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Abstract Recently scientific communities produce a
growing number of computation-intensive applica-
tions, which calls for the interoperation of distributed
infrastructures including Clouds, Grids and private
clusters. The European SHIWA and ER-flow projects
have enabled the combination of heterogeneous sci-
entific workflows, and their execution in a large-scale
system consisting of multiple Distributed Computing
Infrastructures. One of the resource management chal-
lenges of these projects is called parameter study job
scheduling. A parameter study job of a workflow gen-
erally has a large number of input files to be consumed
by independent job instances. In this paper we propose
a meta-brokering framework for science gateways to
support the execution of such workflows. In order to
cope with the high uncertainty and unpredictable load
of the utilized distributed infrastructures, we introduce
the so called resource priority services. These tools
are capable of determining and dynamically updat-
ing priorities of the available infrastructures to be
selected for job instances. Our evaluations show that
this approach implies an efficient distribution of job
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instances among the available computing resources
resulting in shorter makespan for parameter study
workflows.
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1 Introduction

User communities worldwide use many kinds of
workflow management and execution environments,
which also raises interoperation problems among
these working groups [27]. Workflow development,
testing and validation are generally time-consuming
processes and they require specific expertise to man-
age. These tasks hinder the growth of the number of
available workflows and slow down the production of
research results, so it is important to reuse them. Com-
munities using similar workflow engines can benefit
from sharing previously developed and tested appli-
cations, like using the myExperiment collaborative
environment [1].

Besides sharing, interconnecting and combining
these workflows can lead to further research gains
and save time. Unfortunately, workflows developed
for one workflow enactment system is most of the
time not compatible with workflows of other systems.
In the past, if two user communities using different
workflow systems tried to collaborate, they had to
redesign the application from scratch to the desired
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workflow execution platform. To overcome these dif-
ficulties, new workflow interoperability technologies
must be developed, which was the basic goal of the
European SHIWA project [2]. By using the SHIWA
technologies, publicly available workflows can be
used by different research communities [25] work-
ing on different workflow systems, and are enabled to
be executed on multiple distributed computing infras-
tructures. As a result, workflow communities are not
locked any more to one workflow enactment system
and its supported computing infrastructure. The main
goal of the European ER-flow project [3] was to dis-
seminate the achievements of the SHIWA project and
use these achievements to build workflow user com-
munities in Europe. It provided application support to
research communities within and beyond the project
consortium to develop, share and execute workflows
with the SHIWA Simulation Platform. Both projects
supported the execution of parameter study workflows
over a growing number of DClIs, therefore it is cru-
cial to develop such resource allocation algorithms
that are capable of efficiently distributing a large num-
ber of simultaneously submitted parameter study jobs
among resources of these heterogeneous infrastruc-
tures. These requirements also serve as a motivation
for this work.

Managing these heterogeneous DCIs and schedul-
ing the jobs of these scientific workflows are diffi-
cult problems and require sophisticated approaches to
tackle. Many of these workflows apply the parame-
ter study construct to examine large input sets with
specific algorithms (e.g. [1]). A parameter study (PS)
job of a workflow generally has high number of input
files to be consumed by independent job instances.
The state-of-the-art approaches for executing such
parameter study jobs can be classified to two differ-
ent strategies: (i) pull models try to avoid relying on
outdated information on DCI load, therefore they start
a pilot job in a DCI and pull jobs to it. Concern-
ing the more traditional push approach (ii), generally
all job instances are submitted simultaneously to the
scheduling component of the workflow management
system. This may cause significant overheads in ser-
vice response time and bottleneck problems. There-
fore additional information needs to be taken into
account during workflow execution. For example, Fan
et al. [10] applied an estimation of execution and wait
time prediction based on Karnak prediction service
in the SEAGrid science gateway using data mining
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techniques. In this paper we measure the waiting time
instead of using job run time estimations.

To cope with these problems, in this paper we
propose a meta-brokering framework for science gate-
ways [26] to enable grouped DCI selection and sub-
mission for these instances. As job scheduling in these
heterogeneous distributed systems is NP-hard [12],
there is a need for solutions that apply some sort of
heuristics and sophisticated approximations. Some of
these methods are based on runtime estimates and the
inaccuracy of these estimates is a perennial problem
mentioned in the job scheduling literature. Even if
users are required to provide these values, there is no
substantial improvement in the overall average accu-
racy [9]. The background load of the utilized DCls is
also hard to estimate, and only some of them provide
public information on dynamic resource load, which
are usually outdated [9]. Our current approach tries to
follow dynamicity in resource utilization with the help
of so called resource priority services.

Therefore the main contributions of this paper are:
(i) the design of meta-brokering framework for sci-
ence gateways to enable automatic DCI selection for
parameter study jobs of workflows, and (ii) the evalu-
ation of this approach in a real-world science gateway
solution called gUSE.

