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Abstract Landscapes’ theory provides a formal framework in which combinatorial

optimization problems can be theoretically characterized as a sum of a especial kind

of landscape called elementary landscape. The elementary landscape decomposition of

a combinatorial optimization problem is a useful tool for understanding the problem.

Such decomposition provides an additional knowledge on the problem that can be ex-

ploited to explain the behavior of some existing algorithms when they are applied to

the problem or to create new search methods for the problem. In this paper we analyze

the 0-1 Unconstrained Quadratic Optimization from the point of view of landscapes’

theory. We prove that the problem can be written as the sum of two elementary com-

ponents and we give the exact expressions for these components. We use the landscape

decomposition to compute autocorrelation measures of the problem, and show some

practical applications of the decomposition.

Keywords Fitness landscapes, unconstrained quadratic optimization, landscapes

theory

1 Introduction

Landscapes’ theory focus on the analysis of the objective function of optimization prob-

lems (Stadler 1995). This theory has applications not only in evolutionary computa-

tion (Whitley et al 2008) but also in Chemistry (Stadler 1996), Biology (Weinberger

1990) and Physics (Garćıa-Pelayo and Stadler 1997). One of the objectives of this the-

ory is to better understand the structure of an optimization problem. The knowledge

obtained from the objective function using this theory could be used to improve the
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University of Málaga
E-mail: chicano@lcc.uma.es

Enrique Alba
E.T.S. Ingenieŕıa Informática
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performance of heuristic and metaheuristic algorithms by proposing new operators,

search strategies, or even new values for tuning their parameters.

A landscape for a combinatorial optimization problem is a triple (X,N, f), where

f : X → R is the objective function and the neighborhood function N maps a solution

x ∈ X to the set of neighboring solutions. If y ∈ N(x) then y is a neighbor of x. There

exists a especial kind of landscape which is of particular interest due to their properties.

They are the elementary landscapes, characterized by the Grover’s wave equation:

avg{f(y)}
y∈N(x)

= f(x) +
k

d

`

f̄ − f(x)
´

where d is the size of the neighborhood, |N(x)|, which we assume the same for all

the solutions in the search space, f̄ is the average solution evaluation over the entire

search space, and k is a characteristic constant. The wave equation makes it possible to

compute the average value of the fitness function f evaluated over all of the neighbors

of x using only the value f(x); we denote this average by avg{f(y)}y∈N(x), calculated

as:

avg{f(y)}
y∈N(x)

=
1

|N(x)|

X

y∈N(x)

f(y)

Assuming f(x) 6= f̄ then

f(x) < min

(

avg{f(y)}
y∈N(x)

, f̄

)

∨ f(x) > max

(

avg{f(y)}
y∈N(x)

, f̄

)

This means that all maxima are greater than f̄ and all minima are less than f̄ (Code-

notti and Margara 1992).

A landscape (X,N, f) is not always elementary, since the wave equation could not

hold. However, even in this case it is possible to characterize the function f as the sum

of elementary landscapes. In particular, if the neighborhood N is symmetric then it is

possible to find an orthogonal basis composed of elementary real functions. Then, every

regular function (elementary or not) can be written as the sum of a set of elementary

landscapes. The process of decomposing a landscape into its elementary components

is what we call elementary landscape decomposition.

In the case of functions defined over a binary space with the bit-flip neighborhood,

called pseudoboolean functions, the elementary landscape decomposition can be easily

obtained with the help of the Walsh functions (Walsh 1923). Sutton et al (2011) present

the foundations on this topic and provide valuable formulas and insights on the theo-

retical aspects of the decomposition of pseudoboolean functions that can be applied to

the 0-1 UQO. In particular, they show how it is possible to compute summary statistics

over the entire search space in an efficient way using the landscape decomposition.

The decomposition is useful from the theoretical and practical points of view. In

theory, the landscape decomposition of a problem can be used to compute the exact

expression for the autocorrelation functions, the autocorrelation coefficient, and the

autocorrelation length (Angel and Zissimopoulos 2000a). The previous measures char-

acterize an objective function in a way that allows one to estimate the performance of

a local search method. Angel and Zissimopoulos (2000b) have studied the correlation

between the performance of a local search and the autocorrelation coefficient. Also

a correlation has been noticed between the autocorrelation length and the expected

number of local optima of a problem (Garćıa-Pelayo and Stadler 1997).
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Sutton et al (2009) provides closed-form formulas that show how the autocorrela-

tion measures can be computed from the elementary landscape decomposition of any

pseudoboolean function. In their work, they focus on the MAX-k-SAT problem, but

the general results can also be applied to the 0-1 UQO problem, since it is a kind of

pseudoboolean function. From these general results, in this paper we will be able to

give a particular expression for the autocorrelation measures in the case of the 0-1

UQO.

