Skip to main content

Advertisement

Log in

A Computing Resource Allocation Optimization Strategy for Massive Internet of Health Things Devices Considering Privacy Protection in Cloud Edge Computing Environment

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

With the development of 5G and the explosive growth of massive Internet of Health Things devices, existing computing resource allocation strategies have many problems such as long delay and poor security performance. Therefore, this paper proposes an optimization strategy for computing resource allocation of massive IoHT devices considering privacy protection in cloud edge computing environment. Firstly, a 5G heterogeneous cloud edge computing network is constructed. Besides, according to network status, the computing requirements of devices are allocated to local execution or edge computing. The computing delay, communication and computing resource allocation of edge servers are modeled accordingly. Then, taking the delay and energy consumption of network computing resource allocation as optimization goal, the priority of subtasks is sorted to realize the optimal allocation of computing resources. Finally, a protection model for instant messaging privacy data is designed by considering the risk of large-scale privacy data leakage in IoHT. Terminal devices under the same local area network are connected to edge servers by Socket without cloud server forwarding, which improves the security performance of privacy data. Experiment and demonstrate the performance of our proposed strategy on MATLAB simulation platform. The results show that the increase of edge computing server will affect the CPU proportion. Moreover, compared with other strategies, the number of users, the number of edge computing servers, the computing capacity of devices and the task arrival rate have the least impact on the average delay of proposed strategy, which effectively improves the performance of allocation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

The data included in this paper are available without any restriction.

References

  1. Na, W., Jang, S., Lee, Y., Park, L., Dao, N.N., Cho, S.: Frequency resource allocation and interference Management in Mobile Edge Computing for an internet of things system[J]. IEEE Internet Things J. 6(3), 4910–4920 (2019)

    Article  Google Scholar 

  2. Vijayalakshmi, R., Vasudevan, V., Kadry, S., et al.: Optimization of makespan and resource utilization in the fog computing environment through task scheduling algorithm[J]. Int. J. Wavelets Multiresolution Information Processing. 18(01), 37–42 (2019)

    Google Scholar 

  3. Shakarami, A., Ghobaei-Arani, M., Masdari, M., Hosseinzadeh, M.: A survey on the computation offloading approaches in Mobile edge/cloud computing environment: a stochastic-based perspective. J. Grid Computing. 18, 639–671 (2020). https://doi.org/10.1007/s10723-020-09530-2

    Article  Google Scholar 

  4. Lei, K., Fang, J., Zhang, Q., Lou, J., du, M., Huang, J., Wang, J., Xu, K.: Blockchain-based cache poisoning security protection and privacy-aware access control in NDN vehicular edge computing networks. J. Grid Computing. 18, 593–613 (2020). https://doi.org/10.1007/s10723-020-09531-1

    Article  Google Scholar 

  5. Lin, F., Zhou, Y., An, X., You, I., Choo, K.K.R.: Fair resource allocation in an intrusion-detection system for edge computing: ensuring the security of internet of things devices[J]. IEEE Consumer Electron. Magazine. 7(6), 45–50 (2018)

    Article  Google Scholar 

  6. Kochovski, P., Stankovski, V., Gec, S., Faticanti, F., Savi, M., Siracusa, D., Kum, S.: Smart contracts for service-level agreements in edge-to-cloud computing. J. Grid Computing. 18, 673–690 (2020). https://doi.org/10.1007/s10723-020-09534-y

    Article  Google Scholar 

  7. Ping, Y.: Load balancing algorithms for big data flow classification based on heterogeneous computing in software definition networks. J. Grid Computing. 18, 275–291 (2020). https://doi.org/10.1007/s10723-020-09511-5

    Article  Google Scholar 

  8. Wang, P., Yao, C., Zheng, Z., Sun, G., Song, L.: Joint task assignment, transmission, and computing resource allocation in multilayer Mobile edge computing systems[J]. IEEE Internet Things J.. 6(2), 2872–2884 (2019)

    Article  Google Scholar 

  9. Yu, Y., Bu, X., Yang, K., Wu, Z., Han, Z.: Green large-scale fog computing resource allocation using joint benders decomposition, Dinkelbach algorithm, ADMM, and branch-and-bound[J]. IEEE Internet Things J.. 6(3), 4106–4117 (2019)

    Article  Google Scholar 

  10. Zhang, Q., Gui, L., Hou, F., Chen, J., Zhu, S., Tian, F.: Dynamic task offloading and resource allocation for Mobile edge computing in dense cloud RAN[J]. IEEE Internet Things J.. 7(4), 3282–3299 (2020)

    Article  Google Scholar 

  11. Fan, Q., Ansari, N.: Application aware workload allocation for edge computing based IoT[J]. IEEE Internet Things J.. 5(3), 2146–2153 (2018)

    Article  Google Scholar 

  12. Li, C., Chen, W., Tang, J., Luo, Y.: Radio and computing resource allocation with energy harvesting devices in mobile edge computing environment[J]. Comput. Commun.. 145(09), 193–202 (2019)

    Article  Google Scholar 

  13. Jia, B., Hu, H., Zeng, Y., Xu, T., Yang, Y.: Double-matching resource allocation strategy in fog computing networks based on cost efficiency[J]. J. Commun. Networks. 20(3), 237–246 (2018)

    Article  Google Scholar 

  14. Ning, Z., Dong, P., Kong, X., Xia, F.: A cooperative partial computation offloading scheme for Mobile edge computing enabled internet of things[J]. IEEE Internet Things J.. 6(3), 4804–4814 (2019)

