
Combining variable neighborhood search and estimation of
distribution algorithms in the protein side chain placement
problem

Roberto Santana Pedro Larrañaga José A. Lozano

Abstract The aim of this work is to introduce several proposals for combining two
metaheuristics: variable neighborhood search (VNS) and estimation of distribution
algorithms (EDAs). Although each of these metaheuristics has been previously hy
bridized in several ways, this paper constitutes the first attempt to combine both op
timization methods.

The different ways of combining V N S and E D As will be classified into three
groups. In the first group, w e will consider combinations where the philosophy un
derlying V N S is embedded in E D As. Considering different neighborhood spaces
(points, populations or probability distributions), w e will obtain instantiations for the
approaches in this group. The second group of algorithms is obtained when proba
bilistic models (or any other machine learning paradigm) are used in order to exploit
the good and bad shakes of the randomly generated solutions in a reduced variable
neighborhood search. The last group of algorithms contains the results of alternating
V N S and E D As.

A n application of the first approach is presented in the protein side chain place
ment problem. The results obtained show the superiority of the hybrid algorithm in
comparison with E D As and V N S .

W h e n a known hard optimization problem has to be solved and no clue about the
characteristics of the search space is available, a repertoire of optimization meth
ods is usually tried in the hope that the best method for the problem is identified.
In these situations, metaheuristics are one of the most employed optimization ap
proaches. Even if there are a variety of such metaheuristics, sometimes the results
obtained by each algorithm separately are not satisfactory. One alternative in such
cases is the combination of those metaheuristics that have proven to be the best con
tenders, or that benefit from different search strategies. The study of possible ways
to combine metaheuristics is therefore an important topic in optimization (Kovace-
vic et al. 1999; Brimberg et al. 2000; Andreatta and Ribeiro 2002; Rodríguez et al.
2003).

Variable neighborhood search (VNS) (Mladenovic 1995; Mladenovic and Hansen
1997; Hansen and Mladenovic 2002; 2003b) and estimation of distribution algo
rithms (EDAs) (Mühlenbein and PaaB 1996; Larrañaga and Lozano 2002) are among
the class of metaheuristics that have provided optimal solutions in many differ
ent problem domains. They use different search strateg ies. O n the one hand, V N S
is based on the application of local search by systematically changing the neigh
borhood during the search. Different variants of this metaheuristic exist. O n the
other hand, E D A s are evolutionary algorithms that, at each generation, extract rel
evant information of the search space and represent this information using proba
bilistic models. The models are used to sample new points from the search space.
Proofs of global convergence for V N S (Brimberg et al. 2003) and E D A s (González
et al. 2002a) have been given. Parallel implementations of each of the methods
have been proposed (Lozano et al. 2002; Garcia et al. 2005; Mendiburu et al.
2005).

Recent research has focused on the improvement and extensions of V N S (Hansen
and Mladenovic 2001; 2003a; Davidovió et al. 2004) and E D A s (Larrañaga and
Lozano 2002; Pelikan et al. 2002; Lozano et al. 2006) to cope with problems where
the classical variants of the algorithms face limitations. One of the possible exten
sions of V N S and E D A s is the design of hybrid algorithms with other methods. Al
though each of these metaheuristics has been previously hybridized in several ways,
the combination of both methods has not been studied yet. This paper constitutes
the first attempt to combine both optimization methods. W e introduce a classifica
tion of three main ways to combine V N S and EDAs. Results on the application of a
hybrid E D A s + V N S approach are presented in the solution of the protein side chain
placement problem (Lee and Subbiah 1991).

The paper is organized as follows. In the next section, w e review the main aspects
of V N S . E D A s are briefly explained in Sect. 2. A number of proposals to combine
V N S and E D A s are introduced in Sect. 3. In Sect. 4, the protein side chain placement
problem is introduced. This section also presents the E D A s + V N S approach to solve
this problem. Section 5 introduces the neighborhood structures used by the V N S
approach to the protein side chain placement problem. Results of the experiments
on the application of the E D A s + V N S approach are presented in Sect. 6. Finally, in
Sect. 7 the conclusions of the paper are given.

1 Variable neighborhood search (VNS)

V N S (Mladenovic 1995; Mladenovic and Hansen 1997) is based on a simple princi
ple: the systematic change of neighborhoods within the search. It explores increas
ingly distant neighborhoods of the current solution, jumping from this solution to
a new one if and only if an improvement has been made. Working in this way, fa
vorable characteristics of the current solution will be often kept and used to obtain
promising solutions. Moreover, in order to obtain local optima, a local search routine
is repeatedly applied to these neighboring solutions.

More formally, let W t (& = !,..., &ma%) be a unite set of previously fixed neigh
borhood structures, and A4(x) the set of solutions in the &th neighborhood of x that
represents a possible solution of the optimization problem. The main steps of the
V N S algorithm are presented in Algorithm 1.

The basic V N S is a descent, first-improvement method with randomization—
notice that point x' is generated at random in step 6 of Algorithm 1. Modifications
to the basic V N S can be done in several ways (Hansen and Mladenovic 2003a). In
the variable neighborhood descent (VND), steps 6 and 7 are replaced by finding the
best neighbor of x. If, in step 8, moving is done with some probability, making the
selection of a solution feasible even if it is worse than the current one, the basic V N S
is transformed into a descent-ascent method. Moving to the best neighbor among all
&max of them converts the basic V N S into a best-improvement method. Further modi
fications to basic V N S as well as applications of this metaheuristic to several interest
ing combinatorial optimization problems are discussed in (Hansen and Mladenovic
2001). Comparisons of V N S with tabu search (Glover 1986) and genetic algorithms
(GAs) (Goldberg 1989) can be found in (Davidovic et al. 2004).

To stop, the algorithm applies a previously specified termination criterion. Several
termination criteria can be used. The most common ones are to ñx a maximum C P U
time, a maximum number of iterations, or a maximum number of iterations between
two contiguous improvements.

Algorithm 1 Main steps of the V N S algorithm

1 Initialization. Select the set of neighborhood structures A & (& = !,..., &max).
2 Find an initial solution, x.
3do{
4 6^1.
5 do{
6 57%z&¿Mg. Generate a point x' e A4(%) at random.
7 ¿oca/ ̂ earcA. Apply some local search method with x' as the initial solution.

Denote with x" the so-obtained local optimum.
8 Move or %of. If this local optimum is better than the current solution, x ̂ - x"

and& ̂ - 1.
Otherwise, & < - & + !.

9 } until &=&max

10 } until Termination criterion is met.

2 Estimation of distribution algorithms

E D As are evolutionary algorithms that replace the traditional crossover and mutation
operators used in G A s by learning and sampling probabilistic models. These algo
rithms construct, in each generation, a probabilistic model that is used to estimate
the probability distribution of the selected solutions. The probabilistic model must be
able to capture, in the form of statistical dependencies, a number of relevant relation
ships between the variables. Dependencies are then used to generate solutions during
a simulation step.

W e use X, to represent a discrete random variable. A possible value of X, is de
noted % ¡ . Similarly, w e use X = (Xi,..., X„) to represent an n-dimensional random
variable and x = (%i, ...,%„) to represent one of its possible values. W e will work
with positive probability distributions denoted by p(x). Similarly, p(x^) will denote
the marginal probability distribution for X^.

Probability distributions can be represented by Bayesian networks (Pearl 1988),
which are graphical models based on directed acyclic graphs and discrete variables.
They have been used for probabilistic inference in domains such as expert systems
(Lauritzen and Spiegelhalter 1988; Dawid 1992), classification problems (Friedman
et al. 1997; Blanco et al. 2002), and optimization (Etxeberria and Larranaga 1999;
Pelikan et al. 1999).

In a Bayesian network, where variable X, has r, possible values, (%.\ ..., % p) , the

local distribution p(%, | pa/ , 0,) is an unrestricted discrete distribution:

p (^ I p a ^ , %) = 0 ^ , , = %,t, (1)

where pa^,..., p a * denote the values of Pa^, the set of parents of X, in the
directed acyclic graph & #, is the number of possible different instances of the parent
variables of X,, hence # = H % ep&? r& -

The local parameters are given by 0, = ((0,;t)¿Li)^=i. Parameter 0,yt is the con
ditional probability of variable X, being in its &th state given that the set of parents is
in its jth conhguration.

The general scheme of the E D A approach is shown in Algorithm 2. The selection
method employed can be any of those traditionally used by GAs. In the literature,
truncation, Boltzmann, and tournament selection are commonly used with EDAs.
The most commonly used termination criteria are to reach a maximum number of
generations or function evaluations.

A main characteristic and crucial step of E D A s is the construction of the proba
bilistic model. These models may differ in the order and number of the probabilistic
dependencies that they represent. The success of E D A s in the solution of different
practical problems has been documented in the literature (Lozano et al. 2006).