In practice, the landscape decomposition together with Grover’s wave equation can

be used to compute the average value of the objective function in the neighborhood,

which can be used as a base for new operators or algorithms. In this sense, the work

by Sutton et al (2010) provides a new search strategy to escape from plateaus guided by

the average value of the objective function evaluated not only in the neighborhood of

a solution but in the second-order, thrid-order, and, in general, n-order neighborhood,

called Hamming spheres around a solution. Their proposed approach is applied to

the MAX-k-SAT problem but can be generalized to other pseudoboolean functions.

Another example of practical application of the elementary landscape decomposition

is that of Lu et al (2010), who use the grover’s wave equation in the core of a new

search method based on hill climbing.

The 0-1 Unconstrained Quadratic Optimization (UQO) is a relevant optimization

problem which has been extensively dealt with in the literature (Glover et al 2002).

However, to the best of our knowledge, this problem has not been analyzed before from

the point of view of landscapes’ theory. In this work we find the landscape decompo-

sition of UQO and revise some practical and theoretical applications of the decompo-

sition. In particular, we present a selection strategy based on the average value of the

objective function in the neighborhood of a solution. The strategy is viable only if the

landscape decomposition is known. We also give a closed-form formula for the autocor-

relation length and the autocorrelation coefficient that can be computed in polynomial

time. The previous parameters are a measure of the ruggedness of a landscape.

The organization of the paper is as follows. In Section 2 we present the founda-

tions of landscapes’ theory required in this paper with the aim of making the work

self-contained. Section 3 presents the 0-1 Unconstrained Quadratic Optimization and

its landscape decomposition is shown in Section 4. We revise some practical and theo-

retical applications of the decomposition in Section 5 and finish the paper with some

conclusions and future work in Section 6.

2 Background on Landscapes’ Theory

In this section we present some fundamental results on landscapes’ theory. After defin-

ing the concept of elementary landscape, we present Grover’s wave equation in Theo-

rem 1 and we prove in Theorem 2 that any landscape with a symmetric neighborhood

can be written as the sum of elementary landscapes.

Let X be a finite set of solutions, f : X → R be a real-valued function defined on X

and N : X → P(X) the neighborhood operator. The pair (X,N) is called configuration

space and can be represented using a graph G(X,E) in which X is the set of vertices

and a directed edge (x, y) exists in E if y ∈ N(x) (Biyikoglu et al 2007). We can

represent the neighborhood operator by its adjacency matrix

Axy =



1 if y ∈ N(x)

0 otherwise
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The degree matrix D is defined as the diagonal matrix

Dxy =



|N(x)| if x = y

0 otherwise

Any discrete function over the set of candidate solutions, e.g. f , can be characterized

as a vector in R
|X|. Using the graph representation of the configuration space, any

function f can be interpreted as a labeling of the nodes in the graph, where the label

of node x is f(x). Any |X| × |X| matrix can be interpreted as a linear map that acts

on vectors in R
|X|. The Laplacian matrix of a neighborhood operator is defined as

∆ = A−D

The Laplacian matrix acts on function f as follows

∆ f =

0

B

B

B

B

B

@

P

y∈N(x1)
(f(y) − f(x1))

P

y∈N(x2)
(f(y) − f(x2))

...
P

y∈N(x|X|)

“

f(y) − f(x|X|)
”

1

C

C

C

C

C

A

The component x of this matrix-vector product can thus be written as:

(∆ f)(x) =
X

y∈N(x)

(f(y) − f(x)) (1)

In this paper, we will restrict our attention to regular neighborhoods, where |N(x)| =

d > 0 for a constant d, for all x ∈ X. When a neighborhood is regular, ∆ = A − dI .

