Skip to main content
Log in

Estimating CT from MR Abdominal Images Using Novel Generative Adversarial Networks

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Computed tomography (CT) plays key roles in radiotherapy treatment planning and PET attenuation correction (AC). Magnetic resonance (MR) imaging has better soft tissue contrast than CT and has no ionizing radiation but cannot directly provide information about photon interactions with tissue that is needed for radiation treatment planning and AC. Therefore, estimating synthetic CT (sCT) images from corresponding MR images and obviating CT scanning is of great interest, but can be particularly challenging in the abdomen owing to a range of tissue types and physiologic motion. For this purpose, inspired by deep learning, we design a novel generative adversarial network (GAN) model that organically combines ResNet, U-net, and auxiliary classifier-augmented GAN (RU-ACGAN for short). The significance of our effort is three-fold: 1) The combination of ResNet and U-net, instead of only the U-net which was commonly used in existing conditional GAN, is enlisted to constitute the generative network in RU-ACGAN. This has the potential to generate more accurate CT than existing methods. 2) Adding the classifier to the discriminant network makes the training process of the proposed model more stable, and thereby benefits the robustness of sCT estimation. 3) Owing to the delicate architecture, RU-ACGAN is capable of estimating superior sCT using only a limited quantity of training data. The experimental studies on ten subjects’ MR-CT pair images indicate that the proposed RU-ACGAN model can capture the potential, non-linear matching between the MR and CT images, and thus achieves the better performance for sCT estimation for the abdomen than many other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brenner, D.J., Hall, E.J.: Computed tomography—an increasing source of radiation exposure. N. Engl. J. Med. 357(22), 2277–2284 (2007)

    Article  Google Scholar 

  2. Stoessl, A.J.: Developments in neuroimaging: positron emission tomography. Parkinsonism Relat. Disord. 20(20S1), S180–S183 (2014)

    Article  Google Scholar 

  3. Beyer, T., Townsend, D.W., Brun, T., Kinahan, P.E., Charron, M., Roddy, R., Jerin, J., Young, J., Byars, L., Nutt, R.: A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 41(8), 1369–1379 (2000)

    Google Scholar 

  4. Shankar, L.K., Hoffman, J.M., Bacharach, S., Graham, M.M., Karp, J., Lammertsma, A.A., Larson, S., Mankoff, D.A., Siegel, B.A., Van den Abbeele, A., Yap, J., Sullivan, D.: Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute trials. J. Nucl. Med. 47(6), 1059–1066 (2016)

    Google Scholar 

  5. FDG-PET/CT Technical Committee: QIBA Profile: FDG-PET/CT as an Imaging Biomarker Measuring Response to Cancer Therapy Profile (V 1.05) (2013)

  6. Dickson, J.C., O'Meara, C., Barnes, A.: A comparison of CT- and MR-based attenuation correction in neurological PET. Eur. J. Nucl. Med. Mol. Imaging. 41(6), 1176–1189 (2014)

    Article  Google Scholar 

  7. Keereman, V., Fierens, Y., Broux, T., De Deene, Y., Lonneux, M., Vandenberghe, S.: MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J. Nucl. Med. 51(5), 812–818 (2010)

    Article  Google Scholar 

  8. Navalpakkam, B.K., Braun, H., Kuwert, T., Quick, H.H.: Magnetic resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps. Investig. Radiol. 48(5), 323–332 (2013)

    Article  Google Scholar 

  9. Hitz, S., Habekost, C., Furst, S., Delso, G., Forster, S., Ziegler, S., Nekolla, S.G., Souvatzoglou, M., Beer, A.J., Grimmer, T., Eiber, M., Schwaiger, M., Drzezga, A.: Systematic comparison of the performance of integrated whole-body PET/MR imaging to conventional PET/CT for 18F-FDG brain imaging in subjects examined for suspected dementia. J. Nucl. Med. 55(6), 923–931 (2014)

