM for all jobs (MAXIMUM), and the third

uses randomized VM selection from the available VMs

(smartly prioritizing the less loaded ones), and deploys

a new one, if no free VM is found (SMARTRANDOM).

Tables ??, ?? and ?? summarize the results of evaluat-

ing these algorithms. From these results we can see that

utilizing the lowest number of VMs results in the low-

est energy consumption, but of course on the expense

of the execution time, which is the highest in this case.

Table 5 Evaluation results for MAXIMUM

Hosts Cloud- VMs Energy Time

lets (kWh) (sec)

100

1000

241

7.64 759
10000 76.35 4088
50000 365.35 14220
100000 934.22 39224

Based on the results of these artificial strategies we

have created a Pliant-based strategy (referred to as

PLIANTDEFAULT), first focusing on execution time

Table 6 Evaluation results for MINIMUM

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100

1000

3

0.19 8179
10000 1.91 81008
50000 6.54 240940
100000 13.87 461724

Table 7 Evaluation results for SMARTRANDOM

Hosts Cloud- VMs Energy Time

lets (kWh) (sec)

100

1000

3

0.20 8619
10000 1.53 60298
50000 5.77 198060
100000 12.50 386074

reduction with some energy savings. Concerning this

default algorithm Table ?? shows the results of the

simulation. This table shows that this strategy could

achieved significant performance gains in terms of ex-

ecution time as expected, but it also had much higher

energy consumption than the MINIMUM and SMAR-

TRANDOM initial strategy.

Table 8 Evaluation results for PLIANTDEFAULT

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100

1000 14 0.26 749
10000 16 2.87 3768
50000 24 17.26 14240
100000 25 53.21 39304

Table 9 Evaluation results for PLIANTTIME

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100

1000 13 0.21 629
10000 16 2.77 4128
50000 21 15.20 14380
100000 21 43.55 39274

Table 10 Evaluation results for PLIANTENERGY

Hosts Cloud- VMs Energy Time

lets (kWh) (sec)

100

1000 12 0.18 669
10000 16 2.34 3788
50000 18 12.99 14380
100000 18 34.55 39274

After examining these results, we have modified the

normalization parameters of the applied Pliant system

and created more focused algorithms. We changed the
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Fig. 5 Evaluation diagrams for 100000 cloudlets

sharpness of the Sigmoid function in order to emphasize

the importance of execution time. We tried several nor-

malization parameter combination to achieve our goal.

In Table ?? we used a Pliant version that is more fo-

cused on execution time savings (PLIANTTIME), while

in Table ?? we modified a Pliant parameter to focus on

energy savings (PLIANTENERGY). Figure ?? shows

comparison diagrams concerning the last rows of the

tables.

5.3 Second evaluation round

As a second round of experiments, we used the whole

Perzi log containing 14 days of resource utilization con-

taining 3692457 jobs. In this round we used the same

strategies as in the previous round, except for the SMAR-

TRANDOM, which we changed for the OPTUTIL, our

original algorithm defined in the preliminary evalua-

tions.

Figure ?? shows the number of utilized VMs, the

measured execution time and energy usage for each day

of the whole Perzi log. From these results we can see

that the energy consumption is much lower in the 2nd,

3rd, 9th and 10th days, which is in correlation with

the number of jobs submitted per day (shown in Table

??). Since the MINIMUM strategy operates with the

lowest number of VMs, it has the lowest energy con-

sumption, and on the contrary, the MAXIMUM has

the highest. As we experienced in the first evaluation

round, the Pliant strategies perform much better here

as well than the OPTUTIL. Finally as we expected, the

PLIANTENERGY has the lowest energy consumption

among the Pliant algorithms.

Concerning the execution time, the MINIMUM strat-

egy has a much worse performance than the others,

which performed around the same at a global scale. If

we take a look at the exact numbers shown in Table ??,

it is also true that the MAXIMUM strategy takes the

least time to execute all the jobs in the trace, and the

PLIANTTIME is the closest to it.

Concerning the number of VMs used by the different

strategies, the MAXIMUM and the OPTUTIL have the

highest numbers, and the MINIMUM the lowest, obvi-

ously. PLIANTTIME has a bit more than the PLIANT-

DEFAULT, and as expected by us, the PLIANTEN-

ERGY has the lowest among the Pliant algorithms.

We can also notice that the PLIANTTIME and PLI-

ANTENERGY curves cross each other several times

during the days, which means they really use different

parameters to govern the number of available VMs. The

sum of the measured values for the whole trace file are

given in Table ?? and depicted in Figure ??.

As a result of these evaluations we can state that for

minimal energy consumption the least amount of VMs

should be used with smartly randomized VM selection

(experienced in the first evaluation round). Neverthe-

less, when there is a need for execution time optimiza-

tions (as usual in real world systems), we have to find

a trade-off between energy consumption and execution

time. With our proposed Pliant-based VM scheduling

algorithms we have shown that significant savings can

be achieved in energy consumption with moderate ex-

ecution time reductions.

6 Conclusion

Cloud computing is facing an increasing attention nowa-

days, but it raises severe issues with energy consump-

tion: the higher levels of quality and availability require
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Fig. 6 Detailed evaluation results for the Prezi logs of 14 days

Table 11 Evaluation results for 14 days of Prezi logs

Metric MINI- MAXI- OPT- PLIANT- PLIANT- PLIANT-

NUM MUM UTIL DEFAULT TIME ENERGY

VMs 3 241 68 32 35 21
Time 17921526 1751554 1751254 1752524 1751344 1753285

Energy 497.62 27793.51 2451.26 1250.26 1420.92 833.61

irrational energy expenditures. Reducing the carbon

footprint of European countries is also a must, as well

as to increase the number and size of European cloud

providers.

In this paper we have proposed a Pliant system-

based virtual machine scheduling approach for reducing

energy consumption of IaaS cloud datacenters. We have

designed a CloudSim-based simulation environment for

task-based cloud applications, and applied real-world

traces for the performed experiments. We have shown

that significant savings can be achieved in energy con-

sumption with our proposed Pliant-based algorithms,

and by fine-tuning the parameters of the proposed Pli-

ant strategy, a beneficial trade-off can be set between
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Fig. 7 Evaluation diagrams for the Prezi logs of 14 days

energy consumption and execution time. By increment-

ing the value of the alpha parameter of the Sigmoid

function in our experiments resulted in less energy con-

sumption.

Our future work aims at automating the parame-

ter selection in different IaaS systems, and adapting

the proposed approach to production-level academic

clouds.
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