We say that a neighborhood is symmetric if y ∈ N(x) implies x ∈ N(y). Stadler (1995)

defines the class of elementary landscapes where the function f is an eigenvector (or

eigenfunction) of the Laplacian up to an additive constant. Formally, a function f is

elementary if there exists a constant b and an eigenvalue λ of ∆ such that ∆(f − b) =

λ(f − b). This means that every elementary function, f , can be written as the sum of

an eigenfunction of ∆, g, and a constant b, i.e., f = g + b.

Taking into account basic results of linear algebra, it is not difficult to prove that if

f is elementary with eigenvalue λ, af+b is also elementary with the same eigenvalue λ.

If f is a constant function, i.e., f(x) = b ∀x ∈ X for a constant b, then ∆ f = 0 and f

is eigenfunction of ∆ with eigenvalue λ = 0. But one of the most interesting properties

of elementary landscapes is the so-called Grover’s wave equation (Grover 1992), which

we present without proof in the next theorem.

Theorem 1 (Grover’s wave equation) Let (X,N, f) be a landscape where the

neighborhood, N , is regular and symmetric. Then, f is elementary if and only if the

following expression holds

avg{f(y)}
y∈N(x)

= f(x) +
k

d

`

f̄ − f(x)
´

∀x ∈ X (2)

where k is the additive inverse of the eigenvalue of f , that is, k = −λ.
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From Grover’s wave equation we conclude that, in an elementary landscape, there

exists a linear relationship between the average of the function in the neighborhood of

a solution and the value of the function in that solution. To finish this section, let us

prove that any objective function can be written as the sum of elementary landscapes

when the neighborhood is symmetric.

Theorem 2 (Elementary landscape decomposition) Let (X,N, f) be a landscape

where the neighborhood, N , is symmetric. Then, there exist n elementary landscapes

with 1 ≤ n ≤ |X| such that f can be written as the sum of all of them.

Proof From linear algebra we know that if a square real matrix ∆ of size |X| is symmet-

ric, then there exists an orthogonal basis of the vectorial space R
|X| that is composed

of eigenvectors of ∆. Then, we can write every vector of R
|X| as the weighted sum of

the vectors in the orthogonal basis. If we translate these concepts into the landscapes

language, this means that for any symmetric neighborhood N it is possible to find

an orthogonal basis composed of elementary functions. Then, any function f can be

written as the weighted sum of a set of elementary landscapes.

3 The 0-1 Unconstrained Quadratic Optimization (UQO)

Using the previous concepts and theorems we will analyze the elementary nature of

the UQO problem in Section 4. Let us first precise the problem itself.

The 0-1 Unconstrained Quadratic Optimization (UQO) consists in finding a binary

vector x ∈ {0, 1}n to minimize the function:

f(x) =
n
X

i,j=1

qijxixj (3)

where qij are constants that depend on the problem instance. This problem is NP-

hard (Garey and Johnson 1979) and many other combinatorial optimization problems

can be formulated as special cases of UQO. Some examples are determining maximum

cliques, maximum cuts, maximum vertex packing, minimum coverings, maximum in-

dependent sets, and maximum independent weighted sets (Glover et al 2002).

This problem has applications in social psychology (Harary 1953), financial analy-

sis (McBride and Yormack 1980), computer aided design (Krarup and Pruzan 1978),

traffic management (Gallo et al 1980), machine scheduling (Alidaee et al 1994), cel-

lular radio channel allocation (Chartaire and Sutter 1994), and molecular conforma-

tion (Philips and Rosen 1994) among others.

Due to its importance the problem has been solved using exact methods (Helm-

berg and Rendl 1998) and metaheuristics like Tabu Search (Liu et al 2005), Scatter

Search (Amini et al 1999), GRASP (Palubeckis and Tomkevièius. 2002), Simulated

Annealing (Katayama and Narihisa 2001) and Evolutionary Algorithms (Merz and

Katayama 2004).

4 Landscape Decomposition of UQO

The goal of this section is to find the elementary components of the objective function

of UQO. First, we need to completely define the landscape. In the previous section we
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defined the search space (binary strings of length n) and the objective function, there-

fore we only need to define the neighborhood N . We will use the bit-flip neighborhood.