    Article  Google Scholar 

  10. Berker, Y., Franke, J., Salomon, A., Palmowski, M., Donker, H.C., Temur, Y., Mottaghy, F.M., Kuhl, C., Izquierdo-Garcia, D., Fayad, Z.A., Kiessling, F., Schulz, V.: MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J. Nucl. Med. 53(5), 796–804 (2012)

    Article  Google Scholar 

  11. Schramm, G., Langner, J., Hofheinz, F., Petr, J., Beuthien-Baumann, B., Platzek, I., Steinbach, J., Kotzerke, J., van den Hoff, J.: Erratum to: Quantitative accuracy of attenuation correction in the Philips Ingenuity TF whole-body PET/MR system: a direct comparison with transmission-based attenuation correction. Magnetic Resonance Mater. Phys. Biol. Med. 28(1), 101 (2015)

    Article  Google Scholar 

  12. Schramm, G., Langner, J., Hofheinz, F., Petr, J., Beuthien-Baumann, B., Platzek, I., Steinbach, J., Kotzerke, J., van den Hoff, J.: Quantitative accuracy of attenuation correction in the Philips Ingenuity TF whole-body PET/MR system: a direct comparison with transmission based attenuation correction. Magnetic Resonance Materials in Physics, Biology and Medicine. 26(1), 115–126 (2013)

    Article  Google Scholar 

  13. Samarin, A., Burger, C., Wollenweber, S.D., Crook, D.W., Burger, I.A., Schmid, D.T., von Schulthess, G.K., Kuhn, F.P.: PET/MR imaging of bone lesions--implications for PET quantification from imperfect attenuation correction. Eur. J. Nucl. Med. Mol. Imaging. 39(7), 1154–1160 (2012)

    Article  Google Scholar 

  14. Arabi, H., Rager, O., Alem, A., Varoquaux, A., Becker, M., Zaidi, H.: Clinical assessment of MR-guided 3-class and 4-class attenuation correction in PET/MR. Mol. Imaging Biol. 17(2), 264–276 (2015)

    Article  Google Scholar 

  15. Aznar, M.C., Sersar, R., Saabye, J., Ladefoged, C.N., Andersen, F.L., Rasmussen, J.H., Löfgren, J., Beyer, T.: Whole-body PET/MRI: the effect of bone attenuation during MR-based attenuation correction in oncology imaging. Eur. J. Radiol. 83(7), 1177–1183 (2014)

    Article  Google Scholar 

  16. Izquierdo-Garcia, D., Sawiak, S.J., Knesaurek, K., Narula, J., Fuster, V., Machac, J., Fayad, Z.A.: Comparison of MR-based attenuation correction and CT-based attenuation correction of whole-body PET/MR imaging. Eur. J. Nucl. Med. Mol. Imaging. 41(8), 1574–1584 (2014)

    Article  Google Scholar 

  17. Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Brendle, C., Scholkopf, B., Pichler, B.J.: MR-based attenuation correction methods for improved PET quantification in lesions within bone and susceptibility artifact regions. J. Nucl. Med. 54(10), 1768–1774 (2013)

    Article  Google Scholar 

  18. Hofmann, M., Pichler, B., Schölkopf, B., et al.: Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. European Journal of Nuclear Medicine & Molecular Imaging. 36(1), 93–104 (2009)

    Article  Google Scholar 

  19. Sjölund, J., Forsberg, D., Andersson, M., Knutsson, H.: Generating subject specific pseudo-CT of the head from MR using atlas-based regression. Phys. Med. Biol. 60(2), 825–839 (2015)

    Article  Google Scholar 

  20. Dowling, J.A., Lambert, J., Parker, J., Salvado, O., Fripp, J., Capp, A., Wratten, C., Denham, J.W., Greer, P.B.: An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 83(1), e5–e11 (2012)

    Article  Google Scholar 

  21. Su, K.H., Hu, L., Stehning, C., Helle, M., Qian, P., Thompson, C.L., Pereira, G.C., Jordan, D.W., Herrmann, K.A., Traughber, M., Muzic Jr., R.F., Traughber, B.J.: Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering. Medical Physics. 42(8), 4974–4986 (2015)