The remainder of this paper is as follows: Section 2
introduces the multi-DCI selection problem, and
Sections 3 and 4 describe our proposed meta-
brokering framework to support the efficient execu-
tion of parameter study workflows, including imple-
mentation details and evaluations. Section 5 presents
improvement ideas to our current solution. Finally,
Section 6 discusses related works, and the contribu-
tions are summarized in Section 7.

2 Multi-DCI Selection Problem

There are many user communities who need to access
several DCIs in a transparent way, but they don’t want
to learn the peculiar features of these infrastructures.
They want to concentrate on the execution of their
scientific application. A science gateway [28] pro-
vides an interface between a scientist (or the research
community) and the distributed computing infrastruc-
tures (DCIs). It can be imagined as a framework that
provides a specific set of enabling technologies as
well as frontend and backend services that together
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Fig. 1 Problem of multi-DCI selection in science gateways

build a generic gateway. These frameworks are not
specialized for a certain scientific area and hence
scientists from many different areas can use them.
Typical examples of such enabling technologies are:
web application containers, portal or web applica-
tion frameworks, database management systems, and
workflow management systems. To efficiently man-
age multiple, heterogeneous distributed infrastructures
within a science gateway, a meta-brokering approach
is needed to coordinate, manage and efficiently dis-
tribute parameter study job instances over the avail-
able DCIs. Workflows applying the parameter study
construct have multiple input sets to be executed with

Fig. 2 Default Max

multiple job instances of the same program binary.
Hence, a parameter study job has a large number
of input files to be consumed by independent job
instances.

Meta-brokering means a higher level brokering
approach that schedules user jobs among various
distributed infrastructures. This approach can also
be regarded as a federation management solution.
Current state-of-the-art works usually target one or
two infrastructure types to form a federation. E.g.
in Grid infrastructures, the InterGrid approach [18]
promotes interlinking of Grid systems through peer-
ing agreements to enable inter-Grid resource sharing.
Regarding Cloud systems, Buyya et al. [19] suggest
a Cloud federation-oriented, opportunistic and scal-
able application services provisioning environment
called InterCloud. They envision utility oriented fed-
erated IaaS systems that are able to predict application
service behavior for intelligent down and up-scaling
infrastructures. Some works investigated federating
Grid and Cloud systems [20], but managing multi-
ple infrastructures is rarely supported by multi-DCI
brokering.

The problem for multi-DCI selection in science
gateways is depicted in Fig. 1. The traditional
approach for execution parameter study jobs is to sub-
mit all instances simultaneously (i.e. one-by-one) to
the scheduling component of the workflow manage-
ment system of a science gateway that forwards them
to a predefined infrastructure set by the user. This
may cause significant overheads in service response
time and bottleneck problems, and it can also overload
certain DCIs.

Our proposed default meta-brokering approach to
be applied for parameter study jobs of a workflow dis-
tributes the load evenly among the connected DCIs
based on their number of available resources. This
approach is shown in Fig. 2. This job distribution

meta-brokering approach
for DCI selection for
parameter study job
instances of a workflow

,

~-- Numberof
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implies a load balancing that puts more job instances
to DCIs having higher throughput, thus having more
resources to execute a certain number of jobs.

Note that this approach does not take into account
the background load of the managed DClIs (i.e. the
already running or waiting jobs on the actual infras-
tructure). Specific DCIs like Grids may have mon-
itoring components that provide such information
through so-called Information Systems. Unfortunately
the monitored data they publish is generally outdated,
and cannot be used for exact schedules. Not to men-
tion that usually the execution times of the background
jobs are unknown, even user estimates are inaccurate
[9] for their submitted jobs. This uncertainty makes
job scheduling even harder in Grids, and of course,
this is the case for multiple, heterogeneous DCls.
Some DClIs such as local clusters may provide more
accurate load information, but for example commer-
cial clouds inherently hide load information on the
underlying infrastructure.

In an earlier work we have designed a meta-
brokering approach [17] suitable for these needs hav-
ing five major components (shown in Fig. 3). The
Meta-Broker Core is responsible for managing the
interaction with the other components and handling
user interactions. The MatchMaker component per-
forms the scheduling of the jobs by selecting a suitable
broker. This decision making is based on aggregated
static and dynamic data stored by the Information Col-
lector component in a local database. The Information
System Agent is responsible for regularly updating
static and dynamic information on resource avail-
ability from the interconnected infrastructures. The
Invoker component forwards the jobs to the selected

Fig. 3 The architecture of
GMBS ?
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broker and receives the results. Each job submitted for
matchmaking is supplied with a standard description
document containing their quality of service attributes.
More information on these components and the uti-
lized description language can be read in [17]. By
developing our meta-brokering framework we took
into account these theoretical guidelines, and created
a concrete implementation to our DCI-Bridge tool to
be detailed in the next subsection.