That is, we say that two solutions x and y are neighboring if there exists a binary digit

i in which they differ xi 6= yi and for all the other binary digits both solutions have the

same value xk = yk for all k 6= i. Given one arbitrary solution, the number of neighbors

of the solution is n, each one consisting in flipping the value of one binary digit. This

neighborhood is symmetric and it is the more natural one for all the problems based

on binary representation. In particular, the bit-flip neighborhood has commonly been

used in the UQO literature (Merz and Freisleben 2002).

Once we have completely defined the landscape, our goal in this section is to find

the elementary components of the objective function. That is, we want to find several

elementary functions that summed together equals Eq. (3), the objective function of

the UQO. As we previously stated in Theorem 2, for a symmetric neighborhood N

there exists an orthonormal basis composed of elementary landscapes. Let us denote

this basis with φλ,i where λ is the eigenvalue of the vector (function) and i is an index

to distinguish the different vectors with the same eigenvalue. Then, a Fourier expansion

of function f is

f =
X

λ

X

i

aλ,iφλ,i

where the values aλ,i =
˙

φλ,i, f
¸

are the Fourier coefficients. Using this Fourier ex-

pansion it is possible to compute the landscape decomposition by summing the terms

with the same eigenvalue. Each elementary component can be computed as:

fλ =
X

i

aλ,iφλ,i (4)

A especial case is that of f0, the elementary landscape with λ = 0. The function f0
is the constant value f̄ , and it can be added to any of the other elementary components

without affecting its elementariness.

In the case of the binary strings with the bit-flip neighborhood an orthogonal basis

is that of the Walsh functions (Sutton et al 2009). Thus, we can use these functions

to provide a landscape decomposition for UQO. This kind of analysis is similar to the

decomposition of Sutton et al (2010) for the MAX-k-SAT problem. In fact, Heckendorn

et al (1998) proved that a k-bounded function can always be expressed as a sum of k

elementary landscapes. A function is said to be k-bounded if it can be expressed as the

sum of subfunctions that each depend on at most k bits. According to (3), the UQO

problem is a 2-bounded function, which means that it can be expressed as the sum of

two elementary landscapes. In the following we are going to use the Walsh functions to

give a closed-form formula for these elementary landscapes. Before giving the details

we present the Walsh functions and some of their properties.

Given the space of binary strings of length n, {0, 1}n, a (non-normalized) Walsh

function with parameter w ∈ {0, 1}n is defined as:

ψw(x) =
n
Y

i=1

(−1)wixi = (−1)
P

n

i=1
wixi (5)

It is not difficult to prove that ψw ·ψv = ψw+v where w+v is the bitwise sum in Z2 of

w and v. Another useful property of Walsh functions is ψ2
w = ψw ·ψw = ψ2w = ψ0 = 1.



7

We define the order of a Walsh function ψw as the value
Pn

i=1 wi, that is, the number

of ones in w.

The main advantage of using Walsh functions for our goals is that they are ele-

mentary functions in the bit-flip neighborhood. In particular, a Walsh function with

order p is elementary with characteristic constant k = 2p (Stadler 1995). Furthermore,

the average value of a Walsh function of order p > 0 is zero, that is, ψw = 0 if w has

at least one 1. The only Walsh function of order p = 0 is ψ0 = 1, which is a constant

function.

In this paper we only need Walsh functions of order 1 and 2, so we will introduce

a especial notation for them. We denote with ψi the first-order Walsh function whose

parameter has one only 1 in the i-th position and we denote with ψij the second-order

Walsh function whose parameter has two 1s in the i-th and j-th positions. Using this

new notation, we can write ψi · ψj = ψij if i 6= j and ψ2
i = 1. These equalities will be

useful later in this section.

The first step for the landscape decomposition is to rewrite Eq. (3) using the Walsh

functions. We must take into account the equality ψi(x) = (−1)xi = 1 − 2xi to write:

f =
n
X

i,j=1

qij
(1 − ψi)(1 − ψj)

4
(6)

and computing the product we get

f =
n
X

i,j=1

qij
1 − ψi − ψj + ψiψj

4

=
1

4

2

4

n
X

i,j=1

qij −
n
X

i,j=1

qij(ψi + ψj) +
n
X

i,j=1

qijψiψj

3

5

=
1

4

2

6

6

6

4

0

@

n
X

i,j=1

qij +

n
X

i=1

qii

1

A−

n
X

i=1

viψi +

n
X

i, j = 1
i 6= j

qijψij

3

7

7

7

5

(7)

where we have used the properties ψiψj = ψij if i 6= j, ψ2
i = 1, and we have introduced

a new vector v defined by:

vi =

n
X

j=1

(qij + qji) (8)