    Article  Google Scholar 

  22. Hsu, S., Cao, Y., Balter, J.: MO-G-BRA-02: Investigation of a method for generating synthetic CT models from MRI scans for radiation therapy. Med. Phys. 39(6Part22), 3881–3881 (2012)

    Article  Google Scholar 

  23. Khalifé, M., Fernandez, B., Jaubert, O., Soussan, M., Brulon, V., Buvat, I., Comtat, C.: Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately? Phys. Med. Biol. 62(19), 7814–7832 (2017)

    Article  Google Scholar 

  24. Jog, A., Carass, A., Prince, J.L.: Improving magnetic resonance resolution with supervised learning. In: Proc IEEE 11th International Symposium on Biomedical Imaging, pp. 987–990 (2014)

    Google Scholar 

  25. Huynh, T., Gao, Y., Kang, J., Wang, L., Zhang, P., Lian, J., Shen, D.: Estimating CT image from MRI data using structured random forest and auto-context model. IEEE Trans. Med. Imaging. 35(1), 174–183 (2015)

    Article  Google Scholar 

  26. Dowling, J.A., Sun, J., Pichler, P., Rivest-Hénault, D., Ghose, S., Richardson, H., FRANZCR, C.W., Martin, J., Arm, J., Best, L., Chandra, S.S., Fripp, J., Menk, F.W., Greer, P.B.: Automatic substitute computed tomography generation and contouring for magnetic resonance imaging (MRI)-alone external beam radiation therapy from standard MRI sequences. Int. J. Radiat. Oncol. Biol. Phys. 93(5), 1144–1153 (2015)

    Article  Google Scholar 

  27. Qian, P., Chen, Y., Kuo, J.W., Zhang, Y.D., Jiang, Y., Zhao, K., Helo, R.A., Friel, H., Baydoun, A., Zhou, F., Heo, J.U., Avril, N., Herrmann, K., Ellis, R., Traughber, B., Jones, R.S., Wang, S., Su, K.H., Muzic Jr., R.F.: mDixon-based synthetic CT generation for PET attenuation correction on abdomen and pelvis jointly using transfer fuzzy clustering and active learning-based classification. IEEE Trans. Med. Imaging. (2019). https://doi.org/10.1109/TMI.2019.2935916

  28. Johnstone, E., Wyatt, J.J., Henry, A.M., Short, S.C., Sebag-Montefiore, D., Murray, L., Kelly, C.G., McCallum, H.M., Speight, R.: Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging-only radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 100(1), 199–217 (2018)

    Article  Google Scholar 

  29. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. 521, 436–444 (2015)

    Article  Google Scholar 

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  31. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the 34th International Conference on Machine Learning, 70, pp. 2642–2651 (2017)

    Google Scholar 

  32. Reed, S., Akata, Z., Yan, X., Logeswaran, L.: Generative adversarial text to image synthesis. In: Proceedings of the 33rd International Conference on Machine Learning, 48, pp. 1060–1069 (2016)

    Google Scholar 

  33. Narasimha, R., Fern, X.Z., Raich, R.: Simultaneous segmentation and classification of bird song using CNN. In: 2017 IEEE international conference on acoustics, Speech Signal Process, vol. 2017. https://doi.org/10.1109/ICASSP.2017.7952135

  34. Nauman, M., Rehman, H.U., Politano, G., Benso, A.: Beyond homology transfer: deep learning for automated annotation of proteins. J. Grid Comput. 17, 225–237 (2019)

    Article  Google Scholar 

  35. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2014)

    Google Scholar 

  36. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: Deep contour-aware networks for accurate gland segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2487–2496 (2016)

    Google Scholar 

  37. Kitchen, A., Seah, J.: Deep generative adversarial neural networks for realistic prostate lesion MRI synthesis. arXiv. 1708.00129 (2017)

  38. Kohl, S., Bonekamp, D., Schlemmer, H.P., Yaqubi, K., Hohenfellner, M., Hadaschik, B., Radtke, J.P., Maier-Hein, K.: Adversarial networks for the detection of aggressive prostate cancer. arXiv. 1702.08014 (2017)

