
Noname manuscript No.
(will be inserted by the editor)

Software Quality Assurance in INDIGO-DataCloud
project: a converging evolution of software
engineering practices to support European Research
e-Infrastructures

P. Orviz Fernandez · M. David · D. C.
Duma · E. Ronchieri · J. Gomes · D.
Salomoni

Received: date / Accepted: date

This is the author’s pre-print version of this work. The DOI of
the final publication is 10.1007/s10723-020-09509-z

Abstract From the advent of Grid technology – as the new paradigm of dis-
tributed computing – to the current days of Cloud computing models, the
continuous need of new tools and services to match the scientific community
requirements has been addressed in Europe through dedicated software de-
velopment projects for e–Infrastructure creation, operation and management.
This work presents the most significant software quality breakthroughs ob-
tained in one of such projects, INDIGO–DataCloud, the main challenges and

P. Orviz Fernandez
CSIC, Santander, Spain
E-mail: orviz@ifca.unican.es

M. David
LIP, Lisbon, Portugal
E-mail: david@lip.pt

D. C. Duma
INFN - CNAF, Bologna, Italy
E-mail: cristina.aiftimiei@cnaf.infn.it

J. Gomes
LIP, Lisbon, Portugal
E-mail: jorge@lip.pt

E. Ronchieri
INFN - CNAF, Bologna, Italy
E-mail: elisabetta.ronchieri@cnaf.infn.it

D. Salomoni
INFN - CNAF, Bologna, Italy
E-mail: davide.salomoni@cnaf.infn.it



2 P. Orviz Fernandez et al.

barriers confronted throughout the lifespan of the project, and how they were
partially or totally overcome. The knowledge base established throughout the
last 15 years of diverse software development initiatives in Europe for sus-
taining distributed research e-Infrastructures, supported by the advances in
the area of software engineering, definitely contributed to improve the qual-
ity and reliability of the software delivered, and consequently, the operational
stability of the European e–Infrastructures. INDIGO–DataCloud project is a
good evidence of such insights, where, unlike the preceding trend found in
past projects, the enforcement of Software Quality Assurance practices has
been present since the very early stages of the software lifecycle.

Keywords Software Reliability · Quality Assurance · Software Metrics ·
Software Testing Techniques · DevOps

1 Introduction

Throughout the last 15 years, the European Commission (EC) has contin-
uously invested on software development initiatives to provide research e–
Infrastructures with the capability of supporting unified access to large–scale
computing and intense data analysis facilities. The developed tools have en-
abled the federation of geographically distributed resource providers, with the
ultimate aim of supporting the growing needs of the scientific communities.
According to their requirements, those research e–Infrastructures have been
evolving, exploiting diverse distributed computing technologies namely Grid,
in the first place, and, eventually, Cloud.

The urging needs of providing stable e–Infrastructures, which were based
on novel distributed computing technologies, initially drove the efforts spent
in software development towards the provision of new functionalities, reduc-
ing the adoption of software engineering methodologies to a marginal player.
The released software was less tested, resulting in a high rate of rollbacks
and patches applied to production systems, when compared to the subsequent
projects. Thereby, the stability of the e–Infrastructures were often compro-
mised [1], leading to outages in the participant resource centers. Back in the
days when Grid middleware was actively developed, researchers reported the
need of improvements both in terms of reliability and performance [2], even-
tually developing their own custom solutions [3] [4] on top of the existing
services.

In an effort to improve the operational experience of research communities,
it soon became apparent the need for a better balance between the addition of
new features and the quality of the released software. Consequently, incoming
European funding programmes and open calls progressively stressed the fact of
devoting a more substantial part of the software lifecycle to the improvement
of the quality and sustainability of the products being delivered. At this point,
evolving software engineering practices were considered and gradually adopted
in order to define and implement the quality procedures, the organization of
cross–functional teams and the deployment of pilot testbeds.



Title Suppressed Due to Excessive Length 3

The increasing prominence of software quality procedures observed in the
analysis of the last decade of EU–funded projects related to the development
of distributed computing solutions –as described in Section 2–, is pictured in
the software project herein described: INDIGO–DataCloud. As we will thor-
oughly describe in the next sections, the ground base laid by these preceding
projects and the adoption of practices taken from the prevailing software engi-
neering methodologies –in particular the Agile Software Development [5] and
the DevOps culture [6]–, were the catalyst to establish a set of Software Qual-
ity Assurance (SQA) criteria – as explained in Section 3.1 – that guided the
software lifecycle of the software produced.

Following the DevOps principles, the SQA criteria encourages a thorough
verification of the source code, inspecting and testing each minor change
meant to be included in the production version. Considering that INDIGO–
DataCloud solution comprises more than 30 software products and 200 source
code repositories, such scenario is hardly accomplished without the aid of au-
tomation. Consequently, the SQA process builds on the great advancements
that the continuous integration (CI) tools have undergone over the last years,
as described in Section 3.2. Hence, acting at the early stages of the software
development lifecycle brought a fundamental shift when compared with the
reviewed INDIGO–DataCloud’s preceding projects that dealt with the task of
developing software solutions for Grid and Cloud–based e–Infrastructures.

This strategy allows to improve the overall quality of the software, both in
terms of sustainability, by checking the compliance with code style standards,
and reliability, through the execution of functional and integration tests, en-
suring the total absence of regressions. The results presented in this paper
show a divergence between the high rate of bug fixes resolved at development
time and the significantly lower number of bugs detected by the end users.
Consequently, bugs are more effortlessly fixed since they are early captured
and end users interface with more reliable and stable software.

The paper is organized as follows. Section 2 details the evolution of SQA
processes in the preceding EC–funded projects that developed software solu-
tions for Grid and Cloud–based e–Infrastructures. Section 3 thoroughly de-
scribes the new trends in software engineering conducted during the course of
the recently finished INDIGO–DataCloud project. Conclusions are drawn in
Section 4.

2 Background work on European e–Infrastructure projects

One of the fundamental pillars of the INDIGO–DataCloud’s SQA process
has been established by the outcomes resulted from similar EC–funded e–
Infrastructure–related projects over the last 15 years. In particular, in this
section we are primarily interested in emphasizing the collaborative software
development efforts within the category of projects that improved the accessi-
bility and exploitation of distributed computing technologies in the European
research landscape. As such, we will present the most representative software



4 P. Orviz Fernandez et al.

engineering practices adopted by those projects to understand how they ulti-
mately inspired the SQA process definition and implementation in INDIGO–
DataCloud, further discussed in Section 3.

The EC projects considered in this paper are listed chronologically in Ta-
ble 1. Each project paved the way for the following ones, according to a logic
evolution in which an increasing awareness in software quality and reliability
has been showcased. As shown in Table 2, the most recent projects are more
committed to, and aware of, software engineering practices. Here we include
INDIGO–DataCloud (INDIGO–DC) – see Section 3 – as the reference project
where all the listed features have been achieved.