Equation (7) clearly shows the landscape decomposition of the objective function

f . We can distinguish three elementary terms in (7). These terms can be defined as

functions:
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f0 =
1

4

0

@

n
X

i,j=1

qij +
n
X

i=1

qii

1

A (9)

f2 = −
1

4

n
X

i=1

viψi (10)

f4 =
1

4

n
X

i, j = 1
i 6= j

qijψij (11)

The first function, f0, is a constant and, thus, is an elementary component with

k = 0. The second function, f2, is a weighted sum of first-order Walsh functions. The

first-order Walsh functions are elementary with k = 2 and the linear combination of

elementary functions with the same characteristic constant k is also elementary with

constant k. Thus, f2 is an elementary component with k = 2. Finally, the third function,

f4, is a linear combination of second-order Walsh functions, which are elementary with

k = 4. Then, f4 is an elementary component with k = 4.

We can observe that the objective function f is the sum of the three previous

components, that is, f = f0 + f2 + f4. As we saw in Section 2, if we sum a constant to

an elementary function we get another elementary function, that is, the constants do

not change the elementariness of a function. We can use this property of the elementary

landscapes to sum f0 (which is a constant) to f2 or f4 and reduce in this way the number

of elementary components. Furthermore, it is usual to discard the constant component

(if any) when counting the number of elementary components of a landscape. Thus, we

can say that the UQO is a sum of two elementary components: f0+f2 and f4. To finish

this section we express f2 and f4 as functions of x instead of the Walsh functions.

f2(x) = −
1

4

n
X

i=1

vi(1 − 2xi) (12)

f4(x) =
1

4

n
X

i, j = 1
i 6= j

qij(1 − 2|xi − xj |) (13)

5 Applications of the Landscape Decomposition

In this section we revise some applications of the landscape decomposition of UQO.

First, we present a selection operator that uses the average fitness value in the neigh-

borhood of a solution to select the individuals. Second, we give closed-form formulas

for the autocorrelation coefficient and the autocorrelation length of UQO.

5.1 Selection Operators

The landscape decomposition of UQO allows one to compute the average value of the

objective function in the neighborhood of any solution without the need of evaluating
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all the neighboring solutions. According to the Grover’s wave equation (2), this average

value for UQO is

avg{f(y)}
y∈N(x)

= avg{f0(y)}
y∈N(x)

+avg{f2(y)}
y∈N(x)

+avg{f4(y)}
y∈N(x)

= f0(x) +

„

f2(x) +
2

n

`

f2 − f2(x)
´

«

+

„

f4(x) +
4

n

`

f4 − f4(x)
´

«

= f0(x) + f2(x) + f4(x) −
2

n
f2(x) −

4

n
f4(x)

= f(x) −
2

n
f2(x) −

4

n
f4(x) (14)

where we took into account that f2 and f4 in the whole solution space is zero because

the average of the non-null order Walsh functions is zero.

Equation (14) only requires the evaluation in x of f , f2, and f4 to compute the

average value of f in the n neighbors of x, but we can make the computation even more

efficient. The evaluation of f4 is computationally more expensive than the one of f2
because of the double sum (see Eq. (11)). If we take into account that f = f0 + f2 + f4
we can replace f4 by f − f0 − f2 in (14) to get:

avg{f(y)}
y∈N(x)

=

„

1 −
4

n

«

f(x) +
2

n
f2(x) +

4

n
f0 (15)

which is more efficient once we have computed f(x), since it only requires the com-

putation of simple sums of order O(n). Equation (15) can be used as a base for new

operators that exploit the neighborhood average. For example, it is possible to design

new selection operators that select individuals according to the average fitness value

in the neighborhood (see Fig. 1). In elementary landscapes, selecting one individual

according to its fitness value is the same as selecting one individual according to the

average in the neighborhood, since avg{f(y)}y∈N(x) = af(x) + b. However, this is not

the case when f is the sum of several elementary landscapes with different charac-

teristic constants. In Fig. 1 we show a situation in which the traditional fitness-based

selection strategy would select the solution at the right (assuming minimization) while

this does not seem to be the most appropriate selection. An average-based selection

strategy would prefer the solution at the left, since the neighbors of the left solution

are promising.

