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Abstract The problem retained for the ROADEF’99 international challenge was an
inventory management problem for a car rental company. It consists in managing a
given fleet of cars in order to satisfy requests from customers asking for some type
of cars for a given time period. When requests exceed the stock of available cars, the
company can either offer better cars than those requested, subcontract some requests
to other providers, or buy new cars to enlarge the available stock. Moreover, the cars
have to go through a maintenance process at a regular basis, and there is a limited
number of workers that are available to perform these maintenances.

The problem of satisfying all customer requests at minimum cost is known to be
NP-hard. We propose a solution technique that combines two tabu search procedures
with algorithms for the shortest path, the graph coloring and the maximum weighted
independent set problems. Tests on benchmark instances used for the ROADEF’99
challenge give evidence that the proposed algorithm outperforms all other existing
methods (thirteen competitors took part to this contest).
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1 Introduction

The problem retained for the ROADEF’99 international challenge was an inven-
tory management problem for a car rental company. A complete description of the
ROADEF’99 international challenge can be found in ROADEF (1999). We give be-
low a shorter description. The reader interested in a survey on inventory management
may refer to Silver et al. (1998).

A car rental company manages a stock of cars of different types. It receives re-
quests from customers asking for cars of specific types for a given time horizon.
Basically a request is characterized by its start and end times, by a required car type,
and by the number of required cars. All requests are supposed to be known for a given
time horizon (for example, a few months or a year). The satisfaction of all customer
requests is mandatory. If there are not enough cars available in stock, the company
can react in three different ways:

• it can offer an upgrade to the customer, which means that some desired cars are re-
placed by cars of a “better” resource type (e.g., larger, more comfortable and more
expensive cars). The customer of course receives a bill according to his request,
and the company has to pay for the upgrade cost;

• the company can decide to subcontract some requests to other providers, which is
generally a very expensive alternative;

• the third possibility is to purchase new cars, which then belong to the stock of the
company for the rest of the time horizon.

Each one of the above alternatives has a known cost, and the problem is to satisfy
all requests at minimum cost.

Notice that the set of cars assigned to a customer cannot be changed in the course
of its request. For example, suppose that customers X and Y both need a car of type A,
customer X from May 7 to 17, and customer Y from May 13 to 26. Assume also
there is only one car of type A in stock at this period. It is then forbidden to assign
the available car to X from May 7 to 17, and to Y from May 18 to 26, and to satisfy
customer Y from May 13 to 17 with another car (i.e., an upgrade, or a car obtained
from another provider). This would be too inconvenient for customer Y.

The problem is further complicated with constraints that impose to perform a
maintenance on each car on a regular basis. More precisely, a maximum time of use
without maintenance is given for each car type, and each maintenance is character-
ized by a duration and a number of workers needed to perform it. The company has a
fixed number of maintenance workers which means that the maintenances should be
scheduled so that the capacity of the workshop is never exceeded.

The overall problem is NP-hard in the strong sense (see ROADEF 1999). Thirteen
competitors took part to the ROADEF’99 challenge, and each one has developed a
heuristic algorithm to solve the problem. We propose in this paper a new heuristic
and show that it outperforms all existing algorithms.

The literature that considers the car rental business mainly deals with rev-
enue management and pool control systems (e.g., Edelstein and Melnyk 1997;
Geraghty and Johnson 1997; Pachon et al. 2003). Fink and Reiners (2006) have re-
cently proposed a model and a solution method for a car rental logistics problem that
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involves short-term decisions about the transportation and deployment of cars with
regard to optimizing fleet utilization while maintaining a high service level. Our pa-
per complements the above developments by proposing optimization techniques for
the assignment of cars to customers, taking into account maintenance constraints.

The paper is organized as follows. In the next section, we define the notation and
give a mathematical formulation of the problem. An overview of the proposed solu-
tion method is given in Sect. 3. Various subproblems are analyzed in Sect. 4, and we
propose integer linear models for some of them, while others are modeled as short-
est path, graph coloring, or maximum weighted independent set problems. Section 5
contains the description of our solution method, which combines two tabu search pro-
cedures with graph optimization techniques. Computational experiments on a set of
benchmark instances are reported and discussed in Sect. 6. Finally, some conclusions
are drawn.

2 Notation and formal description

The time horizon is a finite discrete interval, denoted H = [Start,End], the interval
unit being the day. It is assumed that the number W of workers that can simultane-
ously work on maintenances is constant during the whole time horizon H . At the
beginning of the time horizon, the cars in stock may have been used without main-
tenance, and some requests are possibly being handled. For the sake of simplicity,
we will not consider this initial state. Moreover, we suppose all costs to be constant
during the time horizon. These assumptions have no effect on the complexity of the
problem.

Let T be the set of car types. For two different car types t and t ′, we say that t is
an upgrade of t ′, and we write t � t ′, if any car of type t can be offered to a customer
requiring a car of type t ′. For a car type t ∈ T , we denote:

• C(t) the set of cars of type t available at the beginning of the time horizon;
• u(t) the maximum time of use that can separate two maintenances on a car of

type t ;
• m(t) the duration of a maintenance on a car of type t ;
• w(t) the number of workers required for a maintenance on a car of type t ;
• b(t) the maximum number of cars of type t that can be bought during the time

horizon;
• Fa(t) the fixed cost of assigning a car of type t to a customer;
• ka(t) the cost per day of the assignment of a car of type t to a customer;
• kb(t) the cost of buying a car of type t ;
• kd(t) the cost per day of a car of type t in stock (rented or not);
• ks(t) the cost per day of subcontracting a car of type t to another provider;
• km(t) the cost of a maintenance on a car of type t (this cost being typically much

smaller than the other costs).

Let R be the set of requests during the time horizon. For a request r ∈ R, we
denote:
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• α(r) and β(r) the start and end times of r (we suppose that both α(r) and β(r)

belong to the time horizon H ); also, we denote δ(r) = β(r)−α(r)+ 1 the number
of days of the request;

• t (r) the car type of the request, and T (r) the set of car types that can satisfy r (i.e.,
T (r) = {t (r)} ∪ {t ∈ T such that t � t (r)});

• n(r) the number of required cars.

When a car c is used to satisfy a request r , we say that c covers r . For a car type
t ∈ T , we denote R(t) the set of requests which can be covered with cars of type t

(i.e., R(t) = {r ∈ R such that t ∈ T (r)}), and for a day d ∈ H , we denote Rd(t) the
set of requests r ∈ R(t) with d ∈ [α(r),β(r)]. Finally, the type of a car c is denoted tc.

Four types of decisions must be taken to build a solution s, and these are repre-
sented by the four types of variables defined below:

• for a request r , we denote σr(s) the number of cars that are subcontracted to an-
other provider;

• for a car type t and a day d ∈ H , we denote Bt,d(s) the set of cars of type t bought
by the company at day d . Also, Ct,d(s) = C(t) ∪ (

⋃
d ′≤d Bt,d (s)) denotes the set

of cars of type t available in stock at day d ;
• for a request r and a car type t , we denote Ar,t (s) the set of cars of type t that are

assigned from the stock to request r (we suppose Ar,t (s) ⊆ Ct,α(r)(s)). Also, for a
car c, we denote Oc(s) the ordered set of requests covered by c in s;

• for a car c, we denote Mc(s) the ordered set of days at which a maintenance is
started on c, and Dc(s) the set of days at which a maintenance occurs on c. Hence,
d ∈ Dc(s) if and only if there exists a day d ′ ∈ Mc(s) with d ∈ [d ′, d ′ +m(tc)− 1].