Different classifications of E D A s can be used to analyze these algorithms. Rele
vant to our research is the classification according to the complexity of the models
used to capture the interdependencies between the variables (Larranaga and Lozano
2002). Regarding the way learning is done in the probability model, E D A s can be
divided into two classes. One class groups the algorithms that only make a paramet
ric learning of the probabilities, whereas the other class comprises those algorithms

Algorithm 2 Main scheme of the E D A approach

1 Do <- Generate M individuals randomly.
2Z+-1.
3do{
4 D^_^ ^- Select N < M individuals from D;_i according to a selection method.
5 p;(z) = p(z|D^_^) ̂- Estimate the joint probability of selected individuals.
6 D; <- Sample M individuals (the new population) from #(z).
7 /<-/ + !.
8 } until Termination criterion is met.

where also structural learning of the model is done. The univariate marginal distrib
ution algorithm (UMDA) (Mühlenbein and PaaB 1996), which is the E D A chosen to
approach the side chain placement problem, belongs to the former class of algorithms.
Among others, EDAs, which use Bayesian networks (Etxeberria and Larranaga 1999:
Mühlenbein and Mahnig 2001; Pelikan 2005), belong to the latter.

3 Hybridization between VNS and EDAs

The combination of metaheuristics has been successfully used in several problems
where the approach consisting of using a unique method provides solutions that are
poor local optima. In the literature, some of such combinations concerning VNS, as
well as EDAs, can be found. In order to analyze possible hybridization between VNS
and EDAs, it is convenient to first review the way in which these two metaheuristics
have been previously combined with other methods.

Combinations with VNS have been carried out in two different ways. A first type
of hybridization consists of using another heuristic in a step of the VNS. This ap
proach has been introduced for tabu search (Kovacevic et al. 1999; Rodríguez et al.
2003) and for multistart search (Belacel et al. 2002). The second proposed combina
tion of VNS has embedded it into a given metaheuristic. For instance, in Brimberg
et al. (2000), VNS is combined in this way with tabu search, while Andreatta and
Ribeiro (2002) present an application where VNS is embedded within a greedy adap
tive search procedure.

There are publications that propose the application of EDAs together with other
heuristics. Certain E D A proposals apply local search procedures to the solutions sam
pled from the probabilistic model. This is the case of the proposals presented in Müh
lenbein and Mahnig (2002); Robles et al. (2002); HOns (2006). A second possibility
is the alternation of the search using EDAs and other schemes. For instance, in Zhou
et al. (2005); Robles et al. (2006), EDAs are used together with GAs.

We propose and analyze three main ways to combine VNS and EDAs:

1. To incorporate VNS within EDAs.
2. To use probabilistic models within VNS.
3. To alternate VNS and EDAs.

3.1 V N S within E D A s

Several ways to embed VMS' wifAm E D A f can be obtained depending on the space
where the neighborhood is deñned.

3.7.7 #e;g&6or/KX)d de/imed ¿M f&e jpace qfpoiMü

The simplest way is when the neighborhood is considered to be in the space of
p o m ü of the search space and, consequently the V N S heuristic is applied to each
individual—representing a point of the search space—sampled from the probability
distribution at each iteration of the EDAs. Solutions are evaluated using the original
fitness function /(x).

This proposal can be computationally very expensive. The frequency and extent of
the application of V N S are elements that must be considered for an efficient imple
mentation. To deal with this problem, solutions to which V N S will be applied can be
selected according to a probability distribution deñned on the individuals sampled by
EDAs. This general approach allows a variety of alternatives to be applied that range
from the use of random selection (uniform probability distribution) to fitness pro
portionate schemes (fitness proportional and exponential probability distributions).
Other selection schemes can also be deñned in terms of probability distributions.
These include to select:

* A percentage of the population in each generation.
* The set of selected individuals in each generation.
* The best solution found by E D A in each generation.
* The best solution found by E D A during its evolution.

In Sect. 5, w e present an algorithm that illustrates an application of the last alter
native.

3.7.2 #e;g&6or/KX)d de/imed mpopw/affoM apace

W e can extend the former approach by considering neighborhoods deñned inpopw/a-
#0% space. In this case, the search space is formed by sets of points (or populations).
The ñtness of each population can be calculated as the average of the ñtness of the
solutions or taking the best ñtness value of all the solutions.

A key point is how to define the neighborhoods. The definition of the neighbor
hood can be accomplished by manipulating the components and/or parameters of the
E D A . These parameters implicitly determine which populations (the neighborhood)
can be reached from the current one.

Several strategies can be taken into account to move in this set of neighborhood
structures. A first strategy is to maintain the number of sampled individuals constant
and to change the percentage of selected individuals. This will cause the probability
distribution learned to be different. Therefore, the population generated during the
simulation step will change accordingly. In this case, by manipulating the percentage
of selected individuals, different neighborhood structures are accessed. This strategy
is illustrated by Algorithm 3 where the neighborhood structure is implicitly deter
mined by the truncation parameter %, & < 10 that could be deñned to weaken the

Algorithm 3 V N S in population space within E D A

I D o <- Generate M individuals randomly.
2Z+-1.
3do{
4 6<-l.
5 D;^D;_i.
6 do{
7 D^_^ ^- Select N < M individuals from D;_i using truncation selection

with parameter %.
8 # (z) = p(z|D^_^) ̂ - Estimate the joint probability of selected individuals.
9 Sample a set # of M individuals from p;(z).
10 If the average fitness of individuals in # is better than the current set of

individuals solutions, D; < - # and ̂ <- 1.
Otherwise, & ̂ & + 1.

II } until & = &max-

12 /<-/ + !.
13 } until Termination criterion is met.

selection pressure (% = 0.1&) or to make it stronger (% = 1 - 0.1&). Notice that
in this particular implementation of E D A the population at generation Z is initial
ized equal to its previous generation D; = D;_i. Population D; is updated only if a
population # with better average ñtness is found by V N S .

A second strategy could be based on the use bootstrapping (Efron 1982). This is a
method that allows resampling with replacement from the original sample. It can be
applied to the set of selected individuals until the sampling of the learned probabilistic
model produces an individual with an objective function better than the current best.
Alternatively, when the average fitness of the individuals generated is better than the
average of the current selected set. In this case, the bootstrap method provides a way
to simulate a neighborhood in the population space.

A third strategy is to increase the number of sampled individuals, but maintaining
the number of selected individuals constant. The objective of this strategy is to learn
the probability distribution from a set of individuals selected with higher selective
pressure. Selection pressure is the ratio of the best individual's selection probability
to the average selection probability of all individuals in the selection pool. Its role
in the performance of evolutionary algorithms has been investigated in Blickle and
Thiele (1996). In this case, the increase in selection pressure makes it possible to
obtain different neighborhoods.

3.7.J #e;g&6or/KX)d,y m p r o W % 0 f y ¿¿yfnWffoM apace

A different way to embed V N S in E D A s is by denning MefgA^orAoodj m f&e pro¿%z-
¿%0fy ¿¿#n6w#OM space.

Once learned, the probabilistic model is used to generate new solutions, some of
which are expected to be better than those already visited. However, sometimes the

probability model cannot fulfill this goal. This may be due, for instance, to the prob
lem of overfilling, which refers to an overly accurate approximation of data which
does not reflect more general features of the search space. In this case, and starting
from the initial model learned, V N S can be used to search for a better model, able to
generate solutions with a better fitness average.

The quality of the searched models can be evaluated by calculating the fitness
average of a set of solutions sampled from it. The neighborhoods can be defined in
the space of the parameters (in this case, the structure of the graphical model will be
fixed) or in the space of the structures (the structure is modified and new parameters
are estimated from the data). Neighborhood structures for problems defined on graphs
have been proposed (Brimberg et al. 2005; Kochetov and Velikanova 2005).

A simple idea to move between neighborhoods is to change the complexity of the
probabilistic models. W h e n the neighborhood is defined exclusively in the space of
parameters, credal networks (Zaffalon 2002) could be used instead of Bayesian net
works. In credal networks, the estimation of the conditional probabilities is done by
means of interval estimation instead of by means of usual point estimation. If the
neighborhoods are defined in the space of structures, the change between neighbor
hoods can be done by varying the number of edges or arcs that can be added to and/or
removed from the graphical model.

Finally, it is worth mentioning that the computational complexity of implementing
V N S in the space of probabilistic models can be very high in comparison to V N S
defined for individuals and populations.

3.2 Use of probabilistic models within V N S

E D As can also be applied within a V N S scheme (e.g. they can be employed to find a
solution that will be used as the starting point of V N S) . However, in this section w e
analyze the question of hybridization from a more general perspective, considering
the combination of V N S with probabilistic models—the main component of EDAs-.
The analysis illustrates how the principles at the foundations of E D A s (i.e. learning
and use of relevant search information by means of probabilistic models) can be
translated to the V N S domain.