X

Neighborhoods

avg
avg

Minimizing

Fig. 1 An average-based selection strategy would be more appropriate than a fitness-based
one in the above scenario.

The average-based selection strategy could be especially interesting in the case of

plateaus, as shown in Fig. 2. In this case, the average-based selection strategy could
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distinguish between two solutions with the same fitness value, taking into account the

neighborhood of the solutions.

X

avg avg

Fig. 2 In plateaus the average-based selection strategy could distinguish between two solutions
with the same fitness value.

Sutton et al (2010) did work previously on this idea and they applied it to the MAX-

k-SAT problem. In their work, they computed the averages of the objective function

not only in the neighborhood of a solution, but in second-order neighbors, third-order

neighbors, and, in general, in any sphere of arbitrary radius around the solution itself.

In (Sutton et al 2011) they also extend this computation to balls (union of spheres up

to a given radius) of arbitrary size. Their empirical results in (Sutton et al 2010) show

that guiding the search using the average values over the spheres helps the algorithm

to escape more quickly from plateaus.

In the following section we are going to present some theoretical applications of the

landscape decomposition of UQO related to the concept of autocorrelation.

5.2 Autocorrelation of the 0-1 UQO

The autocorrelation coefficient ξ of a problem is a parameter proposed by Angel and

Zissimopoulos (1998) that gives a measure of its ruggedness. This coefficient is related

to the number of local optima of a landscape and the performance that local search

methods have on the problem. The autocorrelation length conjecture (see below) claims

that the higher the value of ξ the lower the number of local optima and, as a conse-

quence, the better could be the performance of a local search method. The definition

of ξ is based on the autocorrelation function ρ proposed by Weinberger (1990), which

is defined as

ρ(s) = 1 −
avg{(f(x) − f(y))2}{x,y|d(x,y)=s}

avg{(f(x) − f(y))2}x,y

(16)

where the numerator is the average value of (f(x)−f(y))2 over all solution pairs x and

y that are at distance s, and the denominator is the average value of (f(x) − f(y))2

over all solution pairs x and y. We say that two solutions are at distance s if there

exists a sequence of solutions x = x0, x2, . . . , xs = y such that xi+1 ∈ N(xi). The

autocorrelation coefficient is then defined as ξ = 1
1−ρ(1)

.

It is possible to define another autocorrelation function. Let us consider a random

walk {x0, x1, . . .} on the solution space such that xi+1 ∈ N(xi). The autocorrelation

function r is defined as:

r(s) =
avg{f(xt)f(xt+s)}x0,t − avg{f(xt)}

2
x0,t

avg{f(xt)2}x0,t − avg{f(xt)}
2
x0,t

(17)
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where the averages are computed over all the starting solutions x0 and all the solutions

in the sequence. The autocorrelation functions ρ and r are different in general, but they

have the same value for s = 1, that is, ρ(1) = r(1) (Angel and Zissimopoulos 2000a).

Stadler (1995) proved that if f =
P

i aiφi is a Fourier expansion of f in a landscape,

then the autocorrelation function of f is given by

r(s) =
X

i6=0

a2
i

P

j 6=0 a
2
j

„

1 −
ki

d

«s

(18)

where ki is the characteristic constant associated to the elementary function φi. In

particular, for an elementary landscape r(s) = (1 − k/d)s, and the autocorrelation

coefficient is ξ = d/k. For a general landscape (elementary or not) we have the following

result

ρ(1) = r(1) =

P

i6=0 a
2
i

“

1 − ki

d

”

P

j 6=0 a
2
j

= 1 −

P

i6=0 a
2
i

ki

d
P

j 6=0 a
2
j

and the autocorrelation coefficient can be computed as

ξ =
d
P

j 6=0 a
2
j

P

i6=0 a
2
i ki

(19)

The sum of the squared Fourier coefficients a2
j associated to the same characteristic

constant ki is |X|(f2
i − fi

2
), where fi is the sum of all the elementary components aiφi

with the same characteristic constant ki and the overline represents the average over

the entire search space X. The sum of the squared Fourier coefficients a2
j with j 6= 0

is |X|(f2 − f
2
). Introducing these two expressions in (19) we can write:

ξ =
d|X|(f2 − f

2
)

