Skip to main content
Log in

QoS Assessment of Mobile Crowdsensing Services

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The wide spreading of smart devices drives to develop distributed applications of increasing complexity, attracting efforts from both research and business communities. Recently, a new volunteer contribution paradigm based on participatory and opportunistic sensing is affirming in the Internet of Things scenario: Mobile Crowdsensing (MCS). A typical MCS application considers smart devices as contributing sensors able to produce geolocalized data about the physical environment, then collected by a remote application server for processing. The growing interest on MCS allows to think about its possible exploitation in commercial context. This calls for adequate methods able to support MCS service providers in design choices, implementing mechanisms for the quality of service (QoS) assessment while dealing with complex time-dependent phenomena and churning issues due to contributors that unpredictably join and leave the MCS system. In this paper, we propose an analytical modeling framework based on stochastic Petri nets to evaluate QoS metrics of a class of MCS services. This method requires to extend the Petri net formalism by specifying a marking dependency semantics for non-exponentially distributed transitions. The approach is then applied to an MCS application example deriving some QoS measures that can drive quantitative evaluation and characterization of the “crowd” behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajmone Marsan, M., Balbo, G., Bobbio, A., Chiola, G., Conte, G., Cumani, A.: The effect of execution policies on the semantics and analysis of stochastic petri nets. IEEE Trans Softw Eng, 15(7), 832–846 (1989)

    Article  MathSciNet  Google Scholar 

  2. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, GRID ’04, 4–10, Washington, DC, USA, 2004. IEEE Computer Society

  3. Anderson, D.P., Korpela, E., Walton, R.: High-performance task distribution for volunteer computing. In: 1st Int. Conf. on e-Science and Grid Computing, 2005, 195–203 (2005)

  4. Andrzejak, A., Kondo, D.: Modeling and optimizing availability of non-dedicated resources. In: Desktop Grid Computing, Numerical Analy & Scient Comp. Series, 191–210. Chapman and Hall/CRC (2012)

  5. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Comput Netw 54(15), 2787–2805 (2010)

    Article  MATH  Google Scholar 

  6. Bruneo, D., Distefano, S., Longo, F., Puliafito, A., Scarpa, M.: Workload-based software rejuvenation in cloud systems. IEEE Trans Comput 62(6), 1072–1085 (2013)

    Article  MathSciNet  Google Scholar 

  7. Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., sensing, M.B.: Srivastava. Participatory sensing. In: Workshop on World-Sensor-Web (WSW’06): Mobile Device Centric Sensor Networks and Applications 117–134 (2006)

  8. Carroll, A., Gernot, H.: An analysis of power consumption in a smartphone. In: Proceedings of the 2010 USENIX conference on USENIX annual technical conference, USENIXATC’10, 1–14, Berkeley, CA, USA, 2010. USENIX Association

  9. Chen, X., Santos-Neto, E., Matei, R.: Crowdsourcing for on-street smart parking. In: Proceedings of the second ACM international symposium on Design and analysis of intelligent vehicular networks and applications, DIVANet ’12, 1–8, New York, NY, USA, 2012.ACM

  10. Chiola, G., Ajmone Marsan, M., Balbo, G., Conte, G.: Generalized stochastic petri nets: a definition at the net level and its implications. IEEE Trans Softw Eng 19(2), 89–107 (1993)

    Article  Google Scholar 

  11. Chon, Y., Lane, Nicholas D., Li, F., Cha, H., Feng, Z.: Automatically characterizing places with opportunistic crowdsensing using smartphones. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp ’12, 481–490, New York, NY, USA, 2012. ACM

  12. Christodoulopoulos, K., Gkamas, V., Varvarigos, E.A.: Statistical analysis and modeling of jobs in a grid environment. J. Grid Computing 6(1), 77–101 (2008)

    Article  Google Scholar 

  13. Cumani, A.: On the canonical representation of homogeneous markov processes modelling failure - time distributions. Microelectron Reliab 22(3), 583–602 (1982)

    Article  MathSciNet  Google Scholar 

  14. Cunsolo, V.D., Distefano, S., Puliafito, A., Scarpa, M.: Volunteer computing and desktop cloud: The cloud@home paradigm. In: Eighth IEEE International Symposium on Network Computing and Applications, NCA 2009, 134–139 (2009)

  15. Cuomo, A., Modica, G.D., Distefano, S., Puliafito, A., Rak, M., Tomarchio, O., Venticinque, S., Villano, U.: An sla-based broker for cloud infrastructures. J. Grid Computing 11 (1), 1–25 (2013)

    Article  Google Scholar 

  16. Datta, A., Hauswirth, M., Aberer, K.: Beyond ”web of trust”: enabling p2p e-commerce. In: IEEE International Conference on E-Commerce, CEC 2003, 303– 312 (2003)

  17. Demirbas, M., Bayir, M.A., Akcora, C.G., Yilmaz, Y.S., Ferhatosmanoglu, H.: Crowd-sourced sensing and collaboration using twitter. In: 2010 IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM), 1–9 (2010)

  18. Distefano, S., Longo, F., Scarpa, M.: Availability assessment of HA standby redundant clusters. In: 2010 29th IEEE Symposium on Reliable Distributed Systems, Oct. 31 2010-Nov. 3 2010, pp. 265–274. doi:10.1109/SRDS.2010.37