In some versions of V N S , solutions are generated at random from the &th neigh
borhood. In this case, probabilistic models, as well as other machine learning tech
niques, could be used to exploit the information given by the successful and unsuc
cessful shakes.

Probabilistic models can represent and illustrate relevant information about the
search space and the neighborhood structure used. Examples of such information
include:

* Which changes in the values of a given variable are statistically more likely to
cause an improvement in fitness.

* Which subsets of variables are more likely to produce an improvement in fitness
when their values are changed together.

The model can be constructed during an initial run of V N S and used later to im
prove the efficiency of the method. Alternatively, it can be updated adaptively, in a
similar way in which E D A s periodically update the probability model that they em
ploy.

3.3 Alternation of V N S and E D A s

E D As keep one of the initial goals of GAs: the recombination of partial solutions.
Sampling from probabilistic models aims at the non-disruption of partial solutions
represented by the model, contrary to what usually takes places when applying
crossover operator. W e may expect that, if E D A s are applied starting from solutions
improved by using V N S , the newly generated solutions will combine some of the
features of the VNS-improved solutions. Similarly, the solutions found by E D A s can
be further improved by applying V N S .

Therefore, a simple way to a/femafe VMS' a W E D A s is to iterate—until there is
no improvement—the execution of M V N S with starting points corresponding to the
points sampled by the probabilistic model learned by the E D A , with the execution of
several iterations of the E D A .

The application of V N S to points of the same population can lead to a population
where solutions are very different from each other. This effect can be particularly
evident in symmetric problems or problems with redundant representation. In these
cases, solutions with similar ñtness may be very different structurally and their com
bination (either by crossover or by classical probabilistic models) may not produce
better solutions. A partial remedy to this case is to apply probabilistic models based
on clustering the points according to their similarity. E D A s that use mixtures of prob
ability distributions (Peña et al. 2005) have been applied to achieve this goal.

4 The side chain placement problem

Inferring the protein tertiary structure from its sequence is an important problem in
molecular biology. The design of algorithms to predict the native structure of a pro
tein from its amino acid sequence is an active research area. W e approach the protein
structure problem by focusing on a related problem, that of protein side chain place
ment.

A n amino acid has a peptide backbone and a distinctive side chain. Assuming that
the position of the backbone is ñxed, and considering ñxed bond lengths, the structure
of the protein can be completely determined by the bond angles.

Figure 1 shows, from left to right, the complete native structure of the pdblmrj
protein/ only the backbone of the protein, and only the side chains.

The problem of Ending an optimal positioning for the side chain residues is called
side chain placement or side chain prediction (Lee and Subbiah 1991). Usually, the
problem is addressed by constraining the search to the discrete space. This is done
by employing discrete configurations of the angles, known as rotamers (Dunbrack
2002). Deterministic and stochastic methods have been proposed to cope with the
side chain placement problem.

^ All the proteins used in our research are referenced in this paper using their protein data bank identifier
(PDB ID).

Fig. 1 From Ze/f 6? ngAf: native structure of the pdblmrj protein, backbone of the protein, side chains

4.1 Problem definition and fitness function

The backbone of the protein is the set of amino acid peptide backbones. The side
chains can connect to the backbone in many different ways. A rotamer, short for ro
tational isomer, is a single side chain conformation represented as a set of discrete
values, one for each dihedral angle degree of freedom (Dunbrack 2002). A rotamer
library is a collection of rotamers for each residue type. The set of rotamers for an
amino acid can be seen as a set of statistically significant conformations of the most
probable configurations. In the side chain placement problem, the search for the pro
tein structure is reduced to the search for a set of rotamers (one for each residue) that
minimizes the objective function.

W h e n the backbone is fixed, the energy of a sequence folded into a defined struc
ture can be expressed CVbigt et al. 2000) as:

E(i) = %]E(z,) + %] %] E(z,,z,), (2)
:' = ! :' = ! ;'=:' + !

where %¡ and ay are two different rotamer configurations of residues z and j and
» denotes the number of residues. E(%¡) is the energy interaction between the ro
tamer and the backbone, and E(%,, ay) represents the interaction energy between the
rotamers pairs. The energies are estimated using probabilities calculated from a ro
tamer library.

Some algorithms, like dead-end elimination (DEE) (De Maeyer et al. 2000), take
advantage of the pairwise decomposability of the fitness function to eliminate rotamer
configurations that are proven not to be within the optimal solutions. One of simplest
D E E implementations uses the Goldstein elimination criterion based on inequality 3
to iteratively eliminate rotamers.

E(z,) - E (^) + y]min(E(z,,z,) - E(z|,z,)) > 0. (3)

Equation 3 establishes a sufficient condition (De Maeyer et al. 2000) for rotamer
configuration %¡ to be absent from the optimal solution. If there exists a value %¿

that satisñes Eq. 3 then value %¡ can be eliminated. W h e n no condition that further
eliminates rotamers can be established, the algorithm stops. If the space of remaining
configurations is small enough, the remaining combinations are searched using ex
haustive enumeration. Unfortunately, this favorable scenario is not commonly found.

Other algorithms approach the search for side chain configurations as an optimiza
tion process. Particularly relevant for our work is the inference-based algorithm for
structure prediction (SPRINT) (Yanover and Weiss 2003) which is one of the state of
the art algorithms for protein side chain placement. In simple terms, it is a determinis
tic algorithm that associates a probabilistic model to the energy function and attempts
to find the & most probable configurations of the model which in turn should corre
spond to the & solutions with lowest energy. The computation of the most probable
configurations is done using belief propagation inference methods. To this end, exact
(Nilsson 1998) and approximate inference methods (Yanover and Weiss 2004b) can
be used. In the first case, the method is guaranteed to converge to the most probable
configuration. However, the computational requirements of exact inference is usu
ally unaffordable for medium and large problems. O n the other hand, convergence is
not guaranteed for approximate inference methods, not either that the solution found
upon convergence is the optimal one.

5 A n E D A - V N S approach to the side chain placement problem

In this section, w e show that the combination of V N S with E D As can improve the
solutions found by only using E D As or V N S . First, we describe the E D A approach to
the side chain placement problem. Then, w e propose a V N S scheme for this problem.

W e use the following problem representation. Each residue will be represented by
a random variable X,. The number of values of each variable will correspond to the
number of possible rotamer configurations for the corresponding residue z (i.e. %¡ e
{!,..., X,}, where X, is the number of feasible rotamer conñgurations for residue;).

The fitness evaluation function /(x) decodes the solution x into the corresponding
vector of rotamer configurations. Then, the energy function 2 is evaluated.

5.1 U M D A approach

U M D A uses a univariate model which is based on the assumption that all variables are
independent. The configuration of variable X, does not depend on the configuration
of any other variable. In U M D A , p(x) is factorized as follows:

p(x) = []Kz,). (4)
;' = !

Using this particular factorization, the steps of the algorithm are as described in
Algorithm 2. The pseudocode of the method used to solve the side chain placement
problem is shown in Algorithm 4.

The algorithm starts by calculating the adjacency matrix of the protein consid
ering the distance between the atoms in the backbone. Two residues are adjacent

Algorithm 4 UMDA-based algorithm for side chain placement

1 Construct the adjacency matrix of the protein using the backbone.
2 Calculate the energy interaction between neighboring rotamers.
3 Apply Goldstein elimination criterion to simplify the number of rotamer
configurations.

4 Apply U M D A to ñnd the candidate best solution.

(the corresponding value in the matrix is 1) if the distance between their respective
atoms is below a given threshold. Otherwise, the value in the matrix is equal to 0.
The calculation of the matrix simplifies the evaluation of the solutions by evaluating
only those pairwise interactions that exist between adjacent residues in the graph.
Then, the number of possible configurations for each residue is calculated using the
backbone-dependent rotamer library of Dunbrack and Cohen (1997).

In the next step, w e apply the Goldstein elimination criterion as shown in Eq. 3.
This step can considerably contribute to reduce the dimension of the search space,
but for medium and large proteins, search remains unaffordable for exact methods.
W h e n the application of the Goldstein elimination criterion cannot further reduce the
number of values of the variables, w e determine which residues have more than one
rotamer configuration. The corresponding variables are the only ones to be considered
in the optimization process. The probability model 4 will represent the probability of
a given side chain configuration.

5.2 Definition of the V N S neighborhood and V N S schemes

In this section, w e introduce two different V N S schemes in the context of E D As to
solve the protein side chain placement problem.

