Skip to main content

Advertisement

Log in

Advancing a Gateway Infrastructure for Wind Turbine Data Analysis

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The increasing amount of data produced in many scientific and engineering domains creates as many new challenges for an efficient data analysis, as possibilities for its application. In this paper, we present one of the use cases of the project VAVID, namely the condition monitoring of sensor information from wind turbines, and how a data gateway can help to increase the usability and security of the proposed system. Starting by briefly introducing the project, the paper presents the problem of handling and processing large amount of sensor data using existing tools in the context of wind turbines. It goes on to describe the innovative approach used in VAVID to meet this challenge, covering the main goals, numerical methods used for analysis, the storage concept, and the architectural design. It concludes by offering a rational for the use of a data gateway as the main entry point to the system and how this is being implemented in VAVID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilera, A., Grunzke, R., Markwardt, U., Habich, D., Schollbach, D., Garcke, J.: Towards an industry data gateway: An integrated platform for the analysis of wind turbine data. In: 7th International Workshop on Science Gateways, pp 62–66 (2015)

  2. Balaskó, Á.: Workflow concept of WS-PGRADE/gUSE. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 33–50. Springer (2014)

  3. Becciani, U., Sciacca, E., Costa, A., Massimino, P., Pistagna, C., Riggi, S., Vitello, F., Petta, C., Bandieramonte, M., Krokos, M.: Science gateway technologies for the astrophysics community. Concurrency and Computation: Practice and Experience 27(2), 306–327 (2015)

    Article  Google Scholar 

  4. Benedyczak, K., Schuller, B., Petrova, M., Rybicki, J., Grunzke, R.: UNICORE 7 - middleware services for distributed and federated computing. In: International Conference on High Performance Computing Simulation (HPCS)(2016, accepted)

  5. Boehm, M., Schlegel, B., Volk, P.B., Fischer, U., Habich, D., Lehner, W.: Efficient in-memory indexing with generalized prefix trees. In: BTW, vol. 180, pp. 227–246 (2011)

  6. Center for Information Services and High Performance Computing of the TU Dresden: HPC cluster Taurus (2015). https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus

  7. Costa, A., Massimino, P., Bandieramonte, M., Becciani, U., Krokos, M., Pistagna, C., Riggi, S., Sciacca, E., Vitello, F.: An innovative science gateway for the Cherenkov telescope array. J. Grid Comput., 1–13 (2015)

  8. Davidson, S.B., Cohen-Boulakia, S., Eyal, A., Ludäscher, B., McPhillips, T.M., Bowers, S., Anand, M.K., Freire, J.: Provenance in scientific workflow systems. IEEE Data Eng. Bull. 30 (4), 44–50 (2007)

    Google Scholar 

  9. Davidson, S.B., Freire, J.: Provenance and scientific workflows: Challenges and opportunities. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08, pp. 1345–1350. ACM, New York, NY, USA. doi:10.1145/1376616.1376772 (2008)

  10. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: An overview of workflow system features and capabilities (2008)

  11. Folk, M., Cheng, A., Yates, K.: HDF5: A file format and I/O library for high performance computing applications. In: Proceedings of Supercomputing, vol. 99 (1999)

  12. Garcke, J., Iza-Teran, R., Marks, M., Pathare, M., Schollbach, D., Stettner, M.: Data analysis for time series data from wind turbines. In: Industrial Mathematics at Fraunhofer SCAI. Preprint. Springer (2016)

  13. Garcke, J., Vanck, T.: Importance weighted inductive transfer learning for regression. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECMLPKDD 2014, Nancy, Lecture Notes in Computer Science, vol. 8724, pp. 466–481. Springer (2014). doi:10.1007/978-3-662-44848-9_30

  14. Gasch, R., Twele, J.: Wind Power Plants. Springer Berlin Heidelberg. Heidelberg, Berlin (2012). doi:10.1007/978-3-642-22938-1

  15. Gesing, S., Grunzke, R., Krüger, J., Birkenheuer, G., Wewior, M., Schäfer, P., Schuller, B., Schuster, J., Herres-Pawlis, S., Breuers, S., Balaskó, Á., Kozlovszky, M., Fabri, A.S., Packschies, L., Kacsuk, P., Blunk, D., Steinke, T., Brinkmann, A., Fels, G., Müller-Pfefferkorn, R., Jäkel, R., Kohlbacher, O.: A single sign-on infrastructure for science gateways on a use case for structural bioinformatics 10(4), 769–790 (2012). doi:10.1007/s10723-012-9247-y

  16. Gesing, S., Krüger, J., Grunzke, R., de la Garza, L., Herres-Pawlis, S., Hoffmann, A.: Molecular simulation grid (MoSGrid): A science gateway tailored to the molecular simulation community. In: Science Gateways for Distributed Computing Infrastructures, pp. 151–165. Springer International Publishing (2014). doi:10.1007/978-3-319-11268-8_11

  17. Gottdank, T.: Introduction to the WS-PGRADE/gUSE science gateway framework. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 19–32. Springer (2014)

  18. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W.E., Atkinson, M., Krüger, J.: Standards-based metadata management for molecular simulations. Concurrency and Computation: Practice and Experience 26(10), 1744–1759 (2014). doi:10.1002/cpe.3116

    Article  Google Scholar 

  19. Habich, D., Schad, J., Kissinger, T., Lehner, W.: Towards programmability of a NUMA-aware storage engine (2015)

  20. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, Second Edition. Springer (2001)