Table 1 List of EC–projects

Logo Short Name Long Name Duration

DataGrid Research and Technological Develop-
ment for an International Data Grid

2001–2003

EGEE I, II, III Enabling Grids for E–sciencE 2004–2010

ETICS 1, 2 E–Infrastructure for Testing, Integra-
tion and Configuration of Software

2006-2010

EMI Europeean Middleware Initiative 2010–2013

EGI–Inspire Integrated Sustainable Pan–European
Infrastructure for Researchers in Eu-
rope

2010–2014

EGI Engage Engaging the EGI Community towards
an Open Science Commons

2015–2017

INDIGO–
DataCloud

INtegrating Distributed data Infras-
tructures for Global ExplOitation

2015–2017

2.1 DataGrid

The DataGrid [7] project (Jan 2001 – Dec 2003) main goal was to provide
scientific communities (including physics, biology and earth sciences) with in-
tensive computing and large–scale dataset analysis capabilities. The project
brought together 21 academic and industry partners, from 15 different coun-
tries [9]. Grid was the emerging technology to be used in order to address their
requirements, thus the project delivered its own software distribution, named
EDG (EU DataGrid), strongly based on Globus middleware components and
services [10]. The project was organized in 12 work packages, from which 5
were devoted to software development and coordinated by an Architecture



Title Suppressed Due to Excessive Length 5

Table 2 Features on software reliability in EC–projects

Feature DataGrid EGEEs ETICSs EMI EGIs INDIGO–DC

Architecture Task
Force

√ √ √ √ √ √

Communication
Handling

√ √ √ √ √ √

Requirements Han-
dling

√ √ √ √ √ √

Agile Methodolo-
gies

√ √ √ √ √

Source code inspec-
tion

√ √

Build/Testing Man-
agement Procedure

√ √ √ √ √

Software Product
Metrics

√ √ √ √ √ √

Quality Criteria
Definition

√ √ √ √ √

Automatic Certifi-
cation

√ √ √

Auto–generated
Documentation

√ √ √ √ √

DevOps practices
adoption (CI, CD)

√

Task Force, supervising the overall design and technical consistency of the
developments.

Without previous experience in such widely collaborative projects, a big
effort was spent in devising solutions for several challenges [11], namely 1)
the communication overhead (as a result of the large geographical separation
of the involved parties in the development tasks), 2) the fast evolution of
the requirements from the user communities (50 use cases from the three
scientific area), and 3) the lack of a body of knowledge for academic software
engineering.

The Agile manifesto [5] was by then an emerging methodology, not yet
considered by the project. As such, the project’s development design suffered
from the lack of the methods, tools, techniques and best practices emerging
from this new discipline of software engineering [12]. Nevertheless, the project
focused on the experiences and procedures used by diverse collaborative open
source software projects, such as Linux and Apache, trying to achieve a higher
maturity level [13].

Project monitoring and reporting mechanisms allowed to assess the risks,
efforts and documentation produced. Development guidelines [14] were pro-
duced, covering the various phases, including 1) packaging, 2) test and vali-
dation, and 3) style and naming convention. A set of quality indicators [15]
were defined to measure the efficiency of the system from the user perspective.



6 P. Orviz Fernandez et al.

Due to the developmental nature of DataGrid project, they solely consider
the crude efficiency metric as the relevant indicator to track the quality and
performance of the core software, also known as middleware in Grid termi-
nology. This metric considered the success rate of all the jobs submitted by
users using the production testbed, so that all the failures of the middleware
were included in the statistic [8]. However, it also accounted for the failures in
the remaining pieces in the job submission chain, such as the user application
software or the targeted datacenter deployment. Even so, as it can be observed
in Fig. 1, the crude efficiency showed a positive trend over the months that
followed, with the unique exception of the LCG–1 middleware distribution.

Fig. 1 Efficiency % = Number of jobs successfully completed / Total Number of jobs
submitted: results are provided for the different DataGrid’s EDG middleware distributions
released throughout the project. Note that the figure includes metrics of the same release
(EDGv1.4) for three Large Hadron Collider (LHC) experiments.

2.2 Enabling Grids for E–sciencE

The three phases of Enabling Grids for E–sciencE (EGEE, Apr 2004 – Apr
2010) [16–18] projects brought together scientists and engineers from over 240
institutions in 45 countries aiming to provide a seamless Grid infrastructure
for e–Science. EGEE–II and EGEE–III featured the internationalization (out-
side Europe) of the project, embracing worldwide research institutions and
user communities [19]. The software to sustain the increasing requirements
coming from the diverse scientific communities needed developing a rich set
of new services, while maintaining a sustainable infrastructure for Grid com-
puting. This e-Infrastructure was eventually used by more than 15 thousand
researchers and deployed in over 250 institutions [20].

The gLite middleware [21] was the official software distribution of EGEE
as of 2006, after two years of prototyping and re–engineering efforts to con-
verge with the LHC Computing Grid (LCG–2), Virtual Data Toolkit (VDT)
and Condor [22] software stacks. The development team was comprised of



Title Suppressed Due to Excessive Length 7

more than 80 people from 12 academic and industrial partners, which issued
more than 10 thousand bug fixes, 1.7 thousand patches and defined over 300
development tasks tracked using bug/task management tools.

The source code was available at a private, centralized version control sys-
tem. The code passed through a manual certification procedure at the time
of the release. This procedure aimed to improve the reliability of the soft-
ware components by applying acceptance criteria checks at the pre–release
stage [23] i.e. integration, certification, pre–production and production. Start-
ing with EGEE–II, the project adopted automation in the software lifecycle
process by leveraging the automatic build system for Grid middleware, that is
the ETICS [24] solution.

2.3 E–Infrastructure for Testing, Integration and Configuration of Software

The E–Infrastructure for Testing, Integration and Configuration of Software [24]
(ETICS, Jan 2006 – Feb 2010) project aimed at addressing the challenges in
producing quality software in distributed, collaborative projects such as EGEE
and its gLite middleware. The ETICS framework integrated different technolo-
gies and tools in order to provide automated configuration, build and testing
capabilities, as well as auto–generated documentation and software metrics
gathering – such as Source Lines Of Code (SLOC), complexity and number
of defects/bugs [24] –. The ETICS framework was the first automated service
for delivering quality software products in distributed environments like the
Grids.

2.4 European Middleware Initiative

The European Middleware Initiative (EMI, May 2010 – Apr 2013) [25] project
joined the 4 major Grid middleware providers in Europe at the time – gLite,
UNICORE, ARC and dCache – with the goal to maintain and evolve the
middleware focusing on extending their interoperability and improving the
reliability of the services. The ISO/IEC 9126 [26] standard was used in order
to identify a set of characteristics that needed to be present in the EMI software
products and processes to be able to meet the EMI quality requirements [27].