The following constraints must be satisfied:

(C1) the cars taken from the stock to satisfy a customer’s request are of the desired
type or upgrades:

if |Ar,t (s)| > 0, then t ∈ T (r);
(C2) each customer receives the desired number of cars:

σr(s) +
∑

t∈T (r)

|Ar,t (s)| = n(r) for all r ∈ R;

(C3) at most b(t) cars of type t are purchased during the time horizon:
∑

d∈H

|Bt,d(s)| ≤ b(t) for all t ∈ T ;

(C4) a car cannot be assigned to two requests that intersect in time:

if Ar,t (s) ∩ Ar ′,t (s) 	= ∅ for r 	= r ′, then [α(r),β(r)] ∩ [α(r ′), β(r ′)] = ∅;
(C5) a car cannot be assigned to a request and maintained at the same time:

if c ∈ Ar,t (s), then [α(r),β(r)] ∩ [d, d + m(t) − 1] = ∅ for all d ∈ Mc(s);
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(C6) every car c has a maintenance after at most u(tc) days of effective use. Such
a constraint cannot be satisfied when a car c covers a request r with dura-
tion δ(r) > u(tc). In such a case, we only impose that a maintenance oc-
curs between the end of r and the beginning of the next request covered
by c (if any). Formally, let c be a car, let d and d ′ be two consecutive ele-
ments in Mc(s), and let R′ be the subset of requests r covered by c such that
[α(r),β(r)] ⊆ [d + m(tc), d

′[:
∑

r∈R′
δ(r) ≤ max

{
u(tc),max

r∈R′ δ(r)
}
;

(C7) the capacity of the maintenance workshop is never exceeded:

∑

c:d∈Dc(s)

w(tc) ≤ W for all d ∈ H.

There are five different costs associated with a solution s. The first one is the cost
of assigning cars from the stock:

f1(s) =
∑

r∈R

∑

t∈T (r)

|Ar,t (s)|(Fa(t) + δ(r)ka(t)).

The second one is the cost that the company has to pay for each car in stock (rented
or not):

f2(s) =
∑

t∈T
kd(t)

(

|H ||C(t)| +
∑

d∈H

(End − d + 1)|Bt,d(s)|
)

.

The third one is the subcontracting cost:

f3(s) =
∑

r∈R
ks(t (r))δ(r)σr (s).

The fourth one is the purchase cost:

f4(s) =
∑

t∈T

∑

d∈H

kb(t)|Bt,d(s)|.

The last one is the maintenance cost:

f5(s) =
∑

t∈T

∑

c∈Ct,End(s)

km(t)|Mc(s)|.

The cost f (s) to be minimized is the sum of these five functions (i.e., f (s) =∑5
i=1 fi(s)). As shown in ROADEF (1999), the problem of finding a solution that

satisfies all the above constraints with a minimum cost is NP-hard in the strong sense.
We call this problem the Car Fleet Management Problem, or CFMP for short.
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3 Overview

The proposed solution technique for the CFMP, which we call ACM (for Algorithm
for Car fleet management problem with Maintenance constraints), is rather complex.
Before getting into details, we give in this section an overview of the method and its
ingredients.

The general scheme of ACM is given in Fig. 1. It contains three main steps. An ini-
tial solution is generated at Step 1, using one of the proposed initialization procedures.
The two next steps are applied repeatedly until a time limit is reached. Step 2 tries to
improve the current solution without changing the set of purchased cars, while Step 3
generates a new solution with a different set of purchased cars. The stopping criteria
of ACM is a time limit which we fix to one hour, as imposed by the organizers of the
challenge.

The three steps of ACM use subroutines which we have developed for the solution
of various subproblems of the CFMP. Figure 2 illustrates how these subroutines are
used in ACM. The central rectangle with bold lines represents ACM while the three
steps are shown with dashed lines. The other small rectangles represent subroutines.
An arc from a box A to a box B means that A is used as a subroutine in B. We give
here below a short non formal description of each subroutine. More details will be
provided in the next sections.

• (IP1) is an integer linear program that models the CFMP without maintenance
constraints.

• (IP2) is an integer linear program for finding an optimal maintenance strategy,
assuming that the assignment of cars to the requests is fixed.

• Assume that the assignment of cars to the requests is fixed, and suppose that the
maintenance schedules are known for a set V of cars. MAINTENANCE is a pro-
cedure that determines, if possible, a feasible maintenance schedule of minimum
cost for a car c /∈ V , without modifying the maintenance schedules of the cars in V .

• Let Q be a subset of requests that can be satisfied with cars of type t ∈ T . If the
maintenance constraints are relaxed, then COLOR is a procedure that determines
the minimum number of cars of type t needed to cover all requests in Q.

• Let Q be a subset of requests that can be satisfied with �∗ cars of type t ∈ T ,
and assume that only � < �∗ cars of this type are available in stock, and that no
upgrade and no purchase is allowed. If the maintenance constraints are relaxed,
then SUBCONTRACT is a heuristic procedure that aims to determine a subset
Q′ ⊆ Q of minimum total subcontracting cost such that � cars are sufficient to

ACM: An algorithm for the CFMP
Repeat the following until a time limit is reached

1. Generate an initial solution s and set s∗ ← s;
2. Try to improve s without changing the set of purchased cars and update s∗;
3. Determine a solution s with a different set of purchased cars and go to 2.

Fig. 1 General scheme of the proposed solution technique
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Fig. 2 Overview of the proposed solution method

cover all requests in Q − Q′. If �∗ = � + 1 then the procedure always finds the
optimal solution.

• Consider a car c and a subset Q of requests which can be covered by c. Assume that
the maintenance schedules are known for a subset V of cars with c /∈ V . STABLE
is a heuristic procedure that aims to determine a subset Q′ ⊆ Q of maximum total
duration so that Q′ can be covered by c and a feasible maintenance schedule can
be found for c without changing those of the cars in V .

• INIT1 is an initialization procedure used at Step 1 of ACM. It first builds a solution
for the CFMP without maintenance constraints. The maintenance schedules are
then built by considering the cars c by non increasing order of the total duration
of the requests covered by c. Some requests are possibly subcontracted when no
feasible maintenance schedule can be found for a car.

• INIT2 is another initialization procedure used at Step 1 of ACM. It first orders the
cars so that cars with a high subcontracting cost and a low assignment cost appear
first in the order. Requests are then assigned to the cars according to this order,
using the STABLE procedure.

• BB is the algorithm proposed by Briant and Bouzgarrou (ROADEF 1999) for the
CFMP.

• PURCHASE is a procedure that determines the optimal purchase dates, assuming
that the number of purchased cars of each type is known.

• Let V be a set of cars that covers a set Q of requests, and for which a mainte-
nance schedule is known. Let Q′ ⊆ R − Q be a set of requests to be covered by
a car c /∈ V , and assume that no feasible maintenance schedule can be found for c

without exceeding the capacity W of the maintenance workshop (constraint (C7)).
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FEASIBLE is a procedure that determines a feasible maintenance schedule for c

by modifying the maintenance schedules and possibly subcontracting requests for
some cars in V .

• TABU1 is a tabu search algorithm (Glover and Laguna 1997), where a neighbor
s′ of a solution s is obtained by assigning a car c to a subcontracted request r .
To make such a change feasible, requests covered by c that overlap with r are
subcontracted, and the maintenance schedule for c is possibly modified.

• TABU2 is a tabu search algorithm that tries to reduce the total cost not only by as-
signing cars to subcontracted requests, but also by avoiding upgrades. A neighbor
s′ of a solution s is obtained by assigning a car of type t to a request r , where r is
subcontracted or covered by a car of type t ′ 	= t in s. To make such a change fea-
sible, we modify the sets of requests covered by the cars of type t (some requests
being moved from one car to another, or possibly subcontracted in s′), and also
possibly modify the maintenance schedules of these cars.

4 Subproblems

In this section, we study various subproblems of the CFMP and show how they can
be formulated with integer linear programs and graph models.

4.1 Integer linear programs

The CFMP without maintenance constraints (i.e., without constraints (C5), (C6)
and (C7)) can be formulated as an integer linear program as follows. In addition
to variables σr(s) that indicate the number of cars of type t (r) that are subcontracted
to another provider (see previous section), consider the following variables:

• For each pair (r, t) with r ∈ R(t), we define ar,t (s) as the number of cars of type
t that are assigned from the stock to satisfy request r (i.e., ar,t (s) = |Ar,t (s)|). We
do not consider the variables ar,t (s) with r /∈ R(t).

• For each car type t and each day d , we define bt,d(s) as the number of cars of type
t bought by the company at day d (i.e., bt,d(s) = |Bt,d(s)|).
The objective of the CFMP without maintenance constraints is to minimize∑4
i=1 fi(s). Notice that the cost

∑
t∈T kd(t)|H ||C(t)| in f2(s) is due to cars in stock

at the beginning of the time horizon, and can therefore not be avoided. By removing
this constant cost from the objective function, and by replacing |Ar,t | with ar,t (s)

and |Bt,d(s)| with bt,d(s), one gets the integer linear program (IP1) of Fig. 3 for the
CFMP without maintenance constraints.