P

i6=0 |X|(f2
i − fi

2
)ki

=

0

@

P

i6=0 |X|(f2
i − fi

2
)ki

d|X|(f2 − f
2
)

1

A

−1

=

0

@

P

i6=0(f2
i − fi

2
)ki

d(f2 − f
2
)

1

A

−1

=

0

@

X

i6=0

Wi
ki

d

1

A

−1

(20)

where the values Wi are defined as

Wi =
f2
i − fi

2

f2 − f
2

(21)

For the 0-1 UQO we get the following expression for the autocorrelation coefficient

ξ =

„

W2
2

n
+W4

4

n

«−1

(22)

In the following we will reduce the computational complexity required to compute

such a measure. Let us simplify (22) to make the computation more efficient. First, we

take into account that, according to the definition of the Wi constants, it must hold
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that W2+W4 = 1. Then, replacing W4 by 1−W2 in (22) and making some calculations

we get:

ξ =
n

2(2 −W2)
(23)

which depends only on W2. According to (21), W2 can be in turn computed as:

W2 =
f2
2

f2 − f
2

(24)

where we took into account that f2 = 0. Since f4 = 0, we have f = f0 and the only

terms that we need to compute in (24) are f2
2 and f2. Using (10) we can write:

X

x∈X

f2
2 =

X

x∈X

 

−
1

4

n
X

i=1

viψi

!2

=
1

16

X

x∈X

n
X

i,j=1

vivjψiψj =
1

16

n
X

i,j=1

vivj

0

@

X

x∈X

ψiψj

1

A

(25)

The inner sum in the last member can be simplified if we take into account

the properties of the Walsh functions. In particular, since ψ2
i = 1, if i = j then

P

x∈X ψiψj = |X|. On the other hand, ψiψj = ψij when i 6= j and ψij = 0. This

implies
P

x∈X ψiψj = 0 when i 6= j. All the previous considerations allows us to write

(25) as
X

x∈X

f2
2 =

|X|

16

n
X

i=1

v2i (26)

and the value of f2
2 is:

f2
2 =

1

|X|

X

x∈X

f2
2 =

1

16

n
X

i=1

v2i (27)

The previous expression can be computed in O(n). In order to compute f2 we use

(3) and write:

X

x∈X

f2 =
X

x∈X

0

@

n
X

i,j=1

qijxixj

1

A

2

=
X

x∈X

n
X

i,j=1

n
X

i′,j′=1

qijqi′j′xixjxi′xj′ =

=

n
X

i,j=1

n
X

i′,j′=1

qijqi′j′

0

@

X

x∈X

xixjxi′xj′

1

A =

n
X

i,j=1

n
X

i′,j′=1

qijqi′j′ t({i, j, i
′, j′})

(28)

where we introduced a new function t : P([1, n]) → N defined by:

t(S) =
X

x∈X

Y

s∈S

xs (29)

Although we have now an expression for
P

x∈X f2, this expression is not practical,

since it includes a factor, t, that requires a summation over all the elements of X. In the

following we are going to simplify the expression of t to make the computation feasible.
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We can observe that t is, in fact, a counting function. It is counting the number of

elements in X that fulfill a given condition. Let us rewrite the definition of t as:

t(S) =
X

x∈X

True

0

@

^

s∈S

xs = 1

1

A (30)

where True is a function that maps a Boolean value to {0, 1}. It is 1 if the Boolean

expression is true and 0 if it is false. The function t counts the number of solutions

(elements in X) that fulfills the condition
V

s∈S xs = 1, that is, in all the positions of

the solution contained in S the solution takes value 1. Using this characterization of t

we can find an alternative expression for efficiently computing its value. The number

of solutions fulfilling the previous condition is 2n−|S| and then t(S) = 2n−|S|. Using

this definition we can rewrite (28) in the following way:

X

x∈X

f2 =

n
X

i,j=1

n
X

i′,j′=1

qijqi′j′2
n−|{i,j,i′,j′}| (31)

and f2 is:

f2 =

n
X

i,j=1

n
X

i′,j′=1

qijqi′j′

2|{i,j,i′,j′}|
(32)

The previous expression can be computed in polynomial time O(n4). With the

values computed by (32), (27) and (9), and using Eq. (24) it is possible to calculate

W2. With W2 it is possible to compute ξ using (23).