For each software characteristic, a set of associated metrics and Key Per-
formance Indicators (KPIs) were identified and defined in detail in the EMI
Metrics Specification [27]. The project leveraged the ETICS service for the
development, continuous integration and release management, as well as for
metric tracking, making queries on the collected data to display them through
a chart generation framework.



8 P. Orviz Fernandez et al.

2.5 EGI–Integrated Sustainable Pan–European Infrastructure

The EGI–InSPIRE (Integrated Sustainable Pan–European Infrastructure for
Researchers in Europe, May 2010 – May 2014) project [28] was the continu-
ation of the EGEE–III project, with the objective of establishing and main-
taining a sustainable European Grid Infrastructure, composed by a federation
of National Grid Initiatives and interoperable with other Grids worldwide.
This goal would be accomplished through the development and maintenance
of various operational tools – such as the Operations Portal [29], the EGI
Helpdesk [30], or the Grid configuration database (GOCDB) [31] – and the
management of the software provisioning process (SWPP) [32], dealing with
the validation and distribution of the software to the production infrastruc-
tures. As a result, this process led to a production–ready Grid computing
middleware distribution named UMD (Unified Middleware Distribution). At
that time the UMD was a stack of about 250 software components from sev-
eral technology providers, such as EMI and Globus. In order to be distributed
through UMD repositories, the software had to be compliant with EGI’s Qual-
ity Criteria (QC) [33]. The QC defined a set of requirements in different areas:
documentation, deployment, security, information model and operations.

The impact of the quality assurance activities was observed once the EMI
software contributed to the EGI–InSPIRE project. The data reported in Table
3 (see page 13 in [27]) summarizes the EMI software quality evolution per
project quarters (PQ) as evaluated by the EGI project with the help of the
UMD QC. We can observe the improvement in quality of the EMI releases
over time, measured by the number of products that both met the software
distribution criteria, by means of the UMD QC definition, and the EGI Stage
Rollout (SR) phase. This latter phase completed the criteria validation by
deploying the UMD QC–certified software in a set of candidate production
sites.

Table 3 EMI software quality evolution

PQ Release Products
(RP)

N. RP Passed
UMD QC

N. RP Passed
SR

N. RP Failed
UMD QC

5 30 27 27 0

6 30 28 26 2

7 27 26 24 2

8 18 18 18 0

UMD is still being used and deployed in the European scientific e–Infrastructures
under the follow–up project EGI–Engage (Engaging the EGI Community to-
wards an Open Science Commons) [34]. This distribution is currently com-
plemented by a Cloud–specific one called CMD (Cloud Middleware Distribu-
tion). The increase in the number of products that the new CMD distribution
brought in, compromised the effectiveness of the SWPP realization, in particu-



Title Suppressed Due to Excessive Length 9

lar the software validation phase. The modernization of the EGI QC validation
was accomplished through the adoption of automation, by means of the pro-
grammatic evaluation of its fundamental quality requirements [35].

3 INDIGO–DataCloud Software Quality Assurance Process

INDIGO–DataCloud project [36] leverages the lessons learned from the pre-
vious experiences described in Section 2. The expertise gathered throughout
these years was highly profitable regarding the adoption of state–of–the–art
software engineering methodologies, the management of new technologies to
put those methodologies into practice and the analysis of an appropriate set of
metrics to measure the quality of the implemented solutions. All of which with
the additional complexity of being framed under collaborative environments
with an extensive list of partners.

However, new challenges appear in the course of a software development
project, which in some cases are tackled using novel software engineering ap-
proaches. In this regard, INDIGO–DataCloud faced analogous challenges as
the ones reported by parallel EC–funded software development initiatives [37]
that were addressed using similar solutions, such as relying on DevOps prac-
tices for tackling the software lifecycle management. The SQA process followed
by INDIGO–DataCloud combines these solutions with pragmatic approaches
built upon external and first–hand experiences. In the following sections, we
describe the three main pillars that sustain the project’s strategy for attaining
quality in the software produced:

1. The definition of a Software Quality Assurance (SQA) criteria and a met-
rics gathering procedure to provide guidelines aiming at developing quality
software, validating each change in the code, to facilitate its adoption. The
software lifecycle is continuously monitored by a set of metrics, allowing
prompt reactions to detected malfunctions that may occur throughout the
process.

2. The promotion of automation to enable the foregoing change–based val-
idation approach and to accelerate the delivery process of new software
versions.

3. A post-release validation to be carried out over the project’s preview testbeds,
where the new product versions are deployed as part of the integration val-
idation, and the testing in production environments by external resource
providers.

As we will describe hereafter, the INDIGO–DataCloud SQA process is
not restricted to software targeted to distributed computing environments,
but instead oriented to the management of any form of collaboration driven
software development, composed by multiple software projects that collaborate
jointly. However, there are particularities, such as the stage–rollout phase, that
are attached to an e–Infrastructure’s operation, thus might not be applicable
to all cases.



10 P. Orviz Fernandez et al.

Fig. 2 Code style standards followed by INDIGO–DataCloud’s software products.

Fig. 3 Comparison of the unit testing coverage values for the INDIGO–DataCloud software
stack over the INDIGO–1 and INDIGO–2 major releases. Products that were exclusively
released during INDIGO–2 do not show data for the first period of INDIGO–1. Source
code for all the INDIGO–DataCloud components can be found in the GitHub’s indigo–dc
organization [52]

3.1 Software Quality Procedures

The software quality policies were initially defined in the first deliverable doc-
ument of the project [38]. The policies were reviewed periodically taking into
account the requirements from the user communities, the feedback from the



Title Suppressed Due to Excessive Length 11

Fig. 4 Adoption of Configuration Management tools throughout the project lifetime. The
figure shows the trend lines leading to the first (light cream points and line) and second
release (dark blue points and line).

development teams and the insights of software engineering practices. These
policies covered 1) the identification and description of the SQA requirements
that the produced software needs to comply with, and 2) the quality metrics,
to monitor each software product’s behaviour throughout the development,
release and post–release stages.

3.1.1 SQA criteria

The SQA criteria are a set of conventions and recommendations that pave the
way for the adequate development, timely delivery and reliable operation of
the produced software components. They emphasize the quality requirements
and best practices to be applied at the development phase, such as style and
testing compliance or human code reviews, to protect the production source
code versions. Furthermore, the criteria promote the adoption of the software
by providing minimum requirements of documentation content and stressing
the usage of automated solutions for software deployment. The SQA criteria
are publicly available [39] and it is continuously evolving by means of an open
collaboration procedure [40] that aims at serving as a reference for quality
assurance realization in research software.



12 P. Orviz Fernandez et al.

– Code style. The ultimate goal for code style assessment is to improve the
readability and reusability of the source code produced under the scope
of the project. Code style standards are enforced for every software com-
ponent in the project stack. Community most–adopted or de–facto stan-
dards are initially recommended, however the development teams eventu-
ally choose the set of guidelines to comply with. Fig. 2 highlights the code
style standards and their popularity in the INDIGO–DataCloud software
stack.