Constraint (C1) (see previous section) is implicitly taken into account by the fact
that the variables ar,t (s) are not defined for r /∈ R(t). Constraint (1) of the above
integer linear program is equivalent to (C2), and constraint (2) is equivalent to (C3).
Constraint (3) imposes that there are enough cars in stock every day to satisfy the
requests.

The purchase strategy associated with the solution of (IP1) is to buy a set Bt,d(s)

of bt,d(s) new cars of type t at each day d ∈ H . An assignment of cars to the requests
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(IP1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑

t∈T
∑

r∈R(t)(Fa(t) + δ(r)ka(t))ar,t (s)

+ ∑
t∈T

∑
d∈H (kb(t) + kd(t))(End − d + 1)bt,d (s)

+ ∑
r∈R ks(t (r))δ(r)σr (s)

subject to
σr(s) + ∑

t∈T (r) ar,t (s) = n(r) ∀r ∈ R, (1)

∑
d∈H bt,d(s) ≤ b(t) ∀t ∈ T , (2)

∑
r∈Rd(t) ar,t (s) − ∑

d ′≤d bt,d ′(s) ≤ |C(t)| ∀t ∈ T , ∀d ∈ H (3)

all σr(s), ar,t (s) and bt,d(s) are integers.

Fig. 3 Integer linear program for the CFMP without maintenance constraints

satisfying constraint (C4) (i.e., the sets Ar,t (s)) can be obtained by applying the se-
quential coloring algorithm described in the next section. So consider now the sets
Ar,t (s) as fixed. We show how to determine the best maintenance strategy by solving
an integer linear program (IP2). We first need to define some notation.

• We denote C the set of cars in stock at day End. Hence, C = ⋃
t∈T Ct,End .

• We denote �(c) the set of days d at which a maintenance on c can start. Hence,
according to constraint (C5), d ∈ �(c) if and only if there is no request covered by
c during the time interval [d, d +m(tc)−1]. For each car c and each day d ∈ �(c),
we define xd,c = 1 if a maintenance on car c starts at day d , and xd,c = 0 otherwise
(i.e., xd,c = 1 if and only if d ∈ Mc(s)).

• Let Oc = {r1, . . . , rq} denote the ordered set of requests covered by c, and let Pc

denote the set of ordered pairs (i, j) with j > i and such that the total duration
of the requests ri , . . . , rj is strictly larger than u(tc) while the total duration of the
requests ri , . . . , rj−1 is smaller than or equal to u(tc). In case a request ri with
i < q has a duration δ(ri) > u(tc), then we also include the pair (i, i + 1) in Pc.
For every pair (i, j) ∈ Pc , constraint (C6) imposes a maintenance on c between
the end of ri and the beginning of rj . We therefore define �(i,j)(c) = [β(ri) + 1,
α(rj ) − m(tc)] ∩ �(c) and impose the start of at least one maintenance at a day
d ∈ �(i,j)(c).

• For a day d and a car c, we define dc = max{Start, d − m(tc) + 1}. A maintenance
can then occur at day d only if it was started during the time interval [dc, d].
Assuming that the sets Ar,t (s) are fixed, the integer linear program (IP2) of Fig. 4

has a feasible solution if and only if there is a maintenance strategy that satisfies con-
straints (C5), (C6) and (C7). Indeed, constraint (C5) is implicitly taken into account
by the fact that the variables xd,c are not defined for d /∈ �(c), and constraints (4)
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(IP2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑

c∈C
∑

d∈�(c) km(tc)xd,c

subject to
∑

d∈�(i,j)(c)
xd,c ≥ 1 ∀c ∈ C, ∀(i, j) ∈ Pc, (4)

∑
c∈C

∑d
d ′=dc

w(tc)xd ′,c ≤ W ∀d ∈ H. (5)

Fig. 4 Integer linear program for the maintenance strategy

Algorithm MAINTENANCE(V,Oc = {r1, . . . , rq})

1. Set i ← 1 and Mc ← ∅;
2. If δ(ri) > u(tc) then set p ← i + 1; else determine the smallest integer p

such that p = q + 1 or
∑p

�=i δ(r�) > u(tc);
3. If p ≤ q then set j ← p − 1 and go to 4; else STOP: return Mc;
4. If α(rj+1) − β(rj ) ≤ m(tc) then go to 6; else determine the day d ∈

[β(rj ) + 1, α(rj+1) − m(tc)] which minimizes
wd = maxd ′∈[d,d+m(tc)−1] Wd ′(V );

5. If wd + w(tc) > W then go to 6; else add d to Mc, set i ← j + 1, and go
to 2;

6. Set j ← j − 1; if j ≥ i then go to 4; else STOP: return (i,p).

Fig. 5 Finding the maintenance schedule for a single car c

and (5) of (IP2) correspond to constraints (C6) and (C7), respectively. Moreover, if a
feasible solution exists, then the optimal solution to (IP2) is an optimal maintenance
strategy (with Ar,t (s) fixed) since the objective of (IP2) is to minimize the mainte-
nance costs.

Finding an optimal maintenance schedule for a single vehicle is a much simpler
problem. More precisely, assume again that all sets Ar,t (s) are fixed and suppose that
the maintenance schedules are known for a set V of cars. Let c be a car not in V and
let Oc = {r1, . . . , rq} be the ordered set of requests covered by c. We consider the
problem of determining, if possible, a feasible maintenance schedule of minimum
cost for c without modifying the maintenance schedules of the cars in V . Let Wd(V )

denote the total number of workers which are already busy in maintaining cars of V

at day d . The algorithm MAINTENANCE in Fig. 5 produces two possible outputs: if
there exists a feasible maintenance schedule for c, then the algorithm returns an opti-
mal one Mc; otherwise, it returns a pair (i,p) with the meaning that no maintenance
can be scheduled between the end of ri and the beginning of rp , while there should
be one.
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Step 2 of MAINTENANCE takes care of the fact that a request ri possibly has a
duration δ(ri) > u(tc), in which case constraint (C6) imposes a maintenance between
the end of ri and the beginning of ri+1.

The choice made at Step 2 guarantees that as many requests as possible are satis-
fied before scheduling a maintenance for c. Hence, the obtained schedule (if any) has
a minimum maintenance cost. Notice that, at Step 4, we could have chosen any day
d with wd + w(tc) ≤ W . By choosing d so that the maximum value of Wd ′(V ) over
all d ′ ∈ [d, d + m(tc) − 1] is minimized, we try to balance the load of the workshop
during the time horizon.

Notice also that if V is empty (i.e., no maintenance has been scheduled yet), and
if the output of MAINTENANCE(∅,Oc) is a pair (i,p), then constraint (C6) cannot
be satisfied for c, and this does not depend on the number W of workers in the work-
shop. We say that the set Oc of requests covered by c is (C6)-feasible if and only if
MAINTENANCE(∅,Oc) produces a feasible maintenance schedule.

4.2 Graph models

In what follows, we find it convenient to replace every request r for nr cars by nr

requests for a car. This does not change the problem since there is no constraint
linking the different cars to be assigned to a request. As a consequence, variables
σr(s) are equal to one or zero, and we replace them by a set S(s) containing all
requests subcontracted to another provider.

4.2.1 A graph coloring problem

Let Q be a set of requests that we would like to satisfy with cars of type t ∈ T , and
assume that we want to use as few cars as possible. If the maintenance constraints
are relaxed, then this is a well-known interval scheduling problem (see Kolen et al.
2006 for a survey on this subject) that can be solved using a graph coloring algorithm.
More precisely, consider the graph GQ with vertex set Q, and where two vertices r

and r ′ are linked by an edge if and only if the intervals [α(r),β(r)] and [α(r ′), β(r ′)]
intersect. The considered problem then reduces to finding a coloring of the vertices
of GQ that uses as few colors as possible, and such that no two vertices linked by an
edge have the same color. Each color corresponds to a car.

The graph coloring problem is NP-complete for general graphs (Garey and John-
son 1979). However, the graph defined above belongs to the well-known class of
interval graphs (Golumbic 1980) and polynomial algorithms have been designed to
color the vertices of such graphs with a minimum number of colors. For example,
Gupta et al. (1979) and Kolen and Lenstra (1995) have described an O(nlogn) algo-
rithm (where n stands for the number of vertices) which is summarized in Fig. 6, and
where each color is represented by a strictly positive integer.