A crucial element of the V N S algorithm is the definition of the neighborhood. The
neighborhood will be denned only for the points represented by those variables and
values that remained after applying the Goldstein elimination criterion. As explained
in Sect. 4.1, the Goldstein elimination criterion allows the number of variables and
the range of values for each variable to be reduced. For the side chain placement
problem, w e define the ̂ -neighborhood of a solution x as the set of solutions that are
different from solution x in exactly & variables. More formally,

A^(x)=L|»-¿7W,^)=A: , (5)

where / is the indicator function, equal to one if both values are equal.
Clearly, given a point x, for all;' ^ &, W) (x) n A & (x) = 0. Additionally, w e use the

protein structure information to constrain the neighborhood. Particularly, w e use the
information contained in the adjacency matrix. In the analysis of the &-neighborhood
(& > 1), w e only consider those sets of & variables for which each pair of variables
has a non-zero entry in the adjacency matrix. This connection constraint naturally
arises from the pairwise nature of the fitness function. Variables whose correspond
ing residues are not connected in the graph do not contribute together to the fitness

function. The independent contribution of the variables to the fitness function is cov
ered by the 1-neighborhood.

In the 1-neighborhood of x, all the values for each of the variables are tried in the
exploration of the neighborhood. For & > 1, the algorithm calculates all possible sets
of & variables with non-zero entries in the adjacency matrix. Each possible configura
tion of each set that is different in all & variables from x defines a neighbor solution.
By requiring that the solution has to be different in all & variables, w e guarantee that
the neighborhoods do not overlap. O n the other hand, by reducing the search of &-size
sets to those interacting in the protein structure, the algorithm critically reduces the
search space.

Given this neighborhood, w e propose two alternative ways to define local search
step 8 of Algorithm 1. Exhaustive and randomized procedures can be employed.

To select x" in the exhaustive schema, the A&(x') (& = !,..., &ma%) is completely
searched to find a point where the fitness function is locally optimized. In the random
ized scheme, point x" is selected using a random strategy. A local search is conducted
by randomly selecting a solution in the neighborhood and moving to this solution if
fitness is improved. A parameter, maxfnej, defines the maximum number of points
of the neighborhood that will be searched.

Obviously, the exhaustive search can be more computationally costly than the ran
domized one. However, in the second case, the cost depends on majcfn&y. To reduce
the computational cost of the exhaustive scheme, we can constrain the set of neigh
borhood structures.

5.3 UMDA+VNS

W e have applied a V N S algorithm to search for optimal solutions starting from the
solutions found by U M D A . The V N S approach followed is the one mentioned in
Sect. 1. The widest neighborhood which w e consider has & = 3. Algorithm 5 de
scribes the pseudocode of the resulting U M D A + V N S approach that uses the exhaus
tive procedure.

5.4 Computational complexity of U M D A + V N S

A n important issue related with the efficiency of the algorithm is its computational
complexity that translates in the time needed by the implementations to solve the
problem. W e present an analysis of the computational complexity of U M D A + V N S .
First, the expressions that describe U M D A s complexity are shown. Then, we analyze
the complexity of the variants of V N S proposed to address the problem.

To begin, w e consider the computational complexity of each generation of U M D A .
The initialization step of U M D A consists of assigning the values to all the individuals
in the initial population. It has complexity O (nM). The computational complexity of
the evaluation step depends on the number of the non-zero entries in the adjacency
matrix which, in the worst case, can be quadratic in the number of variables. Then,
the time complexity of this step is 0 (» ^ M) . The complexity of the U M D A selection
steps depends on the selection method used. For truncation selection, complexity is
related to the ordering of the solutions. It is (9(Mlog(M)).

Algorithm 5 U M D A + V N S

I Set f <- 0. Generate M points randomly.
2do{
3 Select aset ̂ of N < M points using truncation selection.
4 Compute the univariate marginal frequencies p' (%¡, f) of ̂.
5 Generate M new points according to the distribution p(x, f + l)=HÍLi f Í (̂ i, ^)-
6 f<-f + l
7 } until Termination criteria are met.
8 Start from the best solution x found by U M D A .
9do{
10 6^1.
II do{
12 Generate a point x' e A/¿ (x) at random.
13 Apply the exhaustive procedure with x' as the initial solution.

Denote with x" the so-obtained local optimum.
14 If this local optimum is better than the current solution, x ̂ - x" and & <- 1.

Otherwise, & < - & + !.
15 } textbfuntil & = &max -
16 } until Termination criterion is met.

The complexity of the learning step is O(N n) . This is the cost of inspecting the
values of every variable of the N selected solutions. The complexity of the sampling
step depends on the number of variables, their values and the number of points. It

is Q ((M - N)nrMAx), where nvtAX = max,e{i „} 1̂ ,1 is the highest cardinality
among the variables. ¡A",-1 corresponds to the maximum number of rotamer configu
rations the zth residue can have.

The actual number of generations needed by U M D A to converge is problem de
pendent. In general, this parameter is very difficult to estimate, although theoretical
results for some classes of functions are available (González et al. 2002b). Let G be
the maximal number of allowed generations. The complexity of U M D A for the side
chain problem can be roughly estimated as O (GM(%2 + log(M) + nrMAx))

The computational complexity of the exhaustive V N S depends on number of eval
uations E done at each point, its complexity O(n^), and the number of transitions V.
E depends on the number of variables, the number of values for each variable, and the
neighborhood size. It can be calculated as E = 2 2 ^ * (%)rMAX*. O n the other hand,
it is difficult to estimate the number of transitions of the algorithm before no further
improvement is possible. The computational complexity of the exhaustive V N S can
be roughly estimated for the worst case (&max = 3) as 0(2"-irMAX*™*y). Notice,
that for the derivation w e have assumed that all possible neighborhoods of & vari
ables are considered. As analyzed in Sect. 5.2, this situation corresponds to the worst
case scenario where all the & possible sets has non-zero entries in the adjacency ma
trix. Additionally, w e have not analyzed the reduction that partial evaluation of the
energy function would have in the complexity of the evaluation step. Unfortunately,
the reduction in the computational complexity of the evaluation step due to partial
evaluation is difficult to estimate.

Finally, w e analyze the computational complexity for randomized V N S . For this
algorithm, the number of evaluations depends on the maximum number of points of
the neighborhood that will be searched: E = maxtries. The computational complexity
of randomized V N S is O(n^maxtñesy).

6 Experiments

W e begin this section by describing the database of proteins used to empirically eval
uate the algorithms. Subsequently, an explanation of the parameters used for each one
of the tested algorithms is presented. Additionally, the criteria used in the comparison
of the algorithms are enumerated. W e also explain the experimental framework and
the statistical tests employed.

Not all variants of V N S can be applicable to all the instances (e.g. exhaustive
V N S , &ma% = 3 is not a feasible alternative for protein instances with a large number
of residues and rotamer configurations). Therefore, the presentation of the numerical
results has been organized according to a classification of the instances based on their
size, as explained in the next section. Nevertheless, for the sake of clarity, the final
results of the statistical tests are presented for all the instances altogether.

6.1 Protein instances

To test our algorithms, w e have used a set of 463 protein structures.^ The dataset
corresponds to 463 X-ray crystal structures with a resolution better than or equal to
2Á, an # factor below 2 0 % , and a mutual sequence identity lower than 5 0 % . Each
protein consisted of 1^1 chains and up to 1000 residues. This data set was originally
employed in (Yanover and Weiss 2003) to evaluate the SPRINT algorithm.

The original database of proteins is divided into three groups: small, large, and
dimer proteins. As a pre-processing step, w e have determined, for each group, the
instances in which the Goldstein elimination criterion 3 eliminates all configurations
but one, and those instances in which SPRINT that uses loopy belief propagation
method (an approximate inference technique) converges.

For the small class of instances, the protein structures obtained from the instances
for which SPRINT converged are known to be the optimal ones (Yanover and Weiss
2004a). O n the other hand, even if SPRINT does not converge, a solution (calculated
from inconsistent marginals) is output by the algorithm. The solution, which is always
the same for a given protein instance, is very likely to be sub-optimal and this fact
constitutes one of the main drawbacks of the algorithm. Therefore, w e focus on the
application of U M D A + V N S to those instances were SPRINT does not converge. By
constraining the protein benchmark to a set of difficult instances w e intend to focus
our experimental work on the most challenging problems, increasing the likelihood
of U M D A + V N S to obtain new best solutions.

^ These instances have been obtained from Chen Yanover's page: http://www.cs.huji.ac.il/^cheny/
proteinsMRF.html.

http://www.cs.huji.ac.il/%5echeny/

The application of the Goldstein elimination criterion can only solve instances in
the group of small instances. Moreover, SPRINT does not converge for 3 % of the
instances in the small class, 3 1 % of the instances in the large class, and 3 2 % of the
instances in the dimer class. Proteins that were solved using the Goldstein elimina
tion criterion and those for which SPRINT converged have been removed from the
original database. The reduced small, large, and dimer groups contain the most diffi
cult instances that w e used in our experiments. The total number of instances for the
reduced small, large and dimer groups are, respectively, 11, 14 and 25.