Various DCIs have different characteristics, which
makes them hard to compare. Service Grids have
active resources that continuously execute submitted
jobs, while desktop Grids have volatile resources that
can go offline any time a volunteer donor wants to
use it. Clouds have virtual resources that have to
be deployed before using them, which also affects
the load and waiting time of the jobs. What com-
mon in these characteristics is that in all DCIs a
certain amount of delay exists that affects the exe-
cution time of a submitted job. Note that once a
DCI is selected by the meta-broker for a job (or
group of jobs), the local scheduler of the appropriate
DCI will perform the actual resource selection within
the DCI.

In order to incorporate dynamic information to our
meta-brokering approach we try to track and esti-
mate this delay. This estimation will be incorporated
to the former default job distribution approach to
arrive to a more dynamic solution capable of avoid-
ing overloading certain DClIs. This extended approach
will be described in detail in the next section after
introducing our reference science gateway architec-
ture and the solution for extending it with the default
meta-brokering approach.
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3 Static Meta-brokering for Science Gateways

Our proposed meta-brokering solution for parameter
study workflows enables a randomized DCI selec-
tion and submission for these PS instances to better
balance the load among them.

In order to achieve this in a science gateway, our
approach proposes a meta-brokering component for
the workflow managers. Traditionally each job of a
workflow is assigned to a DCI. During workflow exe-
cution, the workflow manager uses the given DCI
to submit and execute the actual job. With the help
of a meta-brokering component, the user can assign
a job to more than one DCI, and the final execu-
tion environment will be determined during runtime.
The role of this new component is to select one
of the candidate DCIs. The default algorithm can
take into account the number of resources of each
candidate DCI, and distribute parameter study job
instances evenly among them (i.e. bigger DCIs should
get more job instances). In this way the resource
number represents a static weight for the actual
DCI.

3.1 Implementation in gUSE
Our proposed meta-brokering solution for parameter

study workflows is developed for a science gateway
family called gUSE [8]. It provides necessary software

DCl Bridge

stacks to develop science gateway frameworks and
instances for various scientific communities (offering
a simplified user interface that is highly tailored to the
needs of the given community).

DCIs are managed by the so-called DCI-Bridge
component in gUSE. It has been developed as an inde-
pendent service for science gateways capable of sub-
mitting jobs of scientific workflows to different com-
puting infrastructures. It hides the details of accessing
these DCls, and accepts standard job descriptions (in
XML-based Job Submission Description Language
format — JSDL) sent through a standard BES (i.e.
Basic Execution Service) interface. DCI-Bridges can
be chained together to enable job forwarding among
them (with the help of so-called proxy DCI-Bridges).

There are different user roles within DCI Bridge
(more details in [24]). First of all, (i) the system
administrator is responsible for the definition of the
main settings of the DCI Bridge objects (as shown in
Fig. 4), for adding or removing a connector of a certain
resource to (or from) an existing middleware group,
further for the enabling or disabling and observing the
flow of jobs to a certain resource. (ii) The common
(power- or end-) user can browse among the resources
which may be selected as the targets of the submis-
sions to be defined during the workflow/job configu-
ration phase. The common user may not change the
actual settings of the DCI Bridge therefore he or she
has a slightly modified user interface.

=..0o e e
- Rl sl el
I-Bridge{ | glite GT-2 GT-4 GT-5

Unicore ARC

Vo
| UNIC#RE ;"I

ol 'R @ i 29,

LSF PBS GEMLCA GAE Local

Manager Settings Log entries

System parameters

Work dir (if not set =
catalina home)

URL of Meta Broker WSDL

Callback url for status
sending
Debug mode Disabled ~

Save

It uses some middleware plugin (currently glLite). Ifitis set, then the job's wrapper script sends the finished status and the outputs
back to the DCI-BRIDGE to speed up status sending. Ifitis empty then the function is disabled.

More plugin logs in catalina.out, and temporary job directories will not be deleted. Do NOT enable in production system!

Fig. 4 DCI-Bridge configuration
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Fig. 5 DCI-Bridge
architecture with DCI
plugins
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The DCI Bridge has three main important proper-
ties. Firstly, it supplies the user interface, where the
references about the resources of job executions are
defined. Consequently only those resources are visible
during workflow/job configuration, which have been

defined by the Administrator user on DCI Bridge.
Secondly, it contains the base routing parameters to
remote resources, thus the actual job submissions
can be controlled and observed via the DCI Bridge.
Thirdly, which is most important for this paper, the
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Fig. 6 The extended DCI-Bridge with the Broker plugin
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single interface of the DCI Bridge is an ideal inser-
tion point for meta-brokering. In the background, with
the call of a special subroutine-like service it performs
the eventual late binding of jobs to resources of the
available DCIs. A DCI-Bridge separates management
operations of a concrete infrastructure into a plugin
(as shown in Fig. 5). Therefore each plugin is respon-
sible for storing jobs in its waiting queue (using the
First Come First Served strategy - FCFS), submitting
jobs to its DCI, monitoring their states and handling
possible failures. The so-called Plugin selector com-
ponent is used to determine which plugin should be
selected to an incoming job request, based on its JSDL
content.