– Unit and Functional testing. Changes involving the addition of new func-
tionalities are required to be tested. Regression testing in this context is
accomplished by enforcing the definition and periodic execution of the tests,
covering past fixed issues, to ensure that they are not reintroduced during
the development activities. Unit testing completes the source code testing
evaluation by focusing on the code’s internal design. The SQA criteria of
INDIGO–DataCloud set a recommended threshold of 70% coverage for unit
testing. In Figure. 3, unit testing coverage is compared for each software
component between the two major releases, denoting an incremental trend
over the course of the project: code coverage increased from an average
value of 50.32% to 63.34%, outlined by the respective dates of the project’s
first (INDIGO–1) and second (INDIGO–2) releases. Nevertheless, Fig. 3
shows a decrease in the unit testing coverage values for 18% of products.
As unit tests cover low-level code elements, they are best considered while
the new code is being written [41]. We have observed that this decrease
was aligned with high-demanding periods of software development, as seen
in the previous months of the INDIGO-2 major release. Regardless of the
potentially higher defect density that this fact brought along, the overall
performance kept progressing as the rest of the software stack substan-
tially improved their own unit testing coverage statistics. By INDIGO–2,
53% of the software components (17 out of 32) were over the threshold of
the aforementioned project’s SQA code coverage recommendation (70%),
while 75% (24 out of 32) of the product stack exceeded 50% coverage. The
individual records followed also a growing trend (only 6 out of 32 compo-
nents had lower values in INDIGO–2). It is worth noting that Fig. 3 not
only includes new software developments implemented from scratch within
the project. Software tools and libraries from external open–source projects
– such as tosca-parser or heat-translator –, contributed upstream by the
project, and well–established products, involved in INDIGO–DataCloud
but not contributing with the 100% of their codebases – such as dCache
–, are also considered in the analysis. However the values given apply to
the entire codebase, even for the latter case of products. These products
challenged the application of the SQA policies described in this section, by
two means:
– Previously developed code was not refactored since it was not owned

by the project.
– An agreement on prevailing SQA policies for such cases where quality

practices were already in place.



Title Suppressed Due to Excessive Length 13

– Integration testing. Software components usually interact with other ser-
vices during operation. Integration testing deals with the interactions among
coupled software components or parts of a system that cooperate to achieve
a given functionality. This type of testing might be complex and, based on
the project’s experience, difficult to be implemented in an automatic way.
The aim is to guarantee the overall operation of the component with re-
gard to the services it interfaces with, whenever new functionalities are
introduced.

– Code review. This phase is the last step in the change management pipeline,
once the candidate change has successfully passed through the testing
methods described previously. It implies the human–based revision of the
proposed change to discuss its adequacy in terms of e.g. scope, objective
fulfilment, and documentation completeness. On approval, the candidate
change is definitely merged into the source code’s production version. Hu-
man code reviewing is paramount in the software quality assessment, spe-
cially important when the SQA testing requirements are fully automated.
Secure code reviews are also done at this stage, assessing common vulner-
abilities from inputs coming from automated linters and manual dynamic
application security testing.

– Documentation. The SQA criteria set the path for the adoption of the de-
veloped software by defining the documentation content, according to the
target audience. This requirement also promotes the automation, both in
terms of documentation creation and service deployment. The documenta-
tion is treated as code, using a markup language, automatically rendered
and uploaded to online repositories [42]. Thus documentation is portable
and human–reviewed, using the same workflow as the code does, validating
the changes before being updated into the production repository.

– Automated Deployment. To lower the barriers of software adoption, the
SQA criteria require the automated deployment of the products deliv-
ered as part of the catalogue. Automation in this context is tackled us-
ing configuration management tools. These tools allow the adoption of
Infrastructure as Code (IaC) practice, managing the component’s deploy-
ment through declarative definitions. The definition files appear as an addi-
tional source of documentation – self–documenting code – as they sequen-
tially guide the component’s deployment process on multiple platforms.
INDIGO–DataCloud project contributed to open–source IaC tools such as
Ansible and Puppet [43]. A representative example of such contributions
are the 50 roles developed from scratch and currently hosted in the Ansible
Galaxy portal [44]. Fig. 4 shows the number of products that offer an auto-
mated means for deployment. It shows an increase in the adoption of such
tools leading to the INDIGO–1 release (light cream points and trend line),
as well as to the INDIGO–2 release (dark blue points and trend line). The
rate of adoption is lower during the weeks before the second release because
a significant fraction of the products had already adopted it previously to
the first release.



14 P. Orviz Fernandez et al.

3.1.2 Quality metrics

The evaluation of the software quality is performed by measuring the values
of the metrics and Key Performance Indicators (KPIs) defined based upon the
ISO/IEC 9126 standard. These metrics cover the development, release and
maintenance phases of the software lifecycle.

Development metrics are obtained programmatically from several sources,
namely GitHub API [45] and the Jenkins [46] service, and graphically displayed
as GitHub pages using the GrimoireLab framework [47]. Per–component weekly
reports, including the SQA requirement fulfilment, are issued and individually
discussed through the different communication channels with the development
teams. Issue tracking metrics and KPIs are an essential piece of information of
both feature addition and defect solving, useful to detect and fix misbehaviours
while in the development phase.

Release metric sources are the online repository servers, namely the Linux
package [48] and DockerHub [49] repositories. Jenkins server also contains
valuable release data as it is the service where the packages and containers
are being built before being uploaded to the online repositories. Release KPIs
primarily focus on the frequency and efficiency – mainly rollbacks – statistics.

Maintenance and user support metrics are key for continuously improving
the response to issues reported by external users. Feedback is collected from
outside helpdesks, such as EGI’s GGUS [30], and the GitHub Issues tracker.

3.2 Software quality validation and delivery automation

Tackling the granularity of the former SQA requirements – most of which
accounted in a per–change basis – is hardly achieved without the aid of au-
tomation. The introduction of automation to validate the quality requirements
increases the overall reliability of the produced software: automated testing is
more time-efficient, leading to higher code coverages and increased defect de-
tection, when compared with a manual approach [51]. To put it in numbers, as
Fig. 5 showcases, the total number of defects detected in the pre–production
stage, i.e. throughout the integration testing phase, surpassed by a factor of
30 the ones reported by external users, over the lifetime of the INDIGO-
DataCloud project. An accurate estimation of the software bugs detected –
and fixed – with the aid of the CI/CD infrastructure, previously conducted at
the source code analysis stage, cannot be given as those bugs are usually fixed
on the fly without being tracked. Nevertheless, we can safely state that they
exceed by far the total amount of 200 bugs that the Fig. 5 shows.