4.2.2 A shortest path problem

The next subproblem considers again a set Q of requests to be satisfied with cars
of a given type t ∈ T , but we assume here that we have only � cars of this type in
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Algorithm COLOR(GQ)

Repeat
Choose a non colored vertex r in GQ with minimum value α(r) (break ties
at random);
Color r with the smallest color not yet used on a vertex adjacent to r;

Until all vertices are colored.

Fig. 6 A coloring algorithm for interval graphs

stock, and that no upgrade and no purchase is allowed. If needed, some requests may
be subcontracted to another provider, but this should be done at minimum cost. The
maintenance constraints are relaxed here again.

Let ωd denote the number of requests r ∈ Q with d ∈ [α(r),β(r)]. It is well-
known that the size of a maximum clique (i.e., the maximum number of vertices
which are pairwise adjacent) in an interval graph is equal to the minimum number
of colors needed to color its vertices (Golumbic 1980). This property applied to GQ

means that the maximum value ωd over H is equal to the minimum number �∗ of
cars needed to satisfy all requests in Q (which can be determined with the above
COLOR algorithm). If � cars are sufficient to cover all requests in Q (i.e. �∗ ≤ �),
then no subcontracting is needed. Otherwise, we define an oriented graph �G(Q,�∗)
as follows:

• create a vertex r for every r ∈ Q such that there is a day d ∈ [α(r),β(r)] with
ωd = �∗, and add two vertices u and v corresponding to two artificial requests with
α(u) = β(u) = Start − 1 and α(v) = β(v) = End + 1;

• create an arc from a vertex r to a vertex r ′ if and only if α(r) < α(r ′) and [β(r) +
1, α(r ′) − 1] contains no day d with ωd = �∗ (notice that there is no arc leaving
the artificial vertex v);

• define (ks(t (r)) − ka(t))δ(r) − Fa(t) as the length of all arcs originating from
a vertex r 	= u (this value corresponds to the cost of subcontracting r instead of
covering it with a car of type t); the arcs originating from the artificial vertex u

have a length 0.

It then follows from the definition of �G(Q,�∗) that the optimal subcontracting
strategy for using only �∗−1 cars can be determined by finding a shortest path P from
u to v in �G(Q,�∗). The internal vertices of P are the requests to be subcontracted,
and the length of P is the cost of the corresponding subcontracting strategy. Since
�G(Q,�∗) has no circuit, a shortest path can be determined using a linear algorithm
(see for example Ahuja et al. 1993).

By construction, the remaining requests in Q (i.e., those which are not subcon-
tracted) can be covered with �∗ − 1 cars, and one can repeat this process until only �

cars are needed. This procedure, called SUBCONTRACT, is summarized in Fig. 7.
It produces two outputs: a set Q′ of requests to be subcontracted, and an assignment
of the remaining requests to the � available cars.
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Algorithm SUBCONTRACT(Q,�)

1. Set Q′ ← ∅ and �∗ ← maxd∈H ωd ; if �∗ ≤ � then go to 4;
2. Determine a shortest path P from u to v in �G(Q,�∗), add the internal vertices of

P to Q′, and remove them from Q;
3. If �∗ = � + 1 then go to 4; else set �∗ ← �∗ − 1 and go to 2;
4. Determine an optimal coloring o of GQ by applying COLOR(GQ) and STOP:

Q′ is the set of requests to be subcontracted and o corresponds to an assignment
of the remaining requests to the � available cars.

Fig. 7 Subcontracting strategy

4.2.3 A maximum weighted stable set problem

Consider a car c and a subset Q ⊆ R(tc) of requests which can be covered by c. The
last subproblem studied in this subsection is to assign requests from Q to c so that
the total duration of the assigned requests is maximum. If we relax the maintenance
constraints, then an optimal solution can be determined in polynomial time. Indeed,
the problem is equivalent to finding a stable set (i.e., a set of pairwise non adjacent
vertices) of maximum weight in GQ, where the weight of a vertex is the duration
of its corresponding request. Finding a stable set of maximum weight in a graph is
equivalent to finding a clique of maximum weight in the complementary graph. Since
the complementary graph of GQ is a comparability graph (Golumbic 1980), and since
linear algorithms are known for finding cliques of maximum weight in comparability
graphs (see for example Shamir 1994), this problem can be solved in linear time.

The problem is much more difficult if the maintenance constraints have to be sat-
isfied. More precisely, assume that the maintenance schedules are known for a subset
V of cars with c /∈ V , and suppose that we want to assign requests from Q to c so
that the total duration of the assigned requests is maximum, and a feasible mainte-
nance schedule can be found for c without changing those of the cars in V . Since no
polynomial algorithm is known for this problem, we propose a heuristic procedure,
described in Fig. 8, that produces a subset Q′ of requests to be covered by c. It uses
the notation Qr for the subset of requests in Q that overlap with r (i.e., r ′ ∈ Qr if
and only if r ∈ Q and [α(r),β(r)] ∩ [α(r ′), β(r ′)] 	= ∅).

The choice made at Step 4 is to favor requests with a long duration and which over-
lap with requests having a small total duration (since these will be removed from Q).

5 An algorithm for the CFMP

In this section, we describe the proposed algorithm, called ACM, for the solution of
the CFMP. It uses the subroutines of the previous sections (see Fig. 2 of Sect. 3) as
well as other procedures described below. The general scheme of ACM is shown in
Fig. 1 of Sect. 3. In the next subsections, we give more details for each step of this
general scheme.
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Algorithm STABLE(V,Q)

1. Set Q′ ← ∅;
2. For all r ∈ Q do

If MAINTENANCE(V,Q′ ∪ {r}) does not produce a feasible schedule then
remove r from Q;

3. If Q = ∅ then STOP: Q′ is the set of requests to be covered by c;
4. Choose r ∈ Q with maximum value δ(r)∑

r′∈Qr
δ(r ′) ;

5. Set Q′ ← Q′ ∪ {r}, remove {r} ∪ Qr from Q, and go to 2.

Fig. 8 Algorithm for a stable set of maximum weight

5.1 Initial solution

We propose two different procedures for generating an initial solution. Procedure
INIT1 first generates a solution s that satisfies constraints (C1) to (C4) by solving
(IP1) and applying procedure COLOR (see Sect. 4.2.1). The set of purchased cars
is then considered as fixed and we denote Oc the ordered set of requests covered by
car c. The maintenance schedules are then built by considering the cars c by non
increasing order of the total duration of the requests in Oc . For each car c, we apply
procedure MAINTENANCE(V,Oc) of Sect. 4.1, where V is the set of cars preceding
c in the above order (i.e., the set of cars for which a maintenance schedule is already
known). If MAINTENANCE(V,Oc) returns a pair (i,p), we remove from Oc =
{r1, . . . , rq} the request with smallest duration among {ri, . . . , rp−1} and repeat this
process until a feasible maintenance schedule can be found for c. The procedure is
described in Fig. 9.

The second initialization procedure builds a solution with no upgrade and no pur-
chase. It considers the cars c in stock by non increasing order of ks(tc) − ka(tc).
Hence, we first consider cars with a high subcontracting cost and a low assignment
cost. A schedule for each car is built using procedure STABLE (see Sect. 4.2.3), as
described in Fig. 10.

5.2 Improvement procedures

We now describe several improvement procedures used at Step 2 of ACM. Two of
them are tabu search algorithms that follow the general scheme of Fig. 11, where
N(s) denotes the neighborhood of a solution s, which is defined as the set of neighbor
solutions obtained from s by performing a local change, called move, and TL is a list
of forbidden moves. A more detailed description of tabu search and its concepts can
be found in Glover and Laguna (1997).

