Skip to main content

Advertisement

Log in

A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

We present a new multiobjective evolutionary algorithm (MOEA), called fast Pareto genetic algorithm (FastPGA), for the simultaneous optimization of multiple objectives where each solution evaluation is computationally- and/or financially-expensive. This is often the case when there are time or resource constraints involved in finding a solution. FastPGA utilizes a new ranking strategy that utilizes more information about Pareto dominance among solutions and niching relations. New genetic operators are employed to enhance the proposed algorithm’s performance in terms of convergence behavior and computational effort as rapid convergence is of utmost concern and highly desired when solving expensive multiobjective optimization problems (MOPs). Computational results for a number of test problems indicate that FastPGA is a promising approach. FastPGA yields similar performance to that of the improved nondominated sorting genetic algorithm (NSGA-II), a widely-accepted benchmark in the MOEA research community. However, FastPGA outperforms NSGA-II when only a small number of solution evaluations are permitted, as would be the case when solving expensive MOPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • April, J., Glover, F., Kelly, J., Laguna, M.: Practical introduction to simulation optimization. In: Chick, S. (ed.) Proceedings of the 2003 Winter Simulation Conference, pp. 71–78. Institute of Electrical and Electronics Engineers, Piscataway (2003)

    Google Scholar 

  • Bui, L.T., Hussein, A.A., Essam, D.: Fitness inheritance for noisy evolutionary multi-objective optimization. In: Beyer, H.-G. (ed.) Proceedings of the 2005 Genetic and Evolutionary Computation Conference, vol. 1, pp. 779–785. ACM Press, New York (2005)

    Chapter  Google Scholar 

  • Coello, C.A.C., Lamont, G.B.: Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  • Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  • Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems, 1st edn. Kluwer Academic, New York (2002)

    MATH  Google Scholar 

  • Czyzac, P., Jaszkiewicz, A.: Pareto simulated annealing—a metaheuristic technique for multiple objective combinatorial optimization. J. Multicriteria Decis. Anal. 7, 34–47 (1998)

    Article  Google Scholar 

  • Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, 1st edn. Wiley, Chichester (2001)

    MATH  Google Scholar 

  • Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9, 115–148 (1995)

    MATH  MathSciNet  Google Scholar 

  • Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 26(4), 30–45 (1996)

    Google Scholar 

  • Deb, K., Pratap, A., Agarval, S., Meyarivan, T.A.: Fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  • Deb, K., Mohan, M., Mishra, S.: Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evol. Comput. 13(4), 501–525 (2005)

    Article  Google Scholar 

  • Erbas, C., Cerav-Erbas, S., Pimentel, A.D.: Multiobjective optimization and evolutionary algorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE Trans. Evol. Comput. (2006, to appear)

  • Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425–442 (2004)

    Article  Google Scholar 

  • Fonseca, C.M., Flemming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423, San Mateo, CA, 1993

  • Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learning. Addison–Wesley, Reading (1989)

    Google Scholar 

  • Goldberg, D.E., Deb, K.: A comparison of selection schemes used in genetic algorithms. Found. Genet. Algorithms 1, 69–93 (1991)

    MathSciNet  Google Scholar 

  • Hanne, T.: Global multiobjective optimization using evolutionary algorithms. J. Heur. 6(3), 347–360 (2000)

    Article  MATH  Google Scholar 

  • Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: operators and tolls for behavioral analysis. Artif. Intell. Rev. 12, 265–319 (1998)

    Article  MATH  Google Scholar 

  • Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwefel, H.P. (ed.) Proceedings of the 1st Parallel Problem Solving from Nature Workshop, pp. 193–197. Springer, Berlin (1990)

    Google Scholar 

  • Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)

    Article  Google Scholar 

  • Knowles, J., Corne, D.: The Pareto archived evolution strategy: a new Baseline algorithm for multiobjective optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation (CEC’1999), pp. 98–105, IEEE Service Center, Washington, D.C., July 1999

  • Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC’2002), vol. 1, pp. 711–716, IEEE Service Center, Piscataway, New Jersey, May 2002

  • Kulturel-Konak, S., Smith, A.E., Norman, B.A.: Multi-objective tabu search using a multinomial probability mass function. Eur. J. Oper. Res. 169(3), 915–931 (2006)

    MathSciNet  Google Scholar 

  • Lu, H., Yen, G.G.: Rank-density-based multiobjective genetic algorithm and benchmark test function study. IEEE Trans. Evol. Comput. 7(4), 325–343 (2003)

    Article  Google Scholar 

  • Michalewicz, Z.: Genetic Algorithm + Data Structures = Evolution Programs. Springer, New York (1996)

    Google Scholar 

  • Nafploitis, N., Horn, J., Goldberg, D.E.: A Niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 82–87, 1994

  • Nebro, A.J., Luna, F., Alba, E., Beham, A., Dorronsoro, B.: AbYSS: adapting scatter search for multiobjective optimization. Tech-Report: ITI-2006-2, Departamento de Lenguajes y Ciencias de la Computacion, University of Malaga, Malaga, Spain, 2006

  • Shen, Z.J., Daskin, M.: Tradeoffs between customer service and cost in integrated supply chain design. Manuf. Serv. Oper. Manag. 7(3), 188–207 (2005)

    Article  Google Scholar 

  • Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Int. J. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  • Tan, K.C., Lee, T.H., Khor, E.F.: Evolutionary algorithm with dynamic population size and local exploration for multi-objective optimization. IEEE Trans. Evol. Comput. 5(6), 565–588 (2001)

    Article  Google Scholar 

  • Van Veldhuizen, D.A., Lamont, G.B.: On measuring multiobjective evolutionary algorithm performance. In: Proceedings of 2000 Congress on Evolutionary Computation, vol. 1, pp. 204–211, IEEE Service Center, Piscataway, New Jersey, July 2000

  • While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)

    Article  Google Scholar 

  • Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative study and strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  • Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)

  • Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Eskandari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskandari, H., Geiger, C.D. A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems. J Heuristics 14, 203–241 (2008). https://doi.org/10.1007/s10732-007-9037-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-007-9037-z

Keywords

Navigation