  21. HBP: The human brain project (2015). https://www.humanbrainproject.eu

  22. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 454(1971), 903–995 (1998). doi:10.1098/rspa.1998.0193

  23. Itakura, F.: Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoust. Speech Signal Process. 23(1), 67–72 (1975). doi:10.1109/TASSP.1975.1162641

    Article  Google Scholar 

  24. Kacsuk, P.: Science Gateways for Distributed Computing Infrastructures. Springer (2014)

  25. Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann, G., Balasko, A., Karoczkai, K., Marton, I.: WS-PGRADE/gUSE generic DCI gateway framework for a large variety of user communities. J. Grid Comput. 10(4), 601–630 (2012). doi:10.1007/s10723-012-9240-5

    Article  Google Scholar 

  26. Kammeyer, K.D., Kroschel, K.: Digitale Signalverarbeitung. Springer Vieweg (2012)

  27. Kissinger, T., Kiefer, T., Schlegel, B., Habich, D., Molka, D., Lehner, W.: ERIS: A NUMA-aware in-memory storage engine for analytical workloads. Proceedings of the VLDB Endowment 7(14) (2014)

  28. Kissinger, T., Schlegel, B., Habich, D., Lehner, W.: KISS-Tree: Smart latch-free in-memory indexing on modern architectures. In: Proceedings of the Eighth International Workshop on Data Management on New Hardware, pp. 16–23. ACM (2012)

  29. Kozlovszky, M., Karóczkai, K., Márton, I., Kacsuk, P., Gottdank, T.: DCI bridge: Executing WS-PGRADE workflows in distributed computing infrastructures. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 51–67. Springer (2014)

  30. Krüger, J., Grunzke, R., Gesing, S., Breuers, S., Brinkmann, A., de la Garza, L., Kohlbacher, O., Kruse, M., Nagel, W.E., Packschies, L., Müller-Pfefferkorn, R., Schäfer, P., Schärfe, C., Steinke, T., Schlemmer, T., Warzecha, K.D., Zink, A., Herres-Pawlis, S.: The MoSGrid science gateway – a complete solution for molecular simulations. J. Chem. Theory Comput. 10(6), 2232–2245 (2014). doi:10.1021/ct500159h

    Article  Google Scholar 

  31. Kusiak, A., Zhang, Z., Verma, A.: Prediction, operations, and condition monitoring in wind energy. Energy 60, 1–12 (2013). doi:10.1016/j.energy.2013.07.051

    Article  Google Scholar 

  32. Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction. Springer (2007)

  33. Liferay: Enterprise open source portal and collaboration software (2015). http://www.liferay.com/

  34. Luong, J., Habich, D., Kissinger, T., Lehner, W.: Architecture of a multi-domain processing and storage engine (2016)

  35. Lustre: The Lustre parallel file system (2015). http://lustre.org

  36. Noor, W., Schuller, B.: MMF: A flexible framework for metadata management in UNICORE. In: UNICORE Summit 2010 Proceedings, vol. 5, pp. 51–60 (2010)

  37. PRACE: PRACE research infrastructure (2015). http://www.prace-ri.eu

  38. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs. In: Acm Sigplan Notices, vol. 46, pp. 127–136. ACM (2010)

  39. Schmuck, F.B., Haskin, R.L.: GPFS: A shared-disk file system for large computing clusters. In: FAST, vol. 2, p. 19 (2002)

  40. Schuller, B., Grunzke, R., Giesler, A.: Data oriented processing in UNICORE. In: UNICORE Summit 2013 Proceedings, IAS Series, vol. 21, pp. 1–6 (2013)

  41. Shahand, S., Benabdelkader, A., Jaghoori, M.M., Mourabit, M.A., Huguet, J., Caan, M.W., Kampen, A.H., Olabarriaga, S.D.: A data-centric neuroscience gateway: design, implementation, and experiences. Concurrency and Computation: Practice and Experience 27(2), 489–506 (2015)

    Article  Google Scholar 

  42. Shahand, S., Santcroos, M., van Kampen, A.H., Olabarriaga, S.D.: A grid-enabled gateway for biomedical data analysis. J. Grid Comput. 10(4), 725–742 (2012)

    Article  Google Scholar 

  43. Unity: Unity - Cloud identity and federation management (2014). http://unity-idm.eu

  44. Vanck, T., Garcke, J.: Using hyperbolic cross approximation to measure and compensate covariate shift. In: Ong, C.S., Ho, T.B. (eds.) ACML 2013, Canberra, pp. 435–450 (2013)

  45. Wu, J., Siewert, R., Hoheisel, A., Falkner, J., Strauß, O., Berberovic, D., Krefting, D.: The Charité grid portal: User-friendly and secure access to grid-based resources and services. J. Grid Comput. 10(4), 709–724 (2012)

    Article  Google Scholar 

  46. XSEDE: Extreme science and engineering discovery environment. https://www.xsede.org (2015)

  47. Ye, L., Keogh, E.: Time series shapelets. In: KDD 2009, pp. 947–956. ACM Press. doi:10.1145/1557019.1557122 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Aguilera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera, A., Grunzke, R., Habich, D. et al. Advancing a Gateway Infrastructure for Wind Turbine Data Analysis. J Grid Computing 14, 499–514 (2016). https://doi.org/10.1007/s10723-016-9376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-016-9376-9

Keywords

Navigation