6.2 Algorithms and settings

The different variants of the V N S applied are the following:

* Exhaustive V N S , &max = 3. Applied to small protein instances.
* Exhaustive V N S , &max = 1. Applied to small and large protein instances.
* Randomized V N S (maxtries = 5000). Applied to small, large, and dimer protein

instances.

The parameters of U M D A have been set as follows:

* Population size M = 5000.
* M a x i m u m number of generations = 2000.
* Truncation selection with parameter 7 = 0.15. In this selection scheme, the best

F M individuals of the population are selected to construct the probabilistic model.
* Best elitism. This a replacement strategy where the selected population at gener

ation f is incorporated into the population of generation f + 1 keeping the best
individuals so far found and avoiding to reevaluate their fitness function.

* The stop conditions were: The maximum number of generations is reached or the
selected population has become too homogeneous (no more than 10 different indi
viduals).

To compare the results of the algorithms, w e conduct 50 experiments for each
instance and algorithm. The performance of the algorithms are evaluated using the
following criteria:

1. Fitness of the best solution found in each experiment.
2. Best fitness among all the best solutions found and number of experiments in

which it was found.
3. Average number of fitness evaluations.

To determine whether differences between the fitness of the solutions found by the
algorithms are statistically significant the Kruskal-Wallis test (Hsu 1996) has been
employed. This test is used to accept or reject the null hypothesis that the samples
obtained from 50 experiments corresponding to the different algorithms compared
have been taken from equal populations. To perform the test, all the samples are
combined into one large sample, and are sorted from smallest to largest. Then ranks
are assigned (assigning the average rank to any observation in a group of tied obser
vations). To compare the samples, the average of the ranks of the observations for
each of the samples are calculated, and the test is applied. The test significance level
was 0.05.

In the particular case of the comparison between U M D A + V N S and SPRINT,
and since SPRINT is a deterministic algorithm we use the sign test. This is a non-
parametric test used to compare two related groups. It is computed noting the direc
tion of the difference between pair of scores. In our application, the signs correspond
to the times, regarding the total number of cases considered, that the stochastic al
gorithm achieves results better (+), equal (=), or worse (-) than the deterministic
algorithm. W e expect that, if there are not significant difference between algorithms,
the number of positive and negative signs must be approximately the same. The bi
nomial distribution of parameters (»&, %, %) , where n& is the number of cases, && is
the number of positive outcomes, and /% = 0.5 is used to compute the test statistic.

To compare the algorithms according to the best fitness, we determine which is
the best solution found by each algorithm in the 50 experiments. The number of
evaluations is considered an auxiliary measure of the efficiency of the algorithms.
The number of evaluations for a V N S run is the number of evaluations made before
no further improvement of the current solution is possible or a maximum number of
tries (maxtries) has been reached.

Let g be the number of generations of U M D A before one stop condition has been
fulfilled. The total number of evaluations is:

e = M+(g-l)(M-7N).

The number of evaluations of U M D A + V N S is the sum of the number of evalua
tions needed to find the best solution of U M D A and the number of evaluations made
by V N S .

6.3 Analysis of the behavior exhibited by U M D A + V N S

W e start with an experiment that illustrates the behavior of U M D A + V N S . W e have
selected the dimer instance pdbleóp which has 365 residues. Figure 2 shows the best
energy obtained by U M D A + V N S ™ * ™ ™ * and V N S ™ * ™ ™ * as a function of the
number of evaluations. The results are the average of 50 independent runs of each
algorithm. The parameter maxtries of V M S ™ * " ™ ™ * and U M D A + V N S ™ * ™ ™ * was
set to 20000 to augment the exploratory capacity of the algorithm. The rest of the
parameters remained with the values previously described. In each run, the number
of evaluations needed to achieve the current best solution is stored every time that a
solution with better energy is found. The experiment gives an idea of the efficiency
of each method.

Since the first 5000 evaluations of U M D A + V N S ™ * ™ ™ * correspond to the solu
tions randomly generated by U M D A , VNsrandomizcd is able to achieve better solutions
with the same number of evaluations at the beginning. This fact can be clearly appre
ciated in Fig. 3 which offers a detailed view of the behavior of both algorithms during
the first evaluations. As evolution continues, U M D A + V N S ' ™ * ™ ^ quickly obtains
better solutions than those achieved by VNsrandomizcd with the same number of eval
uations. As it can be seen in Fig. 2, even if a great number of evaluations are allowed
to both algorithms, U M D A + V N S ™ * ™ * ™ ' consistently outperforms T / N S ™ * ™ ^ .

W e have also studied the efficiency of both algorithms in terms of the time needed
to improve the current best solution. For the same runs analyzed before, we have also

12000
O

1000Q

|

% 8000

.c
% 6000

o
c
o

g

O -e-
UIVIDA+VNS.Rand.
VNS.Rand.

4000

2000

0.5 1
Number of evaluations

1.5

Fig. 2 Energy of the best solutions found by U M D A + V N S
of evaluations increases

andVNS

x10

as the number

stored the time at which a new best solution is found. Results are shown in Fig. 4. It
can be seen that y^srandomized needs a short time to achieve relatively good solutions.
However, it converges later to solutions with higher energies than those obtained by
UMDA+VNS™*™™'.

An interesting issue that illustrates the behavior of V N S ™ * " ™ ^ ^ ̂ discon
tinuity in the pattern exhibited by the algorithm which corresponds to an important
improvement in the quality of solutions (from solutions with energies higher than
2000 to energies below this threshold). This pattern can be explained by the effect of
passing from a 1-neighborhood to a 2-neighborhood. After the capacity of the search
to ñnd better solutions in the 1-neighborhood has been exhausted, the search of the
2-neighborhood improves the solutions in a short time. Nevertheless, the search of
the 3-neighborhood does not produce the same effect.

The main objective of the following experiments is to evaluate whether U M D A +
V N S is able to improve the solutions obtained by U M D A and VNS. Additionally, we
compare the performance of the exhaustive and randomized schemes introduced in
Sect. 5.2.

6.4 Numerical results for small instances

Initial experiments are conducted using the small set of instances. W e apply different
variants of V N S and U M D A + V N S with the parameters described in Sect. 6.2.

12000

11000
w
r o
-" _3

8
M
(1)

m
r

o
>, F
o
r o
R
2
m
> <

10000

9000

8000

7000

6000

5000

O

1 ^ ^ ^ & *

uiviUA+vi\io,riana.
VNS,Rand.

i

5 10
Number of evaluations

15
4

Fig. 3 Energy of the best solutions found by U M D A + V N S
of evaluations increases: Detail

andVNS

x10

as the number

The U M D A + V N S is applied to those solutions found by U M D A in the 50 experi
ments conducted for each instance. On the other hand, V N S is applied to 50 randomly
generated solutions for each instance.

Table 1 shows the results achieved by U M D A and the different variants of V N S
used. The table shows, for each algorithm, the fitness of the best solution found by
the algorithm (best), the number of times it was found in the 50 experiments (#),
and the mean of the fitness values calculated from the best solutions found in each
of the 50 experiments (mean). Results corresponding to the algorithm that found
the best solution among all the algorithms appear in bold. When the best solution
is found by more than one algorithm, the algorithm that has found it more times is
the one marked in bold. Most of the best solutions are achieved by exhaustive VNS,
tmax = 3. The average number of function evaluations needed by the algorithms is
shown in Fig. 5. It can be appreciated that the number of evaluations needed by
exhaustive VNS, &max = 3 is huge. However there is a great variability in the behavior
of the algorithms depending on the instances. It is remarkable that the application of
U M D A + V N S ^ ™ ^ ' ™ , &max = 3 requires in some cases less function evaluations than
VNgexhaustive^mw = 3.

Table 2 presents the results of U M D A + V N S using the same variants of V N S
shown in Table 1. As expected, the best results are achieved by U M D A + V N S " ^ " * ^ ,
tmax = 3. However, the computational cost associated with neighborhood structures
t = {2, 3} makes it impractical to use the exhaustive search of the whole neighbor-

12000

o

8

3

o

10000

8000

5 6000

4000

2000

-t-

-e-
UMDA+VNS,Rand.
VNS.Rand.