We decided to develop a new plugin for our meta-
brokering solution. This BROKER plugin is not con-
nected to any DCls, its role is to determine which
DCI plugin should be contacted to manage an actual
job submission. This decision is made on the infor-
mation available in the actual job description (JSDL),
and on the properties of the available DCIs. The JSDL
contains the possible list of target infrastructures,
and a meta-brokering algorithm changes this list to a
concrete DCI (by modifying the JSDL) after select-
ing one of them. Finally the modified JSDL is sent
back to the Plugin Selector. The extended DCI-Bridge

architecture is shown in Fig. 6 (Resource Priority
Services will be introduced in the next section).

By default, our proposed meta-brokering approach
uses the static resource number of the available DCIs
to determine the submission environment. In the DCI-
Bridge we represent the throughput of DCIs by pri-
ority numbers, which are initially set to their static
resource number by the system administrator of a sci-
ence gateway. This number represents a weight for
a DCI, and the BROKER plugin uses these weights
to perform weighted randomized DCI selection for
parameter study jobs of a workflow. This means that
DClIs are selected randomly, but a DCI having twice
higher weight then another gets selected with doubled
probability.

This also means that in a science gateway using this
approach users need to specify a list of DCIs and an
algorithm name for all jobs of a workflow, if meta-
brokering is needed to execute the workflow. When
such a workflow is submitted, the JSDL of an actual
job is sent to the DCI-Bridge, and it is given to the
BROKER plugin. First it checks, if the user is allowed
to utilize the named DCIs (i.e. has valid proxies to
execute jobs on it). This step could be done in the
science gateway itself, but since the DCI-Bridge has
these capabilities, it is reasonable to perform it here.

[User credentials ]

Resource priority

service,
JSDL: algorithm A

gLite/Voce gLite/Voce : 1
gLite/Hungrid gLite/Hungrid gLite/Hungrid : 1

cloud/LPDS cloud/LPDS cloud/LPDS: 2
\ PBS/dev1/short: 1

V4
/Dei-Bridge '\ N\
Plugin Selector
[Broker Plugin )
Algorithm A resources
. gLite/Hungrid cloud/LPDSF M
_gLite (1) (2)

NS

Fig. 7 The extended DCI-Bridge with the Broker plugin
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If this checking process does not find a valid proxy
to a DCI listed in the JSDL of a job, it will exclude
it from the potential list of DCIs to be used for the
selection process. This step is exemplified in Fig. 7.
In this case the user listed three DClIs, and only have
proxies (i.e. credentials) for two of them (namely to
HunGrid and LPDS Cloud), therefore these two DCIs
will be the candidates for executing instances of the
actual parameter study job.

Once the list of potential DCIs are determined,
the BROKER plugin takes their priority values and
performs a randomized selection weighted with the
priorities. Such a selection can be imagined for all job
instances as: all the candidate DCIs are put into a hat
with occurrences given by their priority values, and
one candidate is taken out of the hat randomly. The
selected DCI will be written to the JSDL of the actual
job instance, and it will be sent back to the Plugin
selector, then forwarded to the named DCI plugin to
perform the actual submission.

In order to use the proposed meta-brokering feature
in gUSE, first the administrator of a DCI-Bridge ser-
vice needs to set the priority weights for each DCI —
as shown in Fig. 8. Weights are numerical values that

Fig. 8 Defining DCI
weights for the MetaBroker
in DCI-Bridge

typically reflect the capacity of a given resource (e.g.,
the number of CPUs available).

During submitting a job of a scientific workflow,
the brokering service in gUSE will choose one of the
actual computing resources with a distribution corre-
sponding to the weights (by using weighted random
distribution). Resources with higher weights take part
with higher priority in the resource selection process,
for example, brokering composed of three computing
resources (local resource, gLite, cloud) and weights:
1 (local), 2 (gLite), and 3 (cloud), will submit about
16 % (local), 33 % (gLite), and 50 % (cloud) of
the submitted jobs to the related resources. In case
of static brokering, these weights are basically con-
stants; the distribution of the submitted jobs over the
resources does not change in time.

“0” weight means that no jobs are brokered to that
DCI (e.g., LPDS OCCI), while DCIs having a positive
integer value are potential candidates for the job exe-
cution. Once these weights have been set and saved,
the jobs of a workflow can use the MetaBroker ser-
vice of gUSE by selecting resource type: “broker”
for the actual job. This selection possibility is shown
in Fig. 9. Users should have valid certificates to all

DCl Bridge

~ DCI Bridge settings

‘ Settings H ® | ocal ‘ I MetaBroker ’
1

2se ~ |LPDS cloud
116 SZTAKI cloud
o LPDS OCCI

@ Springer

Set weights (numbers) for the resources



A Meta-Brokering Framework for Science Gateways

1"\
,I\/y

SINES 7

: ]

o5 ¥ i
[ob VO] | UDURSL] | [History]

Select broker within
the resource Type list.