The two tabu search algorithms we have developed share some common features.
For example, their tabu list TL contains requests with the meaning that it is forbidden
for several iterations to remove them from the cars covering them. Also, a neighbor
solution is obtained for both algorithms by modifying the set S(s) of subcontracted
requests, the assignments Ar,t (s) of requests to cars, and the maintenance schedules
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Algorithm INIT1

1. Solve (IP1); buy a set Bt,d(s) of bt,d(s) new cars of type t at each day d ∈ H

(where the values bt,d(s) come from the solution of (IP1));
For all t ∈ T do
(a) let Qt denote the set of requests to be covered by cars of type t according to

the output of (IP1);
(b) apply COLOR(GQt ) to determine an assignment of cars to the requests in Qt ;
Subcontract all non covered requests and let s denote the resulting solution sat-
isfying constraints (C1) to (C4); set V ← ∅ and let Oc denote the ordered set of
requests covered by a car c in s;

2. Sort the cars by non increasing order of the total duration of the requests in Oc;
3. Consider each car c according to the above order and build a feasible maintenance

schedule for c as follows:
(a) let Oc = {r1, . . . , rq}; if the output of MAINTENANCE(V,Oc) is a pair (i,p)

then choose rj in {ri, . . . , rp−1} with minimum value δ(rj ), transfer rj from
Oc to the set S(s) of subcontracted requests, and repeat 3a; else fix the ob-
tained maintenance schedule for c in s, add c to V , and go to 3b;

(b) if c is the last car in the ordered list then STOP; else go to Step 3a and consider
the next car.

Fig. 9 First generator of an initial solution

Algorithm INIT2

1. For all t ∈ T do set Qt ← {r with t (r) = t};
Sort the cars c ∈ ⋃

t∈T C(t) in non increasing order of ks(tc) − ka(tc);
2. Consider the cars c according to the above order and build a feasible schedule for

each of them as follows;
(a) apply procedure STABLE(V,Qtc ) to determine the set Oc of requests as-

signed to c;
(b) remove Oc from Qtc ;

3. Set S(s) ← ⋃
t∈T Qt (i.e, the set of requests not covered by any car).

Fig. 10 Second generator of an initial solution

Mc(s). However, all neighbor solutions have the same set C of purchased cars, and
we denote by C = ⋃

t∈T Ct,End(s) the set of cars in stock at day End. While C does
not change, the cars can be bought as late as possible to reduce the storage costs.
More precisely, let p(t) = |Ct,End(s)| − |C(t)| denote the number of purchased cars
of type t , let Oc(s) denote the set of requests covered by c in s, and let ec(s) denote
the earliest start time α(r) of a request r ∈ Oc(s). The optimal purchase dates for
s are determined with the very straightforward PURCHASE procedure described in
Fig. 12.
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Tabu Search

Choose an initial solution s; set TL ← ∅ (tabu list); set sbest ← s (best solution);
Repeat the following until a stopping criterion is met

1. Determine a best solution s′ ∈ N(s) such that either s′ is obtained from s by
performing a move m /∈ TL or s′ is better than sbest;

2. If s′ is better than sbest then set sbest ← s′;
3. Set s ← s′ and update TL.

Fig. 11 General scheme of a tabu search

Procedure PURCHASE(s)

For all car types t ∈ T do
(a) Set Bt,d = ∅ for all days d ∈ H ;
(b) Determine the set E of p(t) cars c ∈ Ct,End(s) with largest value ec(s) (ties

are broken randomly);
(c) Set Bt,ec(s) ← Bt,ec(s) ∪ {c} for every car c ∈ E.

Fig. 12 Optimization of the purchase dates

Procedure Neighborhood_1(t, s)

1. Set N1
t (s) ← ∅;

2. For all requests r ∈ S(s) with t (r) = t and all cars c ∈ Ct,End(s) do
(a) Set Q = {r ′ ∈ Oc(s) with [α(r),β(r)] ∩ [α(r ′), β(r ′)] 	= ∅};
(b) Set Oc(s

′) ← (Oc(s) ∪ {r}) − Q and S(s′) ← (S(s) − {r}) ∪ Q;
(c) If MAINTENANCE(C −{c},Oc(s

′)) produces a feasible maintenance sched-
ule, then fix it for c, apply PURCHASE(s′), and add the so obtained new
solution to Nt

1(s).

Fig. 13 First neighborhood

Our first tabu search algorithm, called TABU1(t), focuses on a given type t ∈ T
of cars. In order to build a neighbor solution s′ from s, we first choose a request
r ∈ S(s) with t (r) = t and a car c in Ct,End(s), and cover r with c. We then subcon-
tract all requests r ′ currently covered by c such that [α(r),β(r)] ∩ [α(r ′), β(r ′)] 	= ∅.
The next step consists in rescheduling the maintenances on c by applying the MAIN-
TENANCE procedure. If no feasible maintenance schedule can be found, then the
neighbor s′ is not considered. The set of so obtained neighbors of s is denoted Nt

1(s),
and its generation is summarized in Fig. 13.

When a move is performed from the current solution s to a neighbor s′ ∈ N1
t (s),

we introduce in TL the request r that was in S(s), and is now in Oc(s
′).
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The second tabu search algorithm, called TABU2, performs much more complex
moves. It tries to reduce the total cost not only by assigning subcontracted requests
to cars, but also by avoiding upgrades. We first describe a procedure which builds a
feasible maintenance schedule for a car c given a (C6)-feasible ordered set Oc(s) of
requests covered by c. Such a construction may involve changes in the sets Mc′(s)
and Oc′(s) of other cars c′.

Consider a scheduled maintenance m for a car c, and let r and r ′ be the two
requests surrounding m (i.e., r and r ′ are consecutive in Oc(s) and m intersects
[β(r) + 1, α(r ′) − 1]). We define r(c,m)(s) as the request among r and r ′ which in-
duces the smallest increase in cost if it is subcontracted instead of being covered by c.
More formally, r(c,m)(s) = r if (ks(t (r))− ka(t))δ(r) < (ks(t (r

′))− ka(t))δ(r
′), else

r(c,m)(s) = r ′. The solution obtained from s by transferring r(c,m)(s) from Oc(s) to
the set S(s) of subcontracted requests is denoted s ⊕1 (c,m). Recursively, if c con-
tains two requests surrounding m in s ⊕� (c,m), then we define s ⊕�+1 (c,m) =
(s ⊕� (c,m)) ⊕1 (c,m). We also denote s ⊕0 (c,m) = s.

Assume that a feasible maintenance schedule has already been built for a set
V ⊆ C − {c} of cars, let Oc(s) = {r1, . . . , rq}, and suppose that the output of
MAINTENANCE(V,Oc(s)) is a pair (i,p) (meaning that no maintenance can be
scheduled on c between the end of ri and the beginning of rp). Let Vp be the
set of cars c′ in V with at least one maintenance mc′ intersecting the interval
[β(rp−1)+ 1, α(rp)− 1], and such that MAINTENANCE(V,Oc(s)) produces a fea-
sible maintenance schedule for c if mc′ is removed from c′. In order to allow the
schedule of a maintenance on c between rp−1 and rp , we remove requests around
mc′ for a car c′ in Vp . This may involve modifications of the maintenance schedules
of other cars in Vp .

More precisely, we denote IP3(s, c,p,V ) the integer linear program obtained
from (IP2) by considering only the cars in V , by fixing the maintenance sched-
ules for the cars in V − (Vp ∪ {c}) (i.e., xd,c′ = 1 for all c′ ∈ V − (Vp ∪ {c}) and
for all d ∈ Mc′(s)), and by replacing Oc(s) with {r1, . . . , rp} (hence no mainte-
nance is scheduled for c after rp). The optimal value of IP3(s, c,p,V ) is denoted
g(s, c,p,V ).

Procedure FEASIBLE in Fig. 14 solves IP3(s⊕� (c′,mc′), c,p,V ) with increasing
values of �, until a maintenance schedule can be found for c up to request rp . Then
MAINTENANCE(V,Oc(s)) is again applied with Oc(s) = {r1, . . . , rq}. If the output
is a feasible maintenance schedule for c, then the algorithm stops, else the above
process is repeated with the new output (i,p) of MAINTENANCE(V,Oc(s)).

Observe that FEASIBLE is a finite procedure. Indeed, notice first that if s ⊕�

(c′,mc′) does not have two requests surrounding mc′ , then mc′ can be removed from
c′ and a feasible maintenance schedule can then be obtained for c, by definition of Vp .
Hence, � cannot be larger than |Oc′(s)|. Also, the successive values of p in Step 2 are
strictly increasing since the schedule found at Step 4 is feasible for c up to rp .