As any new change, involving a new feature or fix, passes through the au-
tomated SQA machinery, the software is always ready to be released. As a
result, the often compromised harmonization between the continuous release
of new features – pushed by the development teams – and the maintenance of
stable production systems – demanded by users and resource providers – can
be guaranteed. The DevOps culture theorizes and provides practical solutions



Title Suppressed Due to Excessive Length 15

Fig. 5 Number of software bugs – documentation typos are excluded – detected in develop-
ment and production stages over the lifetime of the INDIGO-DataCloud project. Production
defects correspond to software bugs filed by users of the EGI e–Infrastructure throughout
the next 2 years after the INDIGO–1 major release, in August 2016 (source: EGI’s GGUS
helpdesk). The development defects stem only from the pre–release testing phase, filed ex-
clusively as part of the SQA team work (source: GitHub Issues tracker). As a consequence,
the development defects started to arise in the previous months prior to the INDIGO–1
release, while the major activity was concentrated in the months that preceded the second
major release of INDIGO–2, in April 2017. As it can be observed, the offset between the
advent of defects in development and production corresponds to nearly half a year, with the
first production defect reported 3 months after the INDIGO–1 release.

that aim at unifying both software development (dev) and software opera-
tions (ops) teams, by emphasizing the SQA techniques to avoid infrastructure
disruption whenever new developments are deployed into production systems.
Starting with a Continuous Integration (CI) scenario at the first stages of the
project, the software delivered was eventually validated and distributed using
Continuous Delivery (CD) pipelines.

Fig. 6 Evolution of the total number of testing builds triggered automatically as part of
the Jenkins CI implementation.



16 P. Orviz Fernandez et al.

Fig. 7 Continuous Delivery workflow for Docker images.

3.2.1 Continuous Integration (CI)

The INDIGO–DataCloud project promoted the application of a CI scenario
that enforced, for any piece of produced software, the testing requirements
defined in the SQA criteria, as described in Section 3.1. Such an environment
requires an automation ready–to–go infrastructure where the different services
and technologies involved interact with each other to trigger the source code
validation pipeline for each candidate change. The pipeline is mainly com-
prised by the code style validation, unit and functional testing coverage. The
CI pipeline is complemented with additional quality checks, such as integra-
tion tests for the software components where automation of this type of testing
is applicable, or security linters for the static code analysis of suspicious con-
structs that could lead to security risks. Metrics gathering is also a part of the
CI pipeline to have a per–change trend evolution of the common source code
related metrics, such as SLOC or the cyclomatic complexity.

The practical implementation of the CI scenario leverage from tightly in-
tegrated open source tools such as:

– GitHub [52] as the online source code repository hosting service,
– Jenkins as the event–response CI,
– Docker container provisioning system, to provide instant computing power

needed for executing the pipeline jobs.

The project defined a source code contribution workflow, based on GitHub
Pull Requests (PRs), where each change automatically triggers in Jenkins the
associated quality and metric tracking checks on PR creation or update.

The CI pipeline is composed from a set of required checks, their exit status
is reported back to GitHub. The changes can be prevented if those tests are



Title Suppressed Due to Excessive Length 17

not successfully executed. As each change is validated, the chances of early
detection of defects increase. Within this scenario, the cost of defect solving
is dramatically reduced and the reliability of the software solutions improved,
as any bug or design issue is likely to be detected and subsequently corrected
in this phase.

Fig. 6 shows the evolution, throughout the INDIGO–DataCloud’s first and
second releases, of the required test types builds since the implementation of
the CI infrastructure. Automated functional testing coverage were not avail-
able for all the software stack, thus the associated number of builds are fewer.
Towards the end of the project, the software development activity slowed the
pace but not completely ceased. The support of the CI infrastructure, once
reached the project’s end of life, allowed the continued maintenance and devel-
opment of the prevailing software. Some development teams deployed parallel
CI systems, taking advantage of the experience gained during the project.

Fig. 8 DevOps pipeline to distribute Docker images for Disvis application.

Fig. 9 Resource centers supporting the Pilot Preview testbed and corresponding set of
deployed INDIGO–DataCloud components or services.



18 P. Orviz Fernandez et al.

3.2.2 Continuous Delivery

As DevOps suggests, frequent releases positively affect the reliability of the
software as they reduce the time in which a given defect is exposed or has an
impact, allowing the development teams to act promptly based on the regular
feedback [53]. The software updates of INDIGO–DataCloud products, which
have been taking place since the second major release, are passing through a
Continuous Delivery (CD) pipeline that adds the packaging of the software
right after the successful execution of the CI pipeline previously described.
Consequently, CI–validated software components are automatically delivered
in online repositories. Nonetheless, expert supervision to validate the results
is required.

INDIGO–DataCloud software stack is delivered in the form of Linux soft-
ware packages (rpms, debs) and Docker containers. The CD approach is differ-
ent for each type of software packaging. Linux package pipeline intentionally
delivers the packages produced in a pre–production – preview – branch. Before
that, once the software packages have been created, they are uploaded to a
testing branch. The available automated deployment solution – see Section 3.1
– checks the installation and configuration of the component relying on the
testing repository. On successful completion, the packages are automatically
signed and subsequently moved to the preview branch. In the last step, the
release manager supervises the process to move the packages to the production
branch.

The Docker container pipeline uses the automated deployment solution to
actually install and configure the software component in the container im-
age. Once this is done the recently created image is uploaded to the produc-
tion DockerHub repository, tagged with the label corresponding to the cur-
rent INDIGO–DataCloud release. Fig. 7 shows the complete workflow of the
Docker container CD implementation, automatically triggered by a change in
the source code.

3.2.3 DevOps adoption from user communities

The experience gathered throughout the project regarding the adoption of dif-
ferent DevOps practices is not only useful and suitable for the software related
to the core services in the INDIGO–DataCloud solution, but also applicable
to the development and distribution of the applications coming from the user
communities.

Two applications coming from the supported research communities, DisVis
[54] and PowerFit [55], were integrated into a similar CI/CD pipeline described
in section 3.2. Fig. 8 shows the pipeline for the DisVis application.

User application developers were provided with both a means to validate
the source code before merging and the creation of a new versioned Docker
image, automatically available in the INDIGO–DataCloud’s application repos-
itory.



Title Suppressed Due to Excessive Length 19

The novelty introduced in the pipeline above is the validation of the appli-
cation. Once the application is packaged as a Docker image, and subsequently
uploaded to the DockerHub repository, it is instantiated in a new container to
be validated. The application is then executed and the results compared with
a set of reference outputs. This pipeline implementation goes a step forward
by testing the application execution for the latest available Docker image in
the catalogue.

3.3 Integration, preview and early adoption

Two pilot infrastructures, integration and preview, were at the disposal of
developers and use cases, respectively, involved in the project. The aim of
these testbeds is to test the level of integration between the core INDIGO–
DataCloud’s components and the user applications.