Select an algorithm name
(e.g.; al) for resource
weighting.

mEEQOE

Select grids and
clouds fromthe
available resources

(you need to have
valid certificateto all
selected clouds and
VOs).

Fig. 9 MetaBroker configuration in gUSE

selected DCIs, and the selected algorithm will deter-
mine the actual DCI selection based on the predefined
weights.

3.2 Evaluation

In order to evaluate our proposed meta-brokering
framework for science gateways, we have designed
an artificial workflow that helped us to examine the
introduced brokering capabilities of our solution. This
workflow is shown in Fig. 10. It contains two gener-
ation phases to create parameter study job instances:
the first job (Genl0) generates 10 output files which
implies the creation of 10 instances for the next 3 jobs
in both paths, and the third jobs in these paths (labeled

Fig. 10 Test workflow for evaluation

I .
.,

The instances
of a configured
PS job will be
shared among
the selected
resources
based on the
weighting
algorithm. (In
the case of one
job instance,
the job will be
submitted only
to the relative
best selected
resource.)

SZTAKI
EC2

SEE-GRID-SCI

Gen5A and Gen5B) generates 5 output files each
to result in 5 dynamically created instances for the
remaining jobs sorted to four paths. These generator
jobs are marked with red circles in Fig. 10. The final
jobs of the workflow collects the results of all parame-
ter study job instances. In this way the execution of the
workflow requires running 2062 job instances, which
would take around 3 hours with a fully parallel execu-
tion (theoretically). In practice data transfers, latencies
of the applied middleware and queue waiting times
introduce additional execution time.

Our evaluation environment consisted of a gUSE-
based science gateway with a DCI-Bridge connected to
four DCIs: two PBS clusters located at Italy and Hun-
gary: INAF-PBS (with 200 nodes) and LPDS-PBS

\.:
./
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(with 20 nodes) respectively, and two private clouds
located at different regions of Budapest, Hungary:
LPDS-Cloud (with 20 VMs) and SZTAKI-Cloud
(with 30 VMs). In the first evaluation phase we
executed the test workflow separately in all DCls.
We performed the measurements three times, and
counted their average shown in Table 1. Only the
INAF PBS cluster had enough resources to perform
a fully parallel execution (meaning no queue waiting
times occurred, only data transfers and communi-
cation processes prolonged the theoretical execution
time). Therefore in the following measurements we
exclude this cluster from the evaluation, and use only
the remaining three DCls.

In the second evaluation phase, we used the ear-
lier introduced static meta-brokering capability of the
DCI-Bridge service. In this case we configured the
Broker plugin with the same priorities to the avail-
able three DCIs, which means that the parameter study
job instances are distributed equally among the DClIs
during workflow execution. The result is shown in
Table 2. Since we used all DClIs this time to execute
the parameter study job instances, we achieved some
performance gain compared to two previous single
executions. Nevertheless we experienced some VM
failures in the cloud infrastructures, therefore some
instances had to be reexecuted.

In the third evaluation phase we set the priori-
ties according to the actual computing capacities (i.e.
resource numbers) and previous performance values
of the DCIs. The result is shown in Table II. In this
phase we experienced additional performance gains.
Though we also had some VM failures in this case,
the DCIs having more computing capacities received
more job instances than the others (i.e. the job distribu-
tion was weighted by the priorities), which resulted in
additional speedup. The fourth row of the table shows
the number of executed instances per DClIs.

In order to evaluate our proposed meta-brokering
framework in a more dynamic environment, we
repeated the third phase of Section 3.2 with increased

Table 1 Results of the first evaluation phase

DClIs of the science gateway

INAF-PBS LPDS-PBS SZTAKI-Cloud LPDS-Cloud

Exec. time 3h 30min 13h 22min 4h 46min 6h 1min

@ Springer

Table 2 Results of the second and third evaluation phase

DClIs of the science gateway

LPDS-PBS SZTAKI-Cloud LPDS-Cloud

2" phase Priorities 1 1 1
2" phase Exec. time 7h 26min

3" phase Priorities 1 3 2
3" phase Distribution 339 979 744

3" phase Exec. time 4h Imin

background load on the strongest DCIs. Therefore we
generated additional load with additional jobs on cer-
tain VMs of the SZTAKI Cloud to simulate a real
world utilization. In this case we experienced longer
makespan for the test workflow, hence the result was
5h 57min. The instance distribution was also modified
in this case: our new algorithm distributed the jobs
according to the predefined static weights.

Figure 11 shows the total number of jobs submitted
to all DClISs. This experiment proved our initial hypoth-
esis that dynamic changes in the background load can
really affect our brokered execution. As a result we
need to react to these changes by modifying the static
priorities. This modification can be performed by our
proposed Resource Priority Service (to be discussed
in the next section), but we have to mention that the
initial priorities for the DCIs and the normalization
function for refreshing the priorities should be cho-
sen carefully with possible pretesting measurements
in order to achieve additional performance gains.