    Article  Google Scholar 

  15. Dai, Y., Xu, D., Maharjan, S., Zhang, Y.: Joint load balancing and offloading in vehicular edge computing and networks[J]. IEEE Internet Things J.. 6(3), 4377–4387 (2019)

    Article  Google Scholar 

  16. Chen, T., Barbarossa, S., Wang, X., Giannakis, G.B., Zhang, Z.L.: Learning and Management for Internet of things: accounting for Adaptivity and scalability[J]. Proc. IEEE. 107(4), 778–796 (2019)

    Article  Google Scholar 

  17. Fangmin, X., Huanyu, Y., Shaohua, C., et al.: Software defined industrial network architecture for edge computing offloading[J]. J. China Univ. Posts Telecomm. 26(01), 53–62 (2019)

    Google Scholar 

  18. Yu, F., Chen, H., Xu, J.: DMPO: Dynamic mobility-aware partial offloading in mobile edge computing[J]. Future Gen. Comput. Syst. 89(DEC.), 722–735 (2018)

    Article  Google Scholar 

  19. Shah-Mansouri, H., Wong, V.W.S.: Hierarchical fog-cloud computing for IoT systems: a computation offloading game[J]. IEEE Internet Things J.. 5(4), 3246–3257 (2018)

    Article  Google Scholar 

  20. Qin, Z., Qiu, X., Ye, J., Wang, L.: User-edge collaborative resource allocation and offloading strategy in edge computing[J]. Wirel. Commun. Mob. Comput. 2020(11), 1–12 (2020)

    Article  Google Scholar 

  21. Qian, L.P., Feng, A., Huang, Y., Wu, Y., Ji, B., Shi, Z.: Optimal SIC ordering and computation resource allocation in MEC-Aware NOMA NB-IoT networks[J]. IEEE Internet Things J.. 6(2), 2806–2816 (2019)

    Article  Google Scholar 

  22. Tian, X., Huang, W., Yu, Z., Wang, X.: Data driven resource allocation for NFV based internet of things[J]. IEEE Internet Things J.. 6(5), 8310–8322 (2019)

    Article  Google Scholar 

  23. Yang, L., Zhang, H., Li, X., Ji, H., Leung, V.C.M.: A distributed computation offloading strategy in small-cell networks integrated with Mobile edge computing[J]. IEEE/ACM Trans. Networking. 26(6), 2762–2773 (2018)

    Article  Google Scholar 

  24. Omoniwa, B., Hussain, R., Javed, M.A., Bouk, S.H., Malik, S.A.: Fog/edge computing-based IoT (FECIoT): architecture, applications, and research issues[J]. IEEE Internet Things J. 6(3), 4118–4149 (2019)

    Article  Google Scholar 

  25. Liu, X., Zhang, X.: NOMA-based resource allocation for cluster-based cognitive industrial internet of things[J]. IEEE Trans. Industrial Informatics. 16(8), 5379–5388 (2020)

    Article  Google Scholar 

  26. Anta, A.F., Kowalski, D.R., Mosteiro, M.A., et al.: Scheduling dynamic parallel workload of Mobile devices with access guarantees[J]. ACM Trans. Parallel Computing. 5(2), 1–19 (2018)

    Article  Google Scholar 

  27. He, J., Wei, J., Chen, K., Tang, Z., Zhou, Y., Zhang, Y.: Multitier fog computing with large-scale IoT data analytics for smart cities[J]. IEEE Internet Things J. 5(2), 677–686 (2018)

    Article  Google Scholar 

  28. Farzad, S., Vasileios, T., Lars, B., et al.: Distributed trade-based edge device Management in Multi-Gateway IoT[J]. ACM Trans. Cyber-Physical Systems. 2(3), 1–25 (2018)

    Google Scholar 

  29. Jiao, J., Sun, Y., Wu, S., Wang, Y., Zhang, Q.: Network utility maximization resource allocation for NOMA in satellite-based internet of things[J]. IEEE Internet Things J.. 7(4), 3230–3242 (2020)

    Article  Google Scholar 

  30. Zhang, T., Xu, Y., Loo, J., Yang, D., Xiao, L.: Joint computation and communication design for UAV-assisted Mobile edge computing in IoT[J]. IEEE Trans. Industrial Inform. 16(8), 5505–5516 (2020)

    Article  Google Scholar 

  31. Wu, Y., Shi, J., Ni, K., Qian, L., Zhu, W., Shi, Z., Meng, L.: Secrecy-based delay-aware computation offloading via Mobile edge computing for internet of things[J]. IEEE Internet Things J.. 6(3), 4201–4213 (2019)

    Article  Google Scholar 

  32. Alnoman, A., Erkucuk, S., Anpalagan, A.: Sparse code multiple access-based edge computing for IoT systems[J]. IEEE Internet Things J.. 6(4), 7152–7161 (2019)

    Article  Google Scholar 

  33. Peng, X., Ota, K., Dong, M.: Multi-attribute based double auction towards resource allocation in vehicular fog computing[J]. IEEE Internet Things J. 7(4), 3094–3103 (2020)

    Article  Google Scholar 

  34. Sun, W., Liu, J.: Coordinated multipoint-based uplink transmission in internet of things powered by energy harvesting[J]. IEEE Internet Things J. 5(4), 2585–2595 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxi Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, L. A Computing Resource Allocation Optimization Strategy for Massive Internet of Health Things Devices Considering Privacy Protection in Cloud Edge Computing Environment. J Grid Computing 19, 17 (2021). https://doi.org/10.1007/s10723-021-09558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-021-09558-y

Keywords

Navigation