We can now describe the construction of the second neighborhood N2(s). For a
request r and a car type t ∈ T (r) with Ar,t (s) = ∅, we build a neighbor solution
of s by first removing r from S(s) if r is subcontracted in s, or from Oc(s) if r

is currently covered by c in s. Let Q denote the set of requests covered by cars of
type t . We apply SUBCONTRACT(Q ∪ {r}, |Ct,End(s)|) (see Sect. 4.2) to determine
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Procedure FEASIBLE(s,V , c)

1. Apply MAINTENANCE(V,Oc(s)); if the output is a feasible maintenance
schedule for c then STOP: add this schedule to c and return the so obtained solu-
tion as output;

2. Let (i,p) be the output of MAINTENANCE(V,Oc(s)); determine the set Vp

of cars c′ in V having at least one maintenance mc′ that intersects the interval
[β(rp−1) + 1, α(rp) − 1], and such that MAINTENANCE(V,Oc(s)) produces a
feasible maintenance schedule for c if mc′ is removed from c′; set � ← 0;

3. If there is no car c′ ∈ Vp such that IP3(s ⊕� (c′,mc′), c,p,V ) has a feasible
solution, then set � ← � + 1 and repeat 3;

4. Choose a car, say c∗, which produces a feasible solution with minimum cost
g(s ⊕� (c∗,mc∗), c,p,V ), set s ← s ⊕� (c∗,mc∗) and go to 1.

Fig. 14 Finding a feasible maintenance schedule for a car c

a subset of requests which can be covered with the |Ct,End(s)| cars of type t in stock,
without considering the maintenance constraints. We denote s′ the resulting solu-
tion.

If a car c′ with Oc′(s′) = {r1, . . . , rq} is not (C6)-feasible in s′, then let (i,p) be the
output of MAINTENANCE(∅,Oc′(s′)). We artificially increase the duration of rp−1

and rp so that these two requests overlap and must therefore be covered by different
cars. A new assignment of the requests covered by the cars of type t is then obtained
by applying again the SUBCONTRACT procedure. This is repeated until all cars of
type t cover a (C6)-feasible set of requests. We then use procedure FEASIBLE to
build a feasible maintenance schedule for all cars.

We finally try to avoid upgrades and subcontracted requests by making simple in-
sertions, even if this induces additional maintenances on several cars. The reason for
such final modifications is that the maintenance costs are typically much smaller than
the upgrade and subcontracting costs. All this process is described in more details in
procedure Neighborhood_2(s) of Fig. 15, where L denotes the set of requests with
an artificially modified duration and C = ⋃

t∈T Ct,End(s) is the set of cars in stock at
day End.

Let Q′ ⊂ Q ∪ {r} be the subset of requests that procedure SUBCONTRACT
chooses to subcontract at Step 2b. In order to have r /∈ Q′ (since the basic idea of
this second neighborhood is to cover an additional request r with a car of type t) and
Q′ ∩TL = ∅ (since tabu requests should not be subcontracted), the shortest path prob-
lems are solved in the graph obtained from �G(Q ∪ {r}, �∗) by removing the vertices
in {r} ∪ (TL ∩ Q).

Also, as explained in Sect. 4.2, �G(Q ∪ {r}, �∗) contains an arc from a vertex r ′ to
a vertex r ′′ if and only if α(r ′) < α(r ′′) and [β(r ′) + 1, α(r ′′) − 1] contains no day
where �∗ requests of Q ∪ {r} overlap. We use the modified durations of r ′ and/or r ′′
if they belong to the list L. However, we compute the cost (ks(t (r

′) − ka(t))δ(r
′) −

Fa(t) of an arc leaving r ′ by using the original durations (since we want to know the
real cost impact of subcontracting r ′).
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Procedure Neighborhood_2(s)

1. Set N2(s) ← ∅ and L ← ∅;
2. For all r ∈ R and t ∈ T (r) such that Ar,t (s) = ∅ do

(a) Remove r from S(s) if r is subcontracted in s, or from Oc(s) if r is covered
by a car c in s;

(b) Let Q be the set of requests covered by cars of type t in s; apply
SUBCONTRACT(Q ∪ {r}, |Ct,End(s)|) and let s′ denote the resulting solu-
tion; if all cars in s′ cover a (C6)-feasible set of requests then go to 2d;

(c) Consider a car c′ ∈ Ct,End(s) which covers a (C6)-infeasible set
Oc′(s′) = {r1, . . . , rq} of requests, and let (i,p) be the output of
MAINTENANCE(∅,Oc′(s′));

• set x ← 1
2 (α(rp) − β(rp−1));

• set β(rp−1) ← β(rp−1) + �x� and α(rp) ← α(rp) − �x�;
• add rp−1 and rp to L and go to 2b;

(d) Give back the original durations to all requests r ′ ∈ L and let V =
{c1, . . . , ck} be the set of cars of type t ; set Mc′(s′) = Mc′(s) for all cars
c′ ∈ C − V ;

(e) For i = 1 to k do

apply FEASIBLE(s′, C −V, ci); remove ci from V and set s′ equal to the
resulting solution;

(f) For every subcontracted request r ′ in s′ do
if there is a car c′ ∈ Ct,End(s) with t ∈ T (r ′) which does
not cover any request overlapping with r ′, and such that
MAINTENANCE(C − {c′},Oc′(s′) ∪ {r ′}) produces a feasible mainte-
nance schedule for c′, then add r ′ to Oc′(s′) and update the maintenance
schedule for c′ according to the output of MAINTENANCE;

(g) For every request r ′ covered in s′ by a car c′ with tc′ 	= t (r ′) do
if there is a car c′′ ∈ Ct(r ′),End(s) which does not cover any request over-
lapping with r ′, and such that MAINTENANCE(C −{c′′},Oc′′(s′)∪{r ′})
produces a feasible maintenance schedule for c′′, then transfer r ′ from
Oc′(s′) to Oc′′(s′) and update the maintenance schedule for c′′ according
to the output of MAINTENANCE;

(h) Apply PURCHASE(s′) and add the resulting solution to N2(s).

Fig. 15 Second neighborhood

To complete this section, we finally describe Step 2 of ACM in Fig. 16. It uses two
parameters MAX1 and MAX2 that limit the number of iterations performed without
improvement of the best solution sbest encountered so far. Parameter LIM at Step 4
limits the time spent trying to improve the maintenance schedules. Notice that s∗
denotes the best solution encountered by ACM, using any purchase strategy, while
sbest is the best solution found during one visit of Step 2 of ACM.
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Step 2 of ACM

1. Apply TABU2 until MAX2 iterations have been performed without improvement
of sbest;

2. For all t ∈ T do
apply TABU1(t) with sbest as initial solution, until MAX1 iterations have been
performed without improvement of sbest;

3. If sbest was modified during Steps 1 and/or 2 then go to 1;
4. Solve (IP2) with a time limit of LIM seconds to possibly obtain a better mainte-

nance schedule for sbest, and update sbest if it has been improved;
5. If sbest is better than s∗ then set s∗ ← sbest.

Fig. 16 Step 2 of ACM

5.3 Modification of the purchases

The tabu search procedures described in the previous subsections work with a fixed
set of purchased cars. We now explain how to modify that set. Each time we enter
Step 3 of ACM, we either buy one new car, or we remove a car from the set of
purchased cars.

• To evaluate the cost of buying a new car c of type t , we generate a solution s from
sbest by adding c to Ct,End(sbest), setting Oc(s) = ∅, and then applying TABU2 with
parameter MAX3 instead of MAX2, and then TABU1(t) (with parameter MAX1).
We choose MAX3 very small when compared to MAX2 (more details will be given
in the next section).

• If C(t) ⊂ Ct,End(sbest) for a car type t , we evaluate the cost of not buying a car
of type t by first choosing c ∈ Ct,End(sbest) with minimum total duration of the
requests covered by c. We then generate a solution s from sbest by subcontracting
all requests covered by c (i.e., we add Oc(sbest) to S(sbest)) and removing c from
Ct,End(sbest). We finally apply TABU2 on the resulting solution with parameter
MAX3 instead of MAX2, and then TABU1(t) (with parameter MAX1).

Among all these solutions, we choose one with minimum cost and use it as initial
solution when entering Step 2 of ACM again. On the one hand, if this best solution
is obtained by purchasing a new car of type t , we then forbid for 5 iterations of ACM
to remove a car of type t from the set of purchased cars. On the other hand, if the
new solution is obtained by removing a car of type t from the set of purchased cars,
we then forbid for 5 iterations of ACM to buy a new car of type t . All this process is
summarized in Fig. 17.