W LPDS cloud (675)
B SZTAKI cloud (1042)
PBS (345)

Fig. 11 The applied job instance distribution in the third
evaluation phase
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4 Dynamic Meta-brokering for Science Gateways

As we introduced in Section 2, generally there is a
need to change these DCI weights dynamically to
avoid overloading an infrastructure, thus to reflect the
background load in the weights (not only the size
of a DCI). Next we detail, how DCI weights can
be updated, and present a proof-of-concept imple-
mentation with a new component called a Resource
Priority Service (RPS). These components are inde-
pendent from DCI-Bridges, and can use any logic and
algorithm to determine and refresh these priorities.

4.1 Implementation in gUSE

In order to modify DCI weights based on their
dynamic background load, we propose to regularly
measure the waiting time on these infrastructures. Our
reference implementation for a Resource Priority Ser-
vice uses so-called robot or probe jobs to determine
this latency for a DCI that reflects its background load.
To transform the waiting time to weights (i.e. prior-
ities as we call them later), we use this latency to
decrease the predefined number of available resources
that serves as a base for determining DCI weights.
This task can be done by using some kind of
normalization function. In general, the higher the mea-
sured waiting time is, the lower the weight the actual
DCI should have. To achieve this, in our reference
implementation of the Resource Priority Service in
[11] we apply f(x) = 1-(log(x)/5) for the waiting
time in minutes for getting a weight multiplier value
between O and 1. This value will be multiplied by
the predefined resource number in order to get lower
weights for higher waiting times. This normalization
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Fig. 12 The applied function for weight normalization

function is depicted in Fig. 12, where the x axis repre-
sents the measured waiting time, and the y axis shows
the multiplier values. For a concrete science gateway
the applied normalization function may be different,
since the average waiting times can differ for various
DClIs, types of workflows and on the size of the active
scientific community.

An actual priority update from an RPS is stored in
the DCI-Bridge under a unique algorithm name. This
means that in this solution the priorities of any DCI
set can be managed and updated by an RPS under a
special algorithm name. A reference proof-of-concept
implementation of an RPS service [11] is already
available. This version uses the previously introduced
and discussed weight normalization to determine DCI
priorities. This service is implemented as a web ser-
vice that can be deployed in a web server (e.g. a
Tomcat server that hosts gUSE components and ser-
vices).

Figure 13 illustrates, how robot jobs, also called
as probe jobs, are used to refresh DCI (also called
as Middleware) weights. We have two DCIs in
this case: Middleware A and Middleware B, both
having one-one resource. The following steps are
needed to determine or update the weights of these
DCls:

1. The RPS should initiate the execution of a probe
job on Middleware A and B (this can also be done
separately)

2. a) The DCI-Bridge submits a probe job to Middle-
ware A b) The DCI-Bridge submits a probe job to
Middleware B

3. The appropriate DCIs execute the probe jobs

4. Once a probe job is finished, the DCI-Bridge gets
notified

5. The DCI-Bridge sends a notification to the RPS
of finishing the probe job (separately for the two
DClIs)

6. The RPS service calculates and sends an updated
DCI weight to the DCI-Bridge (as a reply for each
notification)

Before deploying an RPS service, a system admin-
istrator needs to configure it with the WSDL of a
DCI-Bridge to be connected to it. After deploying it,
the service should be further configured with the man-
aged algorithm name, with the JSDLs of robot jobs
specifying their DCIs and with the initial priorities of
these DCIs. As a prerequisite, the repository of the
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Fig. 13 Load prediction
with probe jobs
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gUSE portal using the appropriate DCI-Bridge must
contain these robot jobs as single workflows.

This approach also enables that different algo-
rithms (i.e. priorities) can be used by the users for
jobs of a specific workflow, as shown in Fig. 14. This
figure depicts a workflow having generator and collec-
tor jobs used to manage parameter study job instances.
Between these jobs the workflow contains compute-
intensive and data-intensive PS instances. By using
different algorithms for these two instance categories,
more efficient workflow execution could be achieved.
Therefore various scientific communities can develop
their own RPS to better represent and manage certain
DClIs in their science gateways.

Note that random selection is an important feature
for selecting the submission environment. It could also
be possible to choose the DCI with the highest priority
for all job instances, but it could result in overloading
the actual DCI. Randomized selection avoids this and
also selects DCIs with less priority to better balance
the load among the potential infrastructures.

Fig. 14 A sample
workflow using different
DCI priorities
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5 Improvements

Though the presented meta-brokering framework can
provide significant performance gains for parameter
study workflows in science gateways (SG), our real-
world experiences show that further improvements
can be useful. As we have seen in Section 4, we use
robot jobs, also called as probe jobs to determine the
background load of a DCI.