The integration testbed was primarily targeted and used by the software
developers. There, unstable software releases were tested by the maintainers
themselves in order to validate the interactions with coupled services. Com-
puting and storage resources were occasionaly needed, meaning that no real
testbed – with all the INDIGO–DataCloud’s components – was needed.

Conversely, the preview testbed was actively maintained, where the last
stable version of the software was deployed by the SQA team. On top of that,
the user applications were deployed in order to test the integration with the
INDIGO–DataCloud solution. The preview testbed proved to be an effective
tool to uncover bugs by means of testing the basic functionalities of the core
components. The bugs tagged as Dev in Fig. 5 were spotted this stage. A
map of the Pilot Preview infrastructure is depicted in Fig. 9. It shows the
resource providers and the services deployed. The number of resources steadily
increased as the project progressed, due mainly to the progressive increase of
supported services and the occasional need for deploying more than one stable
version of the same software component in different providers.

Computing and storage resource consumption, required by the pilot testbeds
and SQA services (metrics, CI/CD infrastructure), was never an issue for the
project’s resource providers. In the case of computing resources, the massive
use of container–based virtualization alleviated the need of resources as it
allowed CPU and memory over–subscription, when no performance test was
carried out. Most of the providers were already members of the EGI FedCloud,
providing medium–sized Infrastructure–as–a–Service Cloud frameworks with
enough computing and storage capacity to meet the deployment requirements
of more than 30 products that comprised the INDIGO–DataCloud solution
and the related SQA services. Nevertheless, the pilot infrastructure coordina-
tion task distributed the deployments according each provider’s capacity and
effort received within the project. Consequently, Fig. 9 shows an unbalanced
distribution of services.

As the final validation step, the released software was tested in production
environments through the staged–rollout process, before its inclusion in the



20 P. Orviz Fernandez et al.

EGI’s Cloud Middleware Distribution (CMD). This process selected resource
providers from the EGI FedCloud infrastructure in order to install the last sta-
ble versions of the INDIGO–DataCloud software, giving user access to them.
The staged–rollout process is key to detect and mitigate issues that could only
appear in production environments.

4 Conclusion

Both reliability and sustainability of the INDIGO–DataCloud software prod-
ucts have been primarily improved by acting at the source code level. Accord-
ing to the size of the project, which comprised more than 30 products and 200
GitHub repositories, this strategy required a remarkable preliminary ground
work. On the one hand, the definition of a set of SQA requirements – compiled
in the described SQA criteria – that ought to be fulfilled by the set of core prod-
ucts before being released. On the other hand, the setup of a testing infrastruc-
ture and the associated CI/CD pipelines to guarantee that the changes done
at the source code level match those requirements in an automated fashion.
As a final step, the validation of the resultant pre–released software versions,
firstly tackled through integration testing in the project’s preview testbed,
and subsequently complemented by the EGI’s staged–rollout process, where
the brand new versions are adopted by candidate resource providers within
the e-Infrastructure – accessible for user evaluation –, before being tagged as
production–ready software, and consequently, distributed through the official
EGI channels.

The most noticeable metric that demonstrates a reliability improvement
is represented by the ratio between the number of software defects uncovered
throughout the pre–release phase of each of the major releases, INDIGO–1
and INDIGO–2, and the ones reported by the end users within the EGI e–
Infrastructure, where the core products were deployed. The number of bugs
detected throughout the SQA process here described surpassed by a factor
of 30 the number of bugs reported by those end users, over a total of almost
200 bugs in the observed timeframe. Considering that this low rate of bugs –
taking into account the amount of software products existing in the project –
correspond to the outcomes of the integration testing phase, we infer that the
preceding phase of code analysis – comprised by the style standard compliance,
as well as the unit and functional test cases execution for each minor change
– had a substantial impact on the robustness of the resultant software.

Nevertheless, the individual products of INDIGO–DataCloud did not un-
dergo a progressive quality improvement throughout its lifespan. Indeed, unit
testing coverage dropped for about 18% of the total products halfway through
the project. This behavior was aligned with the high-demanding periods of
software development, in particular, the previous months before the second
major release (INDIGO–2). This fact demonstrates that, even considered as
best practice, test cases are not commonly written right after, or even be-
fore, introducing a new unit or functionality in the code. High coverage values



Title Suppressed Due to Excessive Length 21

are generally advisable but they entail time–consuming work that is often ne-
glected by the code owners. Rather than requiring a high coverage value, our
experience showed that increasing the coverage of those sections in the code
that are more likely to cause negative effects to end users is not only a more
effective approach to improve software reliability, but it also keeps develop-
ers motivated in the tedious task of test coding, as it brings more noticeable
benefits for the end user.

All along the project we have observed that source code review is the
cornerstone to improve the effectiveness of the unit and functional – when
applicable – test cases. INDIGO–DataCloud source code repositories are pro-
tected against direct pushes so that the code review stage always takes place.
Code reviewers analyse the content of each change in the source code and the
suitability – according to the SQA criteria – of the associated tests, being the
last checkpoint before the change is added into the production branch. Hence
the vital importance of providing the tests alongside the code for every given
change. However, by the time of INDIGO–1 only 30% of the total of products
provided automated functional tests, reaching almost 60% in INDIGO–2. Al-
though test reports were asked in those cases where automated functional tests
were not provided, the fulfillment of their fundamental functional requirements
was tougher to track, resulting in a non–viable solution for assessing minor
changes, especially when analysing the regressions. The major issues observed
that hindered developers from the implementation of automated functional
tests were related to the unavailability – at the time – of libraries and frame-
works for tackling specific tests – such as testing graphical interfaces –, or in
some cases, the unawareness about their existence. We infer from this expe-
rience that automated functional tests should be a goal in modern software
development as they complement the structural quality checks by adding the
validation of the software’s identified functionalities, key in the operational
impact and user acceptance.

The application of the formerly described SQA process was not only ben-
eficial for the core products’ quality and reliability, but it has proven to be
equally effective for those applications uniquely supported by research com-
munities with little background on software engineering. This fact was demon-
strated by the elaboration of an ad–hoc validation pipeline for one of the use
cases supported in the project. The CI/CD pipeline extended the source code
testing and delivery – already existing in the pipelines for the core products
– with a basic system–like testing. For the latter, the pre–packaged applica-
tion was tested with a pre–defined set of inputs and expected outputs. Only
if successfully validated, the source code could be merged into production and
the resultant pre–packaged application would be delivered. When this pipeline
was integrated in the usual workflow of the application development, it was re-
ported to have constituted a real breakthrough, allowing a faster development
and more reliable software, as it was programmatically tested before being dis-
tributed. Consequently, the benefits of a continuous SQA improvement process
are not only suitable for experienced software developers, but also to any type



22 P. Orviz Fernandez et al.

of software practitioner, such as the numerous ones commonly found within
the research communities.