5000 10000 15000
seconds

Fig. 4 Energy of the best solutions found by U M D A + V N S ™ ^ ™ ™ < * and V N S ™ " b ™ ™ d as a function of
the time spent by the optimization algorithms

Table 1 Results achieved by U M D A and different variants of V N S for the subset of small instances for
which SPRINT does not converge

pdbid

pdblbuu

pdblbvl

pdblema

pdblet9

pdblhóh

pdblhhg

pdblmrj

pdblfcr

pdb2ilk

pdb2tir

pdbSkvt

UMDA

Best

200.24

132.54

286.40

227.15

97.95

374.63

232.66

236.28

138.55

92.61

163.96

6"

12

SO

48

16

15

1

3

SO

SO

so
33

Mean

200.71

132.54

286.47

227.66

98.44

381.04

239.23

236.28

138.55

92.61

164.15

Exhaustive,

VNS

Best

200.24

132.54

286.40

226.80

97.95

369.57

232.66

236.28

138.55

92.44

160.50

6"

40

SO

16

38

SO

10

38

26

29

15

SO

&max — 3

Mean

200.52

132.54

287.83

226.84

97.95

370.04

232.99

242.01

145.75

92.56

160.50

Exhaustive

VNS

Best

200.24

132.63

288.71

227.92

98.71

370.73

236.18

236.28

138.55

92.61

163.96

6"

1

1

1

1

1

1

1

1

1

6

2

, ̂ max — 1

Mean

237.62

140.52

333.33

285.82

116.77

408.69

284.76

284.07

162.73

106.98

235.16

Random! zee

VNS

Best

200.24

132.54

286.40

226.80

97.95

369.57

232.66

236.28

138.55

92.44

160.50

6"

40

SO

15

21

46

5

4

12

31

10

14

Mean

200.52

132.54

289.37

227.52

98.00

379.46

235.52

248.93

145.06

92.62

167.93

x10"

3.5

8

n
E

0)1.5

3

0.5

JJL _i^ J

IUMDA
|VNS,k^=3

] VNS, Rand.

| UMDA+VNS, k^^=3

| UMDA+VNS, k^^=1

I UMDA+VNS, Rand

J^ ^ J^^ J ̂
1 2 3 4 5 6 7 8 9 10 11

Instances

Fig. 5 Average number of evaluations of different algorithms for the set of small protein instances

Table 2 Results achieved by different variants of the U M D A + V N S for the subset of small instances for
which SPRINT does not converge

pdbid

pdblbuu

pdblbvl

pdblema

pdblet9

pdblhóh

pdblhhg

pdblmrj

pdblfcr

pdb2ilk

pdb2tir

pdbSkvt

Exhaustive, tmax = 3

U M D A + V N S

Best

200.24

132.54

286.40

226.80

97.95

370.16

232.66

236.28

138.55

92.61

160.50

6"

SO

SO

49

22

SO

SO

36

SO

SO

SO

SO

Mean

200.24

132.54

286.41

226.90

97.95

370.16

232.86

236.28

138.55

92.61

160.50

Exhaustive, tma,

U M D A + V N S

Best

200.24

132.54

286.40

227.15

97.95

370.95

232.66

236.28

138.55

92.61

163.96

6"

17

SO

49

20

18

1

6

SO

SO

so
41

= 1

Mean

200.68

132.54

286.41

227.63

98.40

380.95

235.01

236.28

138.55

92.61

164.03

Randomized

U M D A + V N S

Best

200.24

132.54

286.40

226.80

97.95

370.16

232.66

236.28

138.55

92.61

160.50

6"

SO

SO

49

20

39

1

14

SO

SO

so
12

Mean

200.24

132.54

286.41

226.95

98.10

380.70

234.69

236.28

138.55

92.61

163.06

hood structure for larger instances. Since U M D A + V N S ^ ^ ™ ^ , &ma% = 3 is not a
feasible alternative in general, w e constrain the statistical analysis to the determina
tion of whether U M D A + V N S ™ ^ ° ™ * d improves the results achieved by randomized

Table 3 Instances for which the average results achieved by U M D A + V N S ™ " ™ ™ ™ * * were significantly
better or worse than those obtained with U M D A and VNgrandomized

Database Better than U M D A Better than V N S Worse than V N S

Small

Large

Dimer

1,4,5,11

2-14

1-4,6-26

1, 3,7-9

2,4-14

1, 2, 4, 6-25

Table 4 Results achieved by U M D A and different variants of V N S for the subset of large instances for
which SPRINT does not converge

pdbid

pdblcrz

pdblddt

pdbldpe

pdble39

pdblf5n

pdblgsk

pdblh3n

pdb2jyl

pdb2kmo

pdb2kwh

pdb3n5u

pdb2nqe

pdb2nr0

pdb3nap

UMDA

Best

626.41

754.93

727.37

545.30

585.78

939.94

1626.09

861.92

925.90

972.11

860.67

570.29

913.87

1108.79

6"

1

1

2

24

4

5

1

Mean

627.25

760.02

750.51

545.82

595.87

947.77

1639.00

870.34

943.09

988.21

877.39

593.49

922.96

1134.36

Exhaustive,

V N S

(max — 1

Best S Mean

628.71

764.39

792.09

566.13

646.43

974.96

1863.94

883.11

930.50

1011.46

899.46

627.17

940.33

1101.21

720.08

843.83

902.58

640.10

790.30

1088.01

2129.65

981.23

1060.22

1230.97

1128.55

742.87

1115.18

1137.23

Randomized

V N S

Best

626.12

753.38

725.50

545.30

585.78

934.01

1623.20

858.70

889.09

960.73

858.89

569.04

908.02

1101.21

6"

4

2

6

21

7

1

1

1

1

1

5

1

4

1

Mean

627.20

777.34

746.04

553.22

620.73

963.16

1722.27

878.87

939.17

1010.49

899.36

611.55

946.14

1135.72

V N S and U M D A . The first row of Table 3 shows the instances for which the Kruskall-
Wallis test found statistically significant differences.

6.5 Numerical results for large instances

Table 4 shows the results achieved by U M D A , exhaustive V N S , &ma% = 1, and ran
domized V N S in the optimization of the large protein instances used for our experi
ments. In terms of the best solution found, randomized V N S is clearly superior to the
other two algorithms.

Table 5 presents the results of U M D A + Y N S = ^ ™ ^ = , ¿max = 1 and U M D A +
y^grandomrzed Results corresponding to the best solution found appear in bold. Addi
tionally, results where U M D A + V N S ™ ^ ° ™ * d produced the best known solution are
underlined. The second row of Table 3 shows the instances for which the Kruskall-
Wallis test found statistically significant differences in the results achieved by the
different algorithms. The average number of evaluations of all the algorithms are

Table 5 Results achieved different by variants of U M D A + V N S for the subset of large instances for which
SPRINT does not converge

pdbid

pdblcrz

pdblddt

pdbldpe

pdble39

pdblfSn

pdblgsk

pdblh3n

pdbljyl

pdb2kmo

pdb2kwh

pdb3n5u

pdb2nqe

pdblnrO

pdbSnap

Exhaustive, tmai = 1

U M D A + V N S

Best

626.41

754.93

727.37

545.30

585.78

93847

1623.17

856.84

917.36

961.21

860.67

565.37

913.87

1101.67

&

1

1

12

25

4

1

1

4

1

2

1

2

13

1

Mean

627.20

759.68

745.13

545.74

595.57

942.89

1634.37

859.58

935.28

973.55

876.39

587.35

919.69

1111.30

Randomized

U M D A + V N S

Best

626.41

753.38

725.50

545.30

585.78

935.65

1620.39

856.84

901.88

960.73

858.89

565.37

912.54

1101.21

6"

1

1

7

40

34

1

1

4

1

1

3

3

24

6

Mean

627.18

755.34

739.35

545.57

589.34

939.09

1627.07

858.39

918.15

972.45

869.73

580.76

916.43

1107.90

shown in Fig. 6. Also in this case there is a great variability in the behavior of the
algorithms depending on the instances. It can be seen the increment in the number of
evaluations due to the application of V N S is not significant.

6.6 Numerical results for dimer instances

Table 6 shows the results achieved by U M D A , randomized V N S , and U M D A +
y^grandomrzed ̂ ^ g optimization of the dimer protein instances used for our exper
iments. The third row of Table 3 shows the dimer instances for which the Kruskall-
Wallis test found statistically significant differences in the results achieved by the dif
ferent methods. The average number of evaluations of all the algorithms are shown
in Fig. 7. The behavior of the number of evaluations needed by the algorithms for the
set of dimer instances is similar that for the set of large instances.

6.7 Comparison with SPRINT algorithm

W e also compare the results achieved by SPRINT and U M D A + V N S ™ & ™ ™ * . Since
SPRINT is a deterministic algorithm, we use the sign test. First, we compare the so
lution given by SPRINT with the best solution achieved by U M D A + V N S ™ * ™ ™ * .
Considering the 50 protein instances used in our experiments, U M D A + V N S ™ * ™ ^
achieved better results than SPRINT in 6 2 % of the cases, and worse results in only
1 0 % of the cases. For the remaining 2 8 % of instances, both algorithm obtained identi
cal best structures. This means that U M D A + V N S ™ ^ ° ™ * d ^as successful in Ending
31 protein side chain structures better than those previously known. The application

,x10"

3.5

«2.5
IB

E

«1.5

2

* 1

0.5

0 m^

IUMDA

] VNS, Rand.
| UMDA+VNS, k^=1

I UMDA+VNS, Rand

u
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Instances

Fig. 6 Average number of evaluations of different algorithms for the set of large protein instances

of the sign test shown that the probability that the difference between the two algo
rithms arising by chance is only 0.059.