If a DCI has a small number of computational
resources or nodes, these probe jobs can waste sig-
nificant execution time. Nevertheless, if a DCI has
heterogeneous nodes (one is faster than the other),
the measured load on a slow or overloaded node
may rule out a generally well performing DCI from
the selection process. These issues can hinder the
performance gains of the meta-brokering framework,
therefore gathered some improvement suggestions in
this section.

Figure 15 depicts a situation for 12 PS job instances
to be executed, where a DCI (Middleware B) has a

compute-intensive
long running time

Collector

data-intensive
short running time
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Fig. 15 Load distribution
for different DCIs
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higher weight (i.e. 3, meaning that it is three times
faster) than the other (Middleware A with weight 1),
but it has only one resource behind a waiting queue.
In this case we experience performance loss, because
Middleware A could execute more jobs than assigned
(because it has a higher number of resources to par-
allelize job executions) according to the measured
weight by probe jobs. This situation is further detailed
in Fig. 16, by exemplifying parallel job executions
over time.

The optimal job distribution in this case would
be to submit more jobs to Middleware A, thus the
weight determination should incorporate the number

Middleware A  Middleware B

Elapsed (weight: 1) (weight: 3)
time (parallel: 4) (parallel: 1)
1 (1]
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Fig. 16 A possible unequal job distribution corresponding to
Fig. 15
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of available nodes on a DCI, i.e. the level of par-
allelization achievable on a DCI. Such an optimal
distribution is shown in Fig. 17. According to this
finding, the RPS algorithm, taking into account only
resource speeds measured by probe jobs, can provide
significant performance gain only for DCIs with sim-
ilar parallelization capabilities (i.e. similar resource
number). As a result, we can improve the job distribu-
tion by replacing the default RPS algorithm to count
the weight value by measured speed * paralleliza-
tion capability. Thus the new weight for the situation
depicted in Fig. 17 will change from (B-3, A-1) to
(B-3, A-4).

Middleware A  Middleware B

Elapsed  (weight: 1) (weight: 3)
time (parallel: 4) (parallel: 1)
1 0

1 11 9
©
. (5
5 10 6
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8
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Fig. 17 Equal job distribution corresponding to Fig. 17
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Fig. 18 Probe jobs in
waiting queues
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Nevertheless we can still find cases resulting in
an inefficient distribution. Therefore we can further
improve the distribution by revising the weight calcu-
lation with the following equations for n DClIs:

weight, = (speed, / Lspeed) x (parrarel, / Tparrarel
weighty, = (speedy / Lspeed) x (parrarely, / Tparrarel

weight, = (speed, / Lspeed) * (parrarel, / parrarel

The second problem we experienced is that the
probe jobs used for determining the speed of DCI
resources can get stuck in waiting queues and reserve
free resources causing additional waiting of user jobs

Fig. 19 Triggered weight

calculation by DCI-Bridge Mi ddl

® Probe JOB
@ Comp.JOB

@ Springer

Middleware A

)y

Middleware B
. o
0
» ® Queue

2b

Resource weights |

[* (A=1,8=3)

DCI BRIDGE RPS

SG

as shown in Fig. 18. In such cases a new weight calcu-
lation for a group of jobs is done by taking the latest
measured speed value of a DCI, which is definitely
better than the one will be measured for the actu-
ally waiting probe job. A good solution for this would
be to modify the measurement process, and track the
execution process of these probe jobs, and mark the
elapsed time since submitting the probe job. We can
enable this by modifying the DCI-Bridge, not to
wait for weight updates from the RPS, but to trigger
weights for DCIs right before a meta-brokering phase.
This modified version is shown in Fig. 19.

The third problem we found is the presence of third
party jobs in DCIs. This is one of the main reasons
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uncertainty is preset in distributed systems. Some DCls,
such as Grids or clusters may allow job submissions
and executions from different portals or gateways.
In this situation the science gateway we are using is
unaware that there are other jobs in the system than
the gateway submitted. This case is shown in Fig. 20.

According to the calculated weights the system
expect that a certain number of jobs can be run in par-
allel (e.g. 4 jobs in Middleware A of Fig. 20), but only
2 of them can be executed after submission, since 2
other jobs (marked with grey color) occupy the rest
of the nodes. This means that optimal job distribution
(and the highest performance gain) can be achieved
only for such DClIs, for which the actual science
gateway has full control. Typically cloud infrastruc-
tures can provide this. For others the meta-brokering
algorithms have to be developed by taking into such
uncertainty. We have also researched solutions for
these cases by applying fuzzy approaches [21].

6 Related Works

Scheduling in Grid systems, which is one of the tasks
of Grid resource managers, become even more com-
plicated with multi-organizational shared resources,
therefore Grid scheduling is also NP-hard [12].
Schwiegelshohn et al. [13] showed that the perfor-
mance of Garey and Graham’s list scheduling algo-
rithm is significantly worse in Grids than in general
multiprocessor systems.