The INDIGO–DataCloud’s SQA process has persisted once the project
concluded, being extensively used by the supported software products. The
SQA criteria is actively maintained to include new recommendations and best
practices, not only targeted for experts but for any enthusiast on research
software. Hence, they have established the foundations for knowledge transfer
capabilities, which we foresee it will be convenient for the rapid adoption of
SQA practices in the subsequent software development initiatives and projects
for e–Infrastructure building and management, taking a step forward in the
overarching goal of delivering reliable software in research.

Acknowledgment

DataGrid - Research and Technological Development for an International Data
Grid project has received funding from the European Union’s Fifth Framework
Programme under grant agreement IST–2000–25182E.

EGEE - Enabling grids For E–science project has received funding from
the European Union’s Sixth Framework Programme under grant agreement
INFSO–RI–508833.

EGEE - Enabling grids For E–science–II project has received funding from
the European Union’s Sixth Framework Programme under grant agreement
INFSO–RI–031688.

EGEE - Enabling grids For E–science–III project has received funding from
the European Union’s Seventh Framework Programme under grant agreement
INFSO–RI–222667.

ETICS - E–Infrastructure for Testing, Integration and Configuration of
Software project has received funding from the European Union’s Sixth Frame-
work Programme under grant agreement INFSO–RI–026753.

ETICS - E–Infrastructure for Testing, Integration and Configuration of
Software - Phase 2 project has received funding from the European Union’s
Seventh Framework Programme under grant agreement INFSO–RI–223782.

EGI–InSPIRE - European Grid Initiative: Integrated Sustainable Pan–
European Infrastructure for Researchers in Europe project has received fund-
ing from the European Union’s Seventh Framework Programme under grant
agreement INFSO–RI–261323.

EGI–Engage project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement RIA–
654142.

INDIGO–DataCloud project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement RIA–
653549.



Title Suppressed Due to Excessive Length 23

References

1. D. Lingrand, J. Montagnat, J. Martyniak and D. Colling, “Analyzing the EGEE pro-
duction grid workload: application to jobs submission optimization,” Workshop on Job
Scheduling Strategies for Parallel Processing, pp. 37–58, May. 2009.

2. S. Campana et al., “Analysis of the ATLAS Rome production experience on the LHC
computing grid,” IEEE 1st Int. Conf. of e-Science and Grid Computing, pp. 8-pp, 2005.

3. S. Kindermann, “Climate Data Analysis and Grid Infrastructures: Experiences and Per-
spectives,” Grid-Enabling Legacy Applications and Supporting End Users Workshop
(GELA), vol. 20. 2006.

4. P. Mendez-Lorenzo, J. T. Moscicki and A. Ribon, “Experiences in the gridification of the
Geant4 toolkit in the WLCG/EGEE environment,” IEEE Nucl. Sci. Symp. Conf. Rec.,
vol. 2, 2006.

5. K. Beck et al., “Manifesto for Agile Software Development,” 2012. [Online]. Available:
http://www.agilemanifesto.org/. [Accessed 14 Feb. 2019].

6. L. Zhu, L. Bass and G. Champlin–Scharff, “DevOps and Its Practices,” IEEE Softw.,
vol. 33, n. 3, pp. 32–34, 2016.

7. P. Kunszt, “European DataGrid project: status and plans,” Nucl. Instr. Meth. Phys.
Res. A, vol. 502, no. 2, pp. 376–381, Apr. 2003.

8. G. Avellino et al., “The DataGrid workload management system: Challenges and results,”
J. Grid Comp., vol. 2, no. 4, pp. 353–367, 2004.

9. F. Gagliardi, B. Jones, M. Reale and S. Burke, “European DataGrid Project: Experi-
ences of Deploying a Large Scale Testbed for E–science Applications,” in Performance
Evaluation of Complex Systems: Techniques and Tools, Performance 2002. LNCS, vol.
2459, pp. 480–499, 2002.

10. I. Foster and C. Kesselman, “Globus: a Metacomputing Infrastructure Toolkit,” Int. J.
High Perfor. Comput. Appl., vol. 11, no. 2, pp. 115–128, Jun. 1997.

11. L. Momtahan and A. Martin, “e–Science Experiences: Software Engineering Practice
and the EU DataGrid,” in Proc. 9th Asia–Pacific Softw. Eng. Conf., pp. 269–275, Dec.
2002.

12. T. Dingsoyr, S. Nerur, V. Balijepally and N. B. Moe, “A decade of agile methodologies:
Towards explaining agile software development,” J. Syst. Softw., vol. 85, no. 6, pp. 1213–
1221, Jun. 2012.

13. M. Paulk, B. Curtis, M. Chrissis and V. C. Weber, “Capability maturity model
for software,” Softw. Eng. Inst., Technical Report CMU/SEI-93-TR-024, ESC-TR-
93-177, Feb. 1993. [Online]. Available: https://resources.sei.cmu.edu/asset_files/

TechnicalReport/1993_005_001_16211.pdf. [Accessed 14 Feb. 2019].
14. Quality Assurance Group, “DataGrid - European DataGrid Developers’ Guide,” 2003.

[Online] Available: https://edms.cern.ch/ui/file/358824/1.1/EDG-DevGuide-v1-2.

pdf [Accessed 14 Feb. 2019].
15. DataGrid, “DataGrid Internal Document - Quality and Performance Indicators

for DataGrid,” 2003. [Online] Available: https://edms.cern.ch/ui/file/386039/2/

QIv0-3.pdf [Accessed 14 Feb. 2019].
16. Enabling Grids for E–sciencE (EGEE) project, European Community Research

and Development Information Service (CORDIS). [Online] Available: http://cordis.

europa.eu/project/rcn/80149_en.html [Accessed 14 Feb. 2019].
17. Enabling Grids for E–sciencE–II (EGEE–II) project, European Community Research

and Development Information Service (CORDIS). [Online] Available: http://cordis.

europa.eu/project/rcn/99189_en.html [Accessed 14 Feb. 2019].
18. Enabling Grids for E–sciencE–III (EGEE–III) project, European Community Research

and Development Information Service (CORDIS). [Online] Available: http://cordis.

europa.eu/project/rcn/87264_en.html [Accessed 14 Feb. 2019].
19. F. Gagliardi and M. E. Begin, “EGEE – providing a production quality grid for e-

science,” in 2005 IEEE Inter. Symp. Mass Storage Syst. Technol., pp. 88–92, Jun. 2005.
20. T. Ferrari et al., “Resources and services of the EGEE production infrastructure,” J.

Grid Comp., vol. 9, no. 2, pp. 119–133, 2011.
21. E. Laure et al., “Programming the Grid with gLite,” Computational Meth. Sci. Technol.,

vol. 12(1), pp. 33–45, 2006.



24 P. Orviz Fernandez et al.

22. D. Thain, T. Tannenbaum and M. Livny, “Condor and the Grid,” in Grid Computing:
Making the Global Infrastructure a Reality, ch. 11, pp. 63–70, 2003.