6 Computational experiments

In this section we report the computational experiments we have made on the set of
16 benchmark instances of the ROADEF’99 international challenge. We compare our
results with those obtained by the competitors of the challenge.
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Step 3 of ACM

1. Do the following for all t ∈ T such that no car of type t was removed from the
set of purchased cars during the last 5 iterations of ACM:

create s from sbest by adding a new car c to Ct,End(sbest) and setting Oc(s) ←
∅; apply TABU2, starting from s, with parameter MAX3 instead of MAX2;
apply TABU1(t) starting from the resulting solution (with parameter MAX1);
if the resulting solution s has a cost f (s) < BestCost then set BestCost ←
f (s) and BestSolution ← s;

2. Do the following for all car types t such that C(t) ⊂ Ct,End(sbest) and no car of
type t was bought during the last 5 iterations of ACM:

choose a car c of type t with minimum total duration of the requests covered
by c; create s from sbest by adding Oc(sbest) to S(sbest) and removing c from
Ct,End(sbest); apply TABU2, starting from s, with parameter MAX3 instead of
MAX2; apply TABU1(t) starting from the resulting solution (with parameter
MAX1);
if the resulting solution s has a cost F(s) < BestCost then set BestCost ←
F(s) and BestSolution ← s;

3. Set s ← BestSolution and use s as initial solution for TABU2 in Step 2 of ACM.

Fig. 17 Step 3 of ACM

6.1 Existing algorithms

Among the thirteen competitors, only the four best teams have given a complete
description of their solution method. We summarize below each of these four algo-
rithms. More detailed descriptions (but no publication to our knowledge) of these
algorithms can be found in ROADEF (1999).

The winners of the contest are Briant and Bouzgarrou. Their algorithm has 6 steps.
In the first step, they solve a linear program similar to (IP1) that produces an initial
solution which satisfies constraints (C1) to (C4). In a second step, they make each car
(C6)-feasible by subcontracting some requests, if necessary. The third step consists in
finding a feasible maintenance schedule for each car. Here again, some requests are
possibly subcontracted to make this possible. In the fourth step, they try to reduce the
costs by adding a subcontracted request r to a car c, and removing from c all requests
that overlap with r . Such a change is done only if a feasible maintenance schedule can
be found for c. This is similar to our first neighborhood N1

t (s), but they move to such
a neighbor solution only if it has a better cost than the original solution. The fifth step
consists in optimizing the purchase dates as in our PURCHASE procedure. They also
decide to subcontract all requests covered by a purchased car if the resulting solution
(with one car less) has a smaller cost. Finally, if additional cars can still be bought,
they try to cover some subcontracted requests with new cars, if this leads to a better
solution.

Asdemir, Karslioğlu, Gürbüz, and Ünal have designed an algorithm that combines
three procedures. The first one constructs a solution with a fixed set of purchased cars,
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and with fixed dates of purchase. There is initially no purchase and the requests are
ordered by non decreasing starting times. Each request r is then considered according
to the above order, and assigned, if possible, to an available car c of type tc ∈ T (r)

so that the total cost is minimized and no maintenance constraint is violated. If no
assignment is possible then the request is subcontracted. The second procedure tries
to reduce the subcontracting costs by exchanging a subcontracted request r with a
request r ′ covered by a car c of type tc ∈ T (r). This is done only if a feasible main-
tenance schedule can be found for c and the total cost decreases. Such an exchange
is a special case of our first neighborhood N1

t (s) where the subcontracted request r

can be added to c only if it overlaps with at most one request covered by c. The third
procedure evaluates the cost of buying a new car of type t , if the limit b(t) is not
yet attained. This is done by fixing a purchase date for a car of type t at the starting
time of the first subcontracted request r with t (r) = t , and by using the two previ-
ous procedures to generate a solution with this new set of purchases. All car types
t are evaluated, and if such a purchase improves the current best solution, then it is
implemented.

Bayrak has developed a three phase heuristic. He first orders the car types so that
t appears before t ′ if t � t ′. He then considers each car type t according to this
order, and assigns as many requests r with t (r) = t to cars of type t . This is done
car by car. More precisely, let Rt = {r with t (r) = t}. The procedure first determines
a subset Q of Rt with longest total duration which can be covered by a car without
violating constraints (C4), (C5) and (C6). This is repeated for the second car with the
remaining requests in Rt , and so on until all requests of Rt are assigned. This gives
a partition (Q1, . . . ,Qp) of Rt . If p > |C(t)|, then the first sets Q1, . . . ,Q|C(t)| are
covered by the |C(t)| cars of type t available in stock. For each additional set Qi , a
new car is bought if the limit b(t) is not yet reached and if the cost induced by such
a purchase is smaller than the cost of subcontracting all requests in Qi . The second
phase of the algorithm consists in scheduling the maintenances on the cars. This is
done by considering the cars in the same order as above. When no feasible schedule
can be found for a car, requests are subcontracted until constraint (C7) is satisfied.
The third phase consists in trying to replace subcontracted requests r with upgrades.
This is only done if a feasible maintenance schedule can be found and the total cost
decreases.

Dhaenens-Flipo and Durand have also developed a three phase heuristic. In the
first phase, they order the car types t by non increasing subcontracting cost. They then
consider each car type t according to this order, and assign requests from Rt (defined
as above) to cars of this type so that the total duration of the assigned requests is
maximized. The maintenance constraint (C6) is partially taken into account at this
stage by imposing that two requests r and r ′ having a total duration δ(r) + δ(r ′) >
2
3u(t) and such that (α(r ′) − β(r)) ≤ m(t) should not be covered by the same car.
The number of available cars is supposed equal to b(t) + |C(t)|. This problem is
formulated as an integer linear program. A maintenance schedule is then built for
each car, and requests are subcontracted if necessary. In a second phase, they decide to
subcontract all requests covered by a purchased car if the resulting solution (with one
car less) has a smaller cost. The third phase consists in trying to replace subcontracted
requests r with upgrades. This is only done if a feasible maintenance schedule can be
found and the total cost decreases.
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Notice that none of the above four algorithms uses a meta-heuristic (e.g. tabu
search, simulated annealing, genetic or ants algorithms, adaptive memory program-
ming).

6.2 Comparisons

In this section, we compare our results with those obtained using the above four
algorithms. All tests are made on the sixteen instances used in the challenge and
which are derived from real-world problems. The name of an instance is coded with
a quadruplet (x, y, z,w), where x is the number |R| of requests, y is the number |T |
of car types, z is the capacity W of the workshop, and w is equal to b if purchases
are allowed, and to nb otherwise. So, for example, the instance (80,8,2, b) has 80
requests, 8 car types, 2 workers available for the maintenance, and purchases are
allowed. The sixteen benchmark instances are divided into two groups depending
whether purchases are allowed or not. For each instance without purchase (i.e., b(t) =
0 for all car types t), there is a corresponding instance with possible purchase. For
example, the instances (80,8,2, nb) and (80,8,2, b) differ only in the possibility of
buying new cars for the second one. The time horizon of all instances is [0,730]
corresponding to a period of 2 years.

We have run our algorithms with the time limit equivalent to one hour on a PC
Pentium Pro 200 MHz with 64 Mb memory, as imposed by the organizers of the chal-
lenge. The integer linear programs (IP1), (IP2), and (IP3) are solved using CPLEX
8.1. We have made some preliminary tests to determine the length of the tabu lists
and the maximum numbers of iterations without improvement of sbest. On the basis of
these tests, we use MAX1 = 10,000, MAX2 = 100, and MAX3 = 40, and |TL| is gen-
erated randomly at each iteration in the interval [1,12] for TABU1, and in the interval
[1,40] for TABU2. Also, since TABU2 is relatively slow, we only generate 30% of
the neighbors in N2(s), these being chosen randomly. Finally, we use LIM = 10 at
Step 4 of Fig. 15.

The results are shown in Tables 1 and 2. The first table contains the results for
the instances without purchase, while the second one is for the other instances. The
column labeled Best contains the best known solution for each instance. We put an
asterisk when we have been able to strictly improve the previous best known solution,
or when we could equal it (without of course using it as initial solution for ACM).
Some of these best results have been obtained when using different parameters from
those mentioned above (for tuning purposes) or by running our algorithms for more
than 1 hour. The next 4 columns contain the relative error with respect to Best ob-
tained by the 4 methods described in the previous section. These columns are labeled
with the first letter of the names of the authors. So, for example, the algorithm pro-
posed by Briant and Bouzgarrou is labeled BB. The next three columns contain the
relative error with respect to Best obtained with ACM with three different initial so-
lutions. We either start with INIT1 (column ACM-1), with INIT2 (column ACM-2),
or with the solution produced by the BB algorithm (column ACM-BB). For each in-
stance, ten runs of our algorithms have been executed, and we report average results.
The last line of each column indicates average results.