While the principle of workflows is easy to con-
ceive, their execution is very complex and no general
solution exists. In an earlier joint work by Bacso
et al. [23] we examined the resource allocation chal-
lenges of parameter study jobs in distributed com-
puting infrastructures, and proposed a series of job
allocation models that helps refining and simplifying
the problem complexity. We examined some special
cases that are polynomial and showed how more com-
plex scenarios can be reduced to these models. The
state-of-the-art approaches for executing parameter
study workflows show high diversity based on their
application area and execution environments. Hirales-
Carbajal et al. [5] present an experimental study of
22 deterministic non-preemptive multiple workflow
scheduling strategies in Grids. While their objec-
tive is to schedule and execute the whole workflow,
and minimize its makespan, we restrict ourselves to

parameter study jobs of such workflows. Oprescu
et al. [6] propose a budget constraint-based resource
selection approach for cloud applications, which can
schedule bags of tasks onto multiple clouds with dif-
ferent CPU performance and cost, minimizing com-
pletion time with maximized budget. Their scheduler
learns to estimate task completion times at run time.
GridBot [7] represents an approach for execution of
bags-of-tasks on multiple Grids, clusters, and volun-
teer computing Grids. It has a Workload Manager
component that is responsible for brokering among
these environments, which is similar to our approach,
but they focus on tasks more suitable for volunteer
Grids.

Casanova et al. [14] focused on the same prob-
lem of scheduling parameter sweep applications on
Grids, with particular attention to file transfers and
network performance. Also, their motivation is in
alignment with most of the papers in this area. Their
approach is modifying existing heuristics so that they
are adaptive in a dynamic heterogeneous environment.
The core of the scheduling is a Gantt chart that is
created and updated periodically and keeps track of
job and resource assignments. Assignments are gov-
erned by a heuristics called sufferage, where a task is
assigned to a host if the task would suffer the most
if done otherwise. Maheswaran et al. [15] addresses
the issue of mapping independent tasks onto hetero-
geneous computing systems. They apply heuristics
aiming at optimizing for throughput, i.e. increasing
the finished task per time unit ratio. J. L. Lucas-
Simarro et al. [16] proposed different scheduling
strategies for optimal deployment of services across
multiple clouds based on various optimization crite-
ria. The examined scheduling policies include bud-
get, performance, load balancing and other dynamic
conditions.

The execution of parameter study jobs can be clas-
sified to two strategies: the push and pull models.
Pull models try to avoid relying on outdated informa-
tion on DCI load, therefore they start a pilot job in a
DCI and pull jobs to it, i.e. feed the actual resource
with own jobs. For example DIRAC and GWpilot [4]
use this approach. Concerning the more traditional
push approach, generally all job instances are submit-
ted simultaneously to the scheduling component of
the workflow management system. This may cause
significant overheads in service response time and
bottleneck problems.
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Fig. 20 Presence of third
party jobs
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Since science gateways inherently work with vari-
ous infrastructures, previous works are hard to apply.
Scheduling among these diverse infrastructures need
to understand resource utilization and handle vary-
ing resource load. In this work we propose a solution
that is capable of executing many parameter study job
instances over several diverse DClIs.

7 Conclusion

Managing heterogeneous DCIs and scheduling param-
eter study jobs of scientific workflows are also diffi-
cult problems and require sophisticated approaches. In
this paper we proposed a meta-brokering framework
for science gateways that use the push model for job
submission in order to support the efficient execution
of parameter sweep jobs and workflows containing
this type of nodes. We apply a dynamic, weighted job
instance distribution among the available infrastruc-
tures, and rely on resource priority services to cope
with the high uncertainty and unpredictable load of the
utilized infrastructures. Our evaluation showed that
this approach implies more efficient distribution of job
instances among the available computing resources
than the random DCI selection algorithm resulting in
shorter makespan for parameter study workflows.
Nevertheless there is still room for further improve-
ments. Various science gateways and user communi-
ties may have different needs, therefore own metrics
could be defined for custom resource priority ser-
vices. In this approach we only took into account the

@ Springer

measured waiting times by the priority service, which
works well for DCIs having homogeneous resources.
We encourage the development of additional method-
ologies and algorithms to this framework by interested
research groups addressing more heterogeneous DCIs
and specific workflows.

Notice that the proposed solution can be used for
any science gateway that uses the OGF BES job
submission standard. Such gateways can easily be
extended with the DCI Bridge and the resource prior-
ity services. Since DCI Bridge supports every major
DCI types and the internal resource selection algo-
rithm of the resource priority services can easily be
changed the joint usage of these two services provide a
very flexible framework to distribute parameter sweep
jobs among various infrastructures using the major
DCT types.

In order to demonstrate the practical usage of
these principals, WS-PGRADE/gUSE, one of the
most widely used science gateway frameworks, was
extended with this concept. From gUSE version 3.7.1,
all the WS-PGRADE/gUSE gateways contain the
meta-broker support. Meta-brokering is further inves-
tigated in the VIALACTEA project where PBS cluster
with different capacity provide the underlying compu-
tational infrastructure for the project.
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