23. Definition and Documentation of the Revised Software Life–Cycle Process, Milestone
MSA3.4.2, 2010, EGEE–III project. [Online]. Available: https://edms.cern.ch/ui/

file/1062487/2/EGEE-III-MSA3.4.2-1062487-v1_4.pdf. [Accessed 14 Feb. 2019].
24. A D Meglio, M-E Begin, P Couvares, E Ronchieri and E Takacs, “ETICS: the interna-

tional software engineering service for the grid,” in J. Phys.: Conf. Ser., vol. 119, no. 4,
042010, 2008.

25. C. Aiftimiei et al., “Towards next generations of software for distributed infrastructures:
The European Middleware Initiative,” in 2012 IEEE 8th Inter. Conf. on E-Science,
Chicago, IL, pp. 1–10, 2012.

26. ISO/IEC 9126 Software Engineering - Product Quality, International Organization for
Standardization. [Online]. Available: https://www.iso.org/standard/22749.html. [Ac-
cessed 14 Feb. 2019].

27. M. Alandes et al., “Experiences with Software Quality Metrics in the EMI middleware,”
in J. Phys.: Conf. Ser., vol. 396, no. 5, 052003, 2012.

28. I. C. Plasencia, “EGI.eu the European grid initiative,” in Proc. 4th Iberian Grid Infra.
Conf., pp. 5–15, 2010.

29. H. Cordier et al., “From EGEE Operations Portal towards EGI Operations Portal,” in
Data Driven e-Science (ISGC2010), pp. 129–140, 2011.

30. T. Antoni, et al., Global grid user support–building a worldwide distributed user support
infrastructure, J. Phys.: Conf. Ser., vol. 119, no. 5, 052002, 2008.

31. G. Mathieu and J. Casson, “GOCDB4, a New Architecture for the European Grid
Infrastructure,” in Data Driven e-Science (ISGC2010), pp. 163–174, 2011.

32. M. David et al., “Validation of Grid Middleware for the European Grid Infrastructure,”
J. Grid Comp., vol. 12, no. 3, pp. 543–558, 2014.

33. EGI Quality Criteria. [Online]. Available: https://egi-qc.github.io/. [Accessed 14
Feb. 2019].

34. Engaging the EGI Community towards an Open Science Commons (EGI–
ENGAGE) project, European Community Research and Development Information Ser-
vice (CORDIS). [Online] Available: http://cordis.europa.eu/project/rcn/194937_en.
html [Accessed 14 Feb. 2019].

35. P. Orviz et al., “umd-verification: Automation of Software Validation for the EGI Fed-
erated e-Infrastructure,” J. Grid Comp., vol. 16, no. 4, pp. 683–696, 2018.

36. D. Salomoni et al., “Indigo-datacloud: a platform to facilitate seamless access to e-
infrastructures,” J. Grid Comp., vol. 16, no. 3, pp. 381–408, 2018.

37. G. Casale et al., “Current and future challenges of software engineering for services and
applications,” Procedia Computer Science, vol. 97, no. 3, pp. 34–42, 2016.

38. J. Gomes et al., “Initial Plan for WP3,” INDIGO–DataCloud Deliverable 3.1. [Online].
Available: https://www.indigo-datacloud.eu/documents/initial-plan-wp3-d31. [Ac-
cessed 14 Feb. 2019].

39. Pablo Orviz et al., “A set of common software quality assurance baseline criteria for re-
search projects,” 2017. [Online]. Available: http://hdl.handle.net/10261/160086. [Ac-
cessed 14 Feb. 2019].

40. Members of the INDIGO-DataCloud, DEEP Hybrid-DataCloud and eXtreme Data-
Cloud collaborations, 2015-2020, “A set of Common Software Quality Assurance Base-
line Criteria for Research Projects,” 2018. [Online]. Available: https://github.com/

indigo-dc/sqa-baseline [Accessed 14 Feb. 2019].
41. Paul Hamill, “Unit test frameworks: tools for high-quality software development,”

O’Reilly Media, Inc., 2004.
42. indigo-dc, “indigo-dc Spaces - GitBook,” 2018. [Online]. Available: https://www.

gitbook.com/@indigo-dc. [Accessed 14 Feb. 2019].
43. puppetforge, “Modules by INDIGO Datacloud - Puppet Forge,” 2018. [Online]. Avail-

able: https://forge.puppet.com/indigodc. [Accessed 14 Feb. 2019].
44. GALAXY, “Ansible Galaxy,” 2018. [Online]. Available: https://galaxy.ansible.com/

indigo-dc/ [Accessed 14 Feb. 2019].
45. GitHub Developer, “GitHub API v3 — GitHub Developer Guide,” 2018. [Online]. Avail-

able: https://developer.github.com/v3/ [Accessed 14 Feb. 2019].



Title Suppressed Due to Excessive Length 25

46. Jenkins, “Jenkins,” 2018. [Online]. Available: https://jenkins.io/ [Accessed 14 Feb.
2019].

47. GRIMOIRELAB, “GrimoireLab - Software Development and Community Analytics
Platform,” 2017. [Online]. Available: http://grimoirelab.github.io/ [Accessed 14 Feb.
2019].

48. Jenkins Indigo-dc, “Jenkins - Indigo-DataCloud,” 2018. [Online]. Available: https://
jenkins.indigo-datacloud.eu:8080/ [Accessed 14 Feb. 2019].

49. Indigo-dc, “indigodatacloud - Docker Hub,” 2018. [Online]. Available: https://hub.

docker.com/u/indigodatacloud [Accessed 14 Feb. 2019].
50. GitHub’s indigo-dc organization, “indigo-dc,” 2018. [Online]. Available: https://

github.com/indigo-dc [Accessed 14 Feb. 2019].
51. D. M. Rafi el al., “Benefits and limitations of automated software testing: Systematic

literature review and practitioner survey,” in Proc. 7th Int. Workshop Automation Softw.
Test, 36–42, 2012.

52. GitHub, “Learn Git and GitHub without any code!,” 2018. [Online]. Available: https:
//github.com/ [Accessed 14 Feb. 2019].

53. L. Chen, “Continuous delivery: Huge benefits, but challenges too,” IEEE Softw., vol.
32, no 2, pp. 50–54, 2015.

54. G.C.P. Van Zundert and A.M.J.J. Bonvin, “DisVis: quantifying and visualizing the ac-
cessible interaction space of distance restrained biomolecular complexes,” Bioinformatics,
vol. 31, no. 19, pp. 3222–3224, 2015.

55. G.C.P. Van Zundert and A.M.J.J. Bonvin, “Fast and sensitive rigid–body fitting into
cryo–EM density maps with PowerFit,” AIMS Biophys., vol. 2, no. 20150273, 73–87,
2015.