  19. Distefano, S., Longo, F., Scarpa, M.: Symbolic representation techniques in dynamic reliability evaluation. In: 2010 IEEE 12th International Symposium on High-Assurance Systems Engineering (HASE), 3-4 Nov. 2010, pp. 45–53. doi:10.1109/HASE.2010.28

  20. Distefano, S., Longo, F., Scarpa, M.: Investigating mobile crowdsensing application performance. In: Third ACM Symposium on Design and Analysis of Vehicular Networks and Applications - DIVANET, 2013, 1–7 (2013)

  21. Donatelli, S., Haddad, S., Moreaux, P.: Structured characterization of the markov chain of phase-type spn

  22. Eisenman, S.B., Miluzzo, E., Lane, N.D., Peterson, R.A., Ahn, G.-S., Bikenet, Andrew T. Campbell.: A mobile sensing system for cyclist experience mapping. ACM Trans. Sen. Netw. 39(1), 6–1–6 (2010)

    Google Scholar 

  23. Estrada, T., Taufer, M.: Challenges in designing scheduling policies in volunteer computing. In: Desktop Grid Computing, Numerical Analy & Scient Comp. Series, 167–190. Chapman and Hall/CRC, 2012

  24. Estrada, T., Taufer, M., Reed, K.: Modeling job lifespan delays in volunteer computing projects. In: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID ’09, 331–338, Washington, DC, USA, 2009. IEEE Computer Society

  25. Ganti, R.K., Ye, Fan, Lei, Hui: Mobile crowdsensing: current state and future challenges. IEEE Commun Mag 49(11), 32–39 (2011)

    Article  Google Scholar 

  26. Gartner Inc: Top 10 strategic technology trends for 2013, 2013

  27. Heien, E.M., Anderson, D.P., Hagihara, K.: Computing low latency batches with unreliable workers in volunteer computing environments. J. Grid Comput. 7(4), 501–518 (2009)

    Article  Google Scholar 

  28. Kant, K.: Introduction to computer system performance evaluation, Mc Graw-Hill (1992)

  29. Kondo, D., Anderson, D.P., McLeod, J.: Performance evaluation of scheduling policies for volunteer computing. In: IEEE International Conference on e-Science and Grid Computing, 415–422 (2007)

  30. Lane, N.D., Miluzzo, E., Hong, Lu, Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun Mag 48(9), 140–150 (2010)

    Article  Google Scholar 

  31. Longo, F., Scarpa, M.: Applying Symbolic Techniques to the Representation of Non-Markovian Models with Continuous PH Distributions. In: EPEW ’09: Proceedings of the 6th European Performance Engineering Workshop on Computer Performance Engineering, 44–58, Berlin, Heidelberg, 2009. Springer-Verlag

  32. Longo, F., Scarpa, M.: Two-layer symbolic representation for stochastic models with phase-type distributed events. International Journal of Systems Science, 132 (2013)

  33. Mohan, P., Padmanabhan, V.N., Ramachandran, R.: Nericell: rich monitoring of road and traffic conditions using mobile smartphones. In: Proceedings of the 6th ACM conference on Embedded network sensor systems, SenSys ’08, 323–336, New York, NY, USA, 2008. ACM

  34. Neuts, M.: Probability distributions of phase type. In: Liber Amicorum Prof. Emeritus H. Florin, 173–206. University of Louvain (1975)

  35. Neuts, M.F.: Matrix-geometric solutions in stochastic models: an algorithmic approach. Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  36. Oded, N., Anderson, D., Ofer, A.: Volunteer computing: a model of the factors determining contribution to community-based scientific research. In: Proceedings of the 19th international conference on World wide web, WWW ’10, 741–750, New York, NY, USA, 2010. ACM

  37. Petri, C.: KommuniKation mit Automaten. PhD thesis, University of Bonn. Germany (1962)

  38. MuhammadBilal, Q., MaryamMehri, D., Nasro, M.-A., Q.MuhammadShuaib, Hameed, H., Ilias, R., Nikos, T., Thanasis, L., SameeU, K., Xu, C.-Z., Zomaya, A.: Survey on grid resource allocation mechanisms. J. Grid Comput. 12(2), 399–441 (2014)

    Article  Google Scholar 

  39. Ra, M.-R., Liu, B., Porta, T.F.L., Ramesh, G.: Medusa: a programming framework for crowd-sensing applications. In: Proceedings of the 10th international conference on Mobile systems, applications, and services, MobiSys ’12, 337–350, New York, NY, USA, 2012. ACM

  40. Trivedi, K.S., Bobbio, A., Ciardo, G., German, R., Puliafito, A., Telek, M.: Non-markovian petri nets. SIGMETRICS Perf. Eval. Rev. 23(1), 263–264 (1995)

    Article  Google Scholar 

  41. Xiao, Y., Simoens, P., Pillai, P., Ha, K.: and Mahadev Satyanarayanan. Lowering the barriers to large-scale mobile crowdsensing. In: Proceedings of the 14th Workshop on Mobile Computing Systems and Applications, HotMobile ’13, 9:1–9:6, New York, NY, USA, 2013. ACM

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Longo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Distefano, S., Longo, F. & Scarpa, M. QoS Assessment of Mobile Crowdsensing Services. J Grid Computing 13, 629–650 (2015). https://doi.org/10.1007/s10723-015-9338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-015-9338-7

Keywords

Navigation