If results are analyzed taking into consideration the membership of the in
stances to the three different sets, we conclude that for the set of small instances,
U M D A + V N S ™ * ™ ^ and SPRINT obtained identical results in 100% of cases. For
the set of large instances however, the algorithm introduced in this paper achieved bet
ter results than SPRINT in 5 7 % of the cases, and worse results in 2 1 % of the cases.
The application of the sign test shown that the probability that the difference between
algorithms arising by chance for this set is only 0.059. For the most complex set of
instances, the dimer set, U M D A + V N S ™ & ™ ™ 1 achieved better results than SPRINT
in 9 2 % of the cases, and worse results in 8 % of the cases. This analysis shows that, as
the complexity of the sequences increases, the performance of U M D A + V N S ™ ^ ° ™ * d
with respect to SPRINT is also improved.

6.8 Discussion of the results

A first conclusion of the experiments is that randomized V N S can achieve remarkably
good results for the protein side chain placement problem. As Tables 1,4 and 6 reveal,
the best instances found by randomized V N S have, in most of cases, better fitness
than those obtained by U M D A .

A second observation is that exhaustive V N S , &n 3 is not a feasible alternative
for protein instances with a high number of residues. The number of ñtness evalúa-

Table 6 Results achieved by U M D A , V N S and U M D A + V N S (randomized scheme) for the subset of
dimer instances for which SPRINT does not converge

pdbid

pdblb25

pdbldZe

pdbldxr

pdbldz4

pdbleól

pdbleóp

pdblfóO

pdblfmj

pdblfn9

pdblfnn

pdblgiq

pdblhOh

pdblh3f

pdblh4r

pdblh80

pdblhhs

pdbliqc

pdblj3b

pdblj8f

pdbljmx

pdbllqa

pdbllqt

publish

pdblnp?

pdbltki

UMDA

Best

4788.89

1839.67

1703.73

875.77

1936.92

1681.67

537.42

1100.51

989.51

735.75

806.53

4848.93

785.56

825.64

1036.90

2627.41

1538.37

1600.16

957.08

1518.10

1017.56

935.95

1125.04

1783.09

858.67

5"

1

1

1

1

1

1

3

1

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Mean

4820.76

1847.65

1722.79

884.79

1958.89

1694.86

540.78

1121.42

993.92

749.53

823.58

4913.00

795.11

830.12

1040.45

2651.59

1546.85

1625.67

964.50

1545.51

1029.34

967.32

1135.00

1799.91

867.24

Randomized

V N S

Best S

4771.97 1

1824.81 2

1695.16 1

867.01 2

1944.16 1

1678.30 1

537.04 1

1088.80 1

987.47 1

732.90 2

800.67 1

4798.25 1

786.16 1

815.84 9

1034.83 2

2596.78 1

1530.18 1

1594.03 1

942.62 5

1508.42 1

1018.76 1

926.76 2

1118.69 1

1787.93 1

855.56 5

Mean

4916.25

1839.53

1713.68

886.33

2004.35

1705.68

541.48

1150.22

1014.70

748.01

824.62

4910.64

803.61

819.23

1041.42

2637.82

1562.17

1624.35

956.90

1589.82

1083.92

966.23

1127.22

1848.19

860.52

Randomized

U M D A + V N S

Best

4725.57

1826.88

1695 16

867.01

1926.36

1673.27

537.04

1088.80

987.47

732.01

800 67

4755.80

782.98

815.84

1034.77

2584.92

1530 18

1586.47

942.62

1515.11

1015.88

926.16

1118.28

1765.25

855.56

5"

1

7

1

1

3

1

8

1

3

1

1

1

5

16

9

1

2

2

21

2

Mean

4769.04

1829.41

1704.83

874.41

1935.03

1684.97

539.85

1098.54

991.68

737.26

813.38

4809.89

788.34

817.08

1035.27

2606.17

1534.45

1602.66

943.69

1534.48

1022.04

955.82

1125.32

1779.11

858.11

lions grows exponentially in this case. O n the other hand, exhaustive V N S , &ma% = 1
achieves very poor results in comparison with randomized V N S and U M D A .

The main conclusion of our experiments, as shown in Tables 2, 3, 5, and 6 is that
the combination of U M D A and V N S can improve the solutions achieved by each one
of these algorithms. These results confirm that U M D A + V N S can obtain state-of-the-
art solutions for the side chain placement problem.

Finally, we point to the fact that U M D A needs a very high number of function eval
uations in comparison with randomized V N S . Although the parameters of U M D A
were not tuned to minimize the number of function evaluations, for the parameters
used in this paper it is clear that V N S is able to ñnd better solutions with fewer eval
uations. However, it is not clear whether a higher number of evaluations will allow
V N S to reach better solutions than those achieved by U M D A + V N S . This remains as
a question for further research.

12

10

x10"

o

5 6
E

& 4

I

IUMDA
I VMS, Rand.
I UMDA+VNS, Rand

0 5 10 15 20 25
Instances

Fig. 7 Average number of evaluations of different algorithms for the set of dimer protein instances

7 Conclusions

A considerable amount of work has been produced showing that V N S and E D As are
suitable heuristics that can provide solutions in many different problem domains.

It is, therefore, a promising research trend to investigate possible ways to combine
these two metaheuristics. In this paper, we have introduced a number of general al
ternatives for hybridizing V N S and E D As. The different ways to combine V N S and
EDAs have been classified into three main groups. This classification has been based
on the different roles that both metaheuristics can play during a combined application,
as well as on the possible definitions of the neighborhood space for V N S .

W e have shown that, for the side chain placement problem, a hybrid approach
between V N S and E D A s can improve the results achieved by using only E D A s and
VN S . What is more, U M D A + V N S has obtained new protein structures with energy
values better than those previously reported.

While our experiments have focused on the U M D A , we foresee that hybridization
between V N S and other E D A s can also lead to improvements of the final solutions.
Furthermore, the other alternatives introduced in this paper for combining V N S and
EDAs should also be investigated.

Acknowledgements The authors thank Chen Yanover for useful comments on the protein side chain
placement problem and for providing the set of instances used in our experiments. The authors are also
grateful to Alex Mendiburu and Jose Miguel for providing part of the computational resources used in
our experiments. This work was supported by the SAIOTEK-Autoinmune (II) 2006 and Etortek research
projects from the Basque Government. It has been also supported by the Spanish Ministerio de Ciencia

y Tecnología under grant TIN2005-03824. The SGI/IZO-SGIker U P V / E H U (supported by the Spanish
Program for the Promotion of Human Resources within the National Plan of Scientific Research, Devel
opment and Innovation—Fondo Social Europeo and M C y T) is gratefully acknowledged for their generous
allocation of computational resources.

References

Andreatta, A., Ribeiro, C : Heuristics for the phylogeny problem. J. Heuristics 8, 429-447 (2002)
Belacel, N., Hansen, P., Mladenovic, N.: Fuzzy J-means: a new heuristic for fuzzy clustering. Pattern

RecogniL 35(10), 2193-2200 (2002)
Blanco, R., Inza, I., Merino, M., et al.: Feature selection in Bayesian classifiers for the prognosis of survival

of cirrhotic patients treated with TIPS. J. Biomed. Inform. 38(5), 376-388 (2005)
Blickle, T, Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evol. Comput.

4(4), 361-394 (1996)
Brimberg, I., Hansen, P., Mladenovic, N., et al.: Improvements and comparison of heuristics for solving

the multisource weber problem. Oper. Res. 48(3), 444-460 (2000)
Brimberg, J., Hansen, P., Mladenovic, N.: Convergence of variable neighborhood search. Technical Report

G-2003-45, Les Cahiers du G E R A D (2003)
Brimberg, J., Mladenovic, N., Urosevic, D.: Variable neighborhood search for the k-cardinality subgraph

problem. In: Hansen, P., Mladenovic, N., Pérez, J.A.M., Batista, B.M., Moreno-Vega, J.M. (eds.)
Proceedings of the 18th Mini Euro Conference on Variable Neighborhood Search, 2005

Davidovic, T, Hansen, P., Mladenovic, N.: Permutation-based genetic, tabu and variable neighborhood
search heuristics for multiprocessor scheduling with communications delays. Technical Report G-
2004-19, Les Cahiers du G E R A D (2004)

Dawid, A.P: Applications of a general propagation algorithm for probabilistic expert systems. Stat. Corn-
put. (2), 25-36 (1992)

De Maeyer, M., Desmet, L, Lasters, I.: The dead-end elimination theorem: mathematical aspects, imple
mentation, optimization, evaluation, and performance. Methods Mol. Biol. 143, 265-304 (2000)

Dunbrack, R.L.: Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol. 12, 431-440 (2002)
Dunbrack, R.L., Cohen, F.E.: Bayesian statistical analysis of protein side-chain rotamer preferences. Pro

tein Sci. 6(8), 1661-1681 (1997)
Efron, B.: The jackknife, the bootstrap, and other resampling plans. In: C B M S - N S F Regional Conference

Series in Applied Mathematics, vol. 38,1982
Etxeberria, R, Larrañaga, P.: Global optimization using Bayesian networks. In: Proceedings of the Second

Symposium on Artihcial Intelligence CIMAF-99, pp. 151-173, Habana, Cuba, 1999
Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2-3), 131-163

(1997)
García, C.G., Pérez, D., Garcia, E C : Parallel variable neighborhood search for the linear ordering problem.