  39. Fu, J., Yang, Y., Singhrao, K., Ruan, D., Chu, F.I., Low, D.A., Lewis, J.H.: Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Med. Phys. (2019). https://doi.org/10.1002/mp.13672

  40. Emami, H., Dong, M., Nejad-Davarani, S.P., Glide-Hurst, C.K.: Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med. Phys. 45(8), 3627–3636 (2018)

    Article  Google Scholar 

  41. Han, X.: MR-based synthetic CT generation using a deep convolutional neural network method. Med. Phys. 44(4), 1408–1419 (2017)

    Article  Google Scholar 

  42. Zia, T., Razzaq, S.: Residual recurrent highway networks for learning deep sequence prediction models. J. Grid Comput. 1–8 (2018). https://doi.org/10.1007/s10723-018-9444-4

  43. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI 2015, pp. 234–241 (2015)

    Google Scholar 

  44. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv. 1411.1784 (2014)

  45. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. 2, pp. 2672–2680 (2014)

    Google Scholar 

  46. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: 2015 ICLR (2015)

    Google Scholar 

  47. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv. 1701.07875 (2017)

  48. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5967–5976 (2017)

    Chapter  Google Scholar 

  49. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, 37, pp. 448–456 (2015)

    Google Scholar 

  50. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv. 1505.00853 (2015)

  51. Gates Jr., G.H., Merkle, L.D., Lamont, G., Pachter, R.: Simple genetic algorithm parameter selection for protein structure prediction. In: Proceedings of 1995 IEEE International Conference on Evolutionary Computation (2002). https://doi.org/10.1109/ICEC.1995.487455

    Chapter  Google Scholar 

  52. Gkoutioudi, K.Z., Karatza, H.D.: Multi-criteria job scheduling in grid using an accelerated genetic algorithm. J. Grid Comput. 10, 311–323 (2012)

    Article  Google Scholar 

  53. Khajemohammadi, H., Fanian, A., Gulliver, T.A.: Efficient workflow scheduling for grid computing using a leveled multi-objective genetic algorithm. J. Grid Comput. 12, 637–663 (2014)

    Article  Google Scholar 

  54. Su, K.H., Friel, H.T., Kuo, J.W., Helo, R.A., Baydoun, A., Stehning, C., Crisan, A.N., Devaraj, A., Jordan, D.W., Qian, P., Leisser, A., Ellis, R.J., Herrmann, K.A., Avril, N., Traughber, B.J., Muzic Jr., R.F.: UTE-mDixon-based thorax synthetic CT generation. Med. Phys. 46(8), 3520–3531 (2019)

    Google Scholar 

  55. Janssens, G., Jacques, L., de Xivry, J.O., Geets, X., Macq, B.: Diffeomorphic registration of images with variable contrast enhancement. Int. J. Biomed. Imaging. 2011, Art. ID 891585 (2011)

    Article  Google Scholar 

  56. Qian, P., Sun, S., Jiang, Y., Su, K.-H., Ni, T., Wang, S., Muzic Jr., R.F.: Cross-domain, soft-partition clustering with diversity measure and knowledge reference. Pattern Recogn. 50, 155–177 (2016)

    Article  Google Scholar 

  57. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61772241 and 61702225, by the Natural Science Foundation of Jiangsu Province under Grant BK20160187, by the Fundamental Research Funds for the Central Universities under Grant JUSRP51614A, by 2016 Qinglan Project of Jiangsu Province, by 2016 Six Talent Peaks Project of Jiangsu Province, and by the Science and Technology Demonstration Project of Social Development of Wuxi under Grant WX18IVJN002. Research in this publication was also supported by National Cancer Institute of the National Institutes of Health, USA, under award number R01CA196687 (The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond F. Muzic Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, P., Xu, K., Wang, T. et al. Estimating CT from MR Abdominal Images Using Novel Generative Adversarial Networks. J Grid Computing 18, 211–226 (2020). https://doi.org/10.1007/s10723-020-09513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-020-09513-3

Keywords

Navigation