Since ACM was run ten times on each instance, we also report in Table 3 the worst
and best solutions obtained with the three different initial solutions. Again, results are
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Table 1 Results for the instances without purchase

Instance Best BB AGHKU H DD ACM-1 ACM-2 ACM-BB

(80,8,2,nb) 1162285∗ 0.00% 0.05% 1.31% 8.47% 0.00% 0.00% 0.00%

(150,7,2,nb) 3280230∗ 0.87% 5.85% 5.03% 9.73% 0.00% 0.00% 0.00%

(160,12,2,nb) 3333599∗ 14.63% 19.68% 29.56% 20.51% 0.81% 0.42% 0.32%

(200,12,2,nb) 5450785∗ 7.77% 22.56% 25.52% 26.02% 2.59% 3.01% 1.87%

(200,7,2,nb) 5156915∗ 6.36% 12.61% 21.02% 31.93% 3.62% 2.28% 1.85%

(200,7,4,nb) 4558728∗ 0.00% 0.66% 3.26% 14.45% 0.00% 0.00% 0.00%

(210,9,2,nb) 5810288∗ 5.67% 10.76% 18.48% 27.11% 2.42% 2.37% 2.07%

(210,9,4,nb) 5135237∗ 1.82% 1.44% 3.46% 13.09% 0.12% 0.04% 0.04%

Average 4236008 4.64% 9.20% 13.46% 18.91% 1.20% 1.02% 0.77%

Table 2 Results for the instances with purchase

Instance Best BB AGHKU H DD ACM-1 ACM-2 ACM-BB

(80,8,2, b) 1145181∗ 0.00% 1.55% 2.82% 7.23% 0.04% 0.02% 0.00%

(150,7,2, b) 2811138 0.00% 9.40% 3.98% 13.23% 0.01% 0.01% 0.00%

(160,12,2, b) 3064397∗ 11.99% 29.40% 26.08% 21.98% 1.47% 1.22% 1.09%

(200,12,2, b) 4517706∗ 12.42% 34.97% 35.93% 38.13% 4.88% 13.80% 2.25%

(200,7,2, b) 4990499∗ 6.88% 15.36% 27.76% 31.38% 4.98% 4.18% 3.19%

(200,7,4, b) 4092002∗ 0.00% 3.00% 3.46% 12.76% 0.01% 0.01% 0.00%

(210,9,2, b) 5380588∗ 7.38% 18.91% 29.31% 34.15% 3.52% 7.32% 2.55%

(210,9,4, b) 4147087∗ 8.71% 10.92% 9.19% 14.91% 0.01% 5.86% 0.06%

Average 3787302 5.92% 15.44% 17.32% 21.72% 1.86% 4.05% 1.14%

relative errors according to Best (which can be found in Tables 1 and 2). We can first
observe from column Best in Tables 1 and 2 that the rental company does not have
enough vehicles in stock since it can reduce the total cost by about 10% in purchasing
new cars.

The three versions of ACM give on average better results than those obtained by
the competitors of the challenge. There are however some instances for which we get
solutions with a slight higher total cost. For example, for the instance (200,12,2, b),
ACM-2 deviates by about 1% from the solution produced by BB while ACM-1
is more than 7% better than BB for this instance. For three other instances, (e.g.,
(80,8,2, b), (150,7,2, b), and (200,7,4, b)), both ACM-1 and ACM-2 deviate from
the solution produced by BB by less than 0.04%. For all other instances, ACM-1 and
ACM-2 produce results which are equal to or better than BB, the improvement be-
ing larger than 10% for the instance (160,12,2, b). We can also observe in Table 3
that if we take the best of the 10 runs, both ACM-1 and ACM-2 have a cost increase
of 0.01% on two instances when compared to BB, and are never worse than BB on
the other instances. Also, if we take the worst run, both ACM-1 and ACM-2 are on
average better than BB.
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Table 3 Minimum and maximum deviations for ACM

Instance Minimum deviation Maximum deviation

ACM-1 ACM-2 ACM-BB ACM-1 ACM-2 ACM-BB

(80,8,2,nb) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(150,7,2,nb) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(160,12,2,nb) 0.18% 0.00% 0.00% 2.28% 1.80% 0.83%

(200,12,2,nb) 0.00% 1.21% 0.72% 4.56% 7.35% 2.66%

(200,7,2,nb) 2.31% 1.34% 0.00% 5.48% 3.70% 3.14%

(200,7,4,nb) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(210,9,2,nb) 0.70% 1.37% 1.24% 4.93% 4.06% 2.59%

(210,9,4,nb) 0.00% 0.04% 0.03% 0.27% 0.04% 0.04%

Average 0.40% 0.50% 0.25% 2.19% 2.12% 1.16%

(80,8,2, b) 0.00% 0.00% 0.00% 0.13% 0.13% 0.00%

(150,7,2, b) 0.01% 0.01% 0.00% 0.01% 0.01% 0.00%

(160,12,2, b) 0.70% 0.52% 0.11% 3.00% 2.19% 1.76%

(200,12,2, b) 3.65% 10.22% 0.19% 6.26% 16.69% 4.12%

(200,7,2, b) 3.81% 1.77% 1.89% 6.54% 6.12% 3.70%

(200,7,4, b) 0.01% 0.01% 0.00% 0.01% 0.01% 0.00%

(210,9,2, b) 2.06% 5.62% 1.30% 4.84% 9.41% 4.02%

(210,9,4, b) 0.00% 5.24% 0.00% 0.07% 6.57% 0.01%

Average 1.28% 2.92% 0.44% 2.61% 5.14% 1.70%

ACM produces on average better results when starting with INIT1 rather than
INIT2. This is not so clear for instances with no possible purchase since there are
instances in Table 1 for which ACM-2 is slightly better than ACM-1. For instances
with possible purchase, ACM-1 is on average more than 2% better than ACM-2. This
is probably due to the fact that ACM-2 starts with an initial solution without purchase,
and therefore spends a lot of time in determining which cars should be bought, while
ACM-1 starts with the solution of (IP1) which has already a good purchase policy.

ACM-BB starts from the solution obtained by the best competitor to the challenge.
Since this solution is obtained in about one minute (and cannot be improved by run-
ning BB 60 times since BB is totally deterministic), we improve it with ACM for the
remaining 59 minutes. As can be observed in Tables 1 and 2, we are able to decrease
the total cost by 4% to 5% on average, this improvement being larger than 10% for
instance (200,12,2, b) (and even larger than 12% if we consider the best of the 10
runs of ACM-BB).

ACM can be considered as a robust algorithm since, as can be observed in Table 3,
the cost difference between the best and the worst solution over the 10 runs is on
average less than 2%.
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7 Conclusion

We have developed an efficient algorithm for a car fleet management problem with
maintenance constraints. The previous known algorithms combine the solution of in-
teger linear programs with simple constructive or descent techniques. We have added
graph optimization procedures and two tabu search algorithms. In particular, we have
implemented solution techniques for the graph coloring, the shortest path, and the
maximum weight stable set problems. These algorithms make it possible to consider
several cars simultaneously when assigning requests to cars or determining mainte-
nance schedules. Also, the neighborhoods used in our two tabu search algorithms
allow to move from one solution to a neighbor one by modifying the assignments and
maintenance schedules of many cars. This is particularly important when the main-
tenance constraints (particularly constraint (C7)) are tight, since a modification of a
maintenance schedule on a car is often only possible if the maintenance schedules on
other cars are changed at the same time (and it may then be necessary to subcontract
some requests to be able to move a maintenance to another period).

The computational experiments demonstrate that ACM outperforms all previous
known algorithms. In particular, we are able to improve the solutions obtained by the
winner of the ROADEF’99 challenge by 4% to 5%, on average. For some instances, we
are even able to get a 12% improvement of the best known solution. The best version
of ACM is ACM-BB which uses the method proposed by Briant and Bouzgarrou (the
winners of the contest) to generate an initial solution.
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