In: Hansen, P., Mladenovió, N., Pérez, J.A.M., Batista, B.M., Moreno-Vega, J.M. (eds.) Proceedings
of the 18th Mini Euro Conference on Variable Neighborhood, 2005

Glover, F: Future paths for Integer programming and links to artificial intelligence. Comput. Oper. Res. 5,
533-549 (1997)

Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley
Reading (1989)

González, C , Lozano, J.A., Larrañaga, P.: Mathematical modeling of discrete estimation of distribution
algorithms. In: Larrañaga, P., Lozano, J. A. (eds.) Estimation of Distribution Algorithms. A N e w Tool
for Evolutionary Computation, pp. 143-162. Kluwer Academic, Boston (2002a)

González, C , Lozano, J.A., Larrañaga, P.: Mathematical modeling of U M D A c algorithm with tourna
ment selection. Behaviour on linear and quadratic functions. Int. J. Approx. Reason. 31(4), 313-340
(2002b)

Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res.
130, 449-467 (2001)

Hansen, P., Mladenovic, N.: Variable neighborhood search. In: Fárdalos, P., Resende, M. (eds.) Handbook
of Applied Optimization, pp. 221-234. Oxford University Press, London (2002)

Hansen, P., Mladenovic, N.: Tutorial on variable neighborhood search. Technical Report G-2003-46, Les
Cahiers du G E R A D (2003a)

Hansen, P., Mladenovic, N.: Variable neighborhood search. In: Glover, E, Kochenberger, G. (eds.) Hand
book of Metaheuristics, pp. 145-184. Kluwer Academic, Dordrecht (2003b)

Hóns, R.: Estimation of distribution algorithms and minimum relative entropy. Ph.D. thesis, University of
Bonn, Bonn, Germany (2006)

Hsu, J.C.: Multiple Comparisons: Theory and Methods. Chapman & Hall, London (1996)
Kochetov, Y., Velikanova, Y.: Variable neighborhood search for the 2D orthogonal packing. In: Hansen,

P., Mladenovió, N., Pérez, J.AM., Batista, B.M., Moreno-Vega, J.M. (eds.) Proceedings of the 18lh
Mini Euro Conference on Variable Neighborhood Search, 2005

Kovacevic, V, Cangalovic, M., Asic, M., et al.: Tabu search methodology in global optimization. Comput.
Math. Appl. 37,125-133 (1999)

Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms. A N e w Tool for Evolutionary
Computation. Kluwer Academic, Boston (2002)

Lauritzen, S., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their
application to expert systems (with discussion). J. R. StaL Soc. Ser. B 50,157-224 (1988)

Lee, C , Subbiah, S.: Prediction of protein side-chain conformation by packing optimization. J. Mol. Biol.
217, 373-388 (1991)

Lozano, J.A., Sagarna, R., Larrañaga, P.: Parallel estimation of distribution algorithms. In: Larrañaga, P.,
Lozano, J.A. (eds.) Estimation of Distribution Algorithms. A New Tool for Evolutionary Computa
tion, pp. 125-142. Kluwer Academic, Boston (2002)

Lozano, J.A., Larrañaga, P., Inza, I., et al.: Towards a New Evolutionary Computation: Advances on Esti
mation of Distribution Algorithms. Springer, Berlin (2006)

Mendiburu, A., Lozano, J., Miguel-Alonso, J.: Parallel implementation of EDAs based on probabilistic
graphical models. IEEE Trans. Evol. Comput. 9(4), 406-423 (2005)

Mladenovic, N.: A variable neighborhood algorithm—a new metaheuristics for combinatorial optimiza
tion. In: Abstracts of Papers Presented at Optimization Days, Montreal, p. 112, 1995

Mladenovió, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24,1097-1100 (1997)
Mtlhlenbein, H., Mahnig, T: Evolutionary synthesis of Bayesian networks for optimization. In: Patel, M.,

Honavar, V, Balakrishnan, K. (eds.) Advances in Evolutionary Synthesis of Intelligent Agents,
pp. 429-455. M I T Press, Cambridge (2001)

Mtlhlenbein, H., Mahnig, T: Evolutionary optimization and the estimation of search distributions with
applications to graph bipartitioning. Int. J. Approx. Reason. 31(3), 157-192 (2002)

Mtlhlenbein, H., PaaG, G.: From recombination of genes to the estimation of distributions I. Binary para
meters. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P (eds.) Parallel Problem Solving
& o m Nature—PPSNIV, LNCS, vol. 1141, pp. 178-187. Springer, Berlin (1996)

Nilsson, D.: An efficient algorithm for Ending the M most probable configurations in probabilistic expert
systems. StaL Comput. 2,159-173 (1998)

Pearl, I.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-
mana, San Mateo (1988)

Pelikan, M.: Hierarchical Bayesian Optimization Algorithm. Toward a N e w Generation of Evolutionary
Algorithms. Springer, Berlin (2005)

Pelikan, M., Goldberg, D.E., Cantfi-Paz, E.: B O A : The Bayesian optimization algorithm. In: Banzhaf, W.,
Daida, I., Eiben, A.E., Garzón, M.H., Honavar, V, lakiela, M., Smith, R.E. (eds.) Proceedings of
the Genetic and Evolutionary Computation Conference GECCO-1999, vol. I, pp. 525-532. Morgan
Kaufmana, Orlando (1999)

Pelikan, M., Goldberg, D.E., Lobo, E: A survey of optimization by building and using probabilistic mod
els. Comput. Optim. App. 21(1), 5-20 (2002)

Peña, I., Lozano, I.A., Larrañaga, P.: Globally multimodal problem optimization via an estimation of
distribution algorithm based on unsupervised learning of Bayesian networks. Evol. Comput. 13(1),
43-66 (2005)

Robles, V, de Miguel, P., Larrañaga, P.: Solving the traveling salesman problem with EDAs. In: Lar
rañaga, P., Lozano, I.A. (eds.) Estimation of Distribution Algorithms. A New Tool for Evolutionary
Computation, pp. 227-238. Kluwer Academic, Boston (2002)

Robles, V., Peña, J.M., Pérez, M.S., et al.: GA-EDA: a new hybrid cooperative search evolutionary al
gorithm. In: Lozano, I.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a N e w Evolution
ary Computation. Advances in Estimation of Distribution Algorithms, pp. 187-200. Springer, Berlin
(2006)

Rodriguez, I., Moreno, I.M., Moreno, J.A.: Variable neighborhood tabu search and its application to the
median cycle problem. Eur. J. Oper. Res. 151(2), 365-378 (2003)

Voigt, C.A., Gordon, D.B., Mayo, S.L.: Trading accuracy for speed: a quantitative comparison of search
algorithms in protein sequence design. J. Mol. Biol. 299(3), 799-803 (2000)

Yanover, C , Weiss, Y.: Approximate inference and protein-folding. In: Becker, S., Thrun, S., Ober-
mayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 1457-1464. M I T
Press, Cambridge (2003)

Yanover, C , Weiss, Y: Approximate inference and side-chain prediction (2004a, submitted for publica
tion). Available online from: http://www.leibniz.cs.huji.ac.il/tr/963.pdf

Yanover, C , Weiss, Y: Finding the M most probable configurations using loopy belief propagation. In:
Thrun, S., Saul, L., Schólkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16,
M I T Press, Cambridge (2004b)

Zagalón, M.: The naive credal classifier. J. Stat. Plan. Inference 105, 5-21 (2002)
Zhou, A., Zhang, Q., lin, Y, et al.: A model-based evolutionary algorithm for bi-objective optimization. In:

Proceedings of the 2005 Congress on Evolutionary Computation CEC-2005, pp. 2568-2575. IEEE
Press, Edinburgh (2005)

http://www.leibniz.cs.huji.ac.il/tr/963.pdf