With the help of (18) and the constants W2 and W4, we can also express the

autocorrelation function r(s) of the UQO as:

r(s) = W2

„

1 −
2

n

«s

+W4

„

1 −
4

n

«s

(33)

Sutton et al (2009) showed how the autocorrelation function r(s) can be computed

for all the pseudoboolean functions using the bit-flip neighborhood. The previous ex-

pression is just a particular case of the Sutton’s expression.

Another measure of ruggedness is the autocorrelation length (Garćıa-Pelayo and

Stadler 1997) whose definition is based on the autocorrelation function r as:

ℓ =
∞
X

s=0

r(s) = d
X

i6=0

Wi

ki
(34)

In 0-1 UQO the autocorrelation length is:

ℓ = n

„

W2

2
+
W4

4

«

=
n(1 +W2)

4
(35)

We can observe in Figure 3 that both autocorrelation measures, (23) and (35), in-

crease with W2 and their values are between n/4 when W2 = 0 and n/2 when W2 = 1.

However, the curve of ℓ is linear while the one of ξ is non-linear. The autocorrelation
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Fig. 3 Value of ξ/n and ℓ/n against W2.

length is specially important in optimization because of the autocorrelation length con-

jecture, which claims that in many landscapes the number of local optima M can be

estimated by the expression (Stadler 2002):

M ≈
|X|

|X(x0, ℓ)|
(36)

where X(x0, ℓ) is the set of solutions reachable from x0 in ℓ or less local movements.

The previous expression is not exact, but an approximation. It can be useful to compare

the estimated number of local optima in two instances of the same problem. In effect,

for a given problem in which (36) is valid, the higher the value of ℓ (or ξ) the lower

the number of local optima. In a landscape with a low number of local optima, a local

search strategy can a priori find the global optimum using less steps. This phenomenon

has been empirically observed for the Quadratic Assignment Problem (QAP) by Angel

and Zissimopoulos (2000b).

In our particular case, the set X(x0, ℓ) is the set of solutions at Hamming distance

ℓ or less from x0. The cardinality of the previous set does not depend on the initial

solution considered x0, but it only depends on ℓ and is given by:

|X(x0, ℓ)| =

ℓ
X

i=0

„

n

i

«

(37)

and the estimation for M is

M ≈
2n

Pℓ
i=0

„

n

i

« (38)

In order to check the autocorrelation length conjecture in UQO we have randomly

generated 1650 UQO instances using the instance generator by Palubeckis (2000). The

size of the instances varies between n = 10 and n = 20. The density δ of the instances
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n 10 11 12 13 14 15
ρ −0.5073 −0.5143 −0.5563 −0.4588 −0.4530 −0.5352

n 16 17 18 19 20
ρ −0.4784 −0.5625 −0.5786 −0.5163 −0.4780

Table 1 Spearman correlation coefficient ρ for the number of local optima and the autocor-
relation length.

is taken from the set {10, 30, 50, 70, 90}. For each pair n and δ, 30 random instances

were generated and we computed their autocorrelation length ℓ. We also computed

the number of local optima (minima) of each instance by complete enumeration of the

search space.
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Fig. 4 Number of local optima against the autocorrelation length ℓ for instances with n = 20.

In Figure 4 we plot the number of local optima against the autocorrelation length ℓ

for all the instances of size n = 20. We can observe a clear trend: as the autocorrelation

length increases the number of local optima decreases. The trend is the same in all the

instances with different sizes (we omit their plots). We computed the Spearman corre-

lation coefficient for all the plots and we obtained the results shown in Table 1. We can

observe a high inverse correlation (around −0.5) between the number of local optima

and the autocorrelation length, supporting the autocorrelation length conjecture.

6 Conclusions

In this paper we have studied the 0-1 UQO from the point of view of the landscapes

theory. With the help of a Walsh analysis of the problem, we have proven that UQO

can be written as a sum of two elementary landscapes. The landscape decomposition

of UQO has practical and theoretical applications. From a practical point of view, this
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decomposition allows one to compute the average value of the objective function in the

bit-flip neighborhood of a solution x using only the value of the elementary components

in x. That is, instead of evaluating all the solutions in the neighborhood of x and

computing the average of the obtained values, the elementary landscape decomposition

offers the same value with a single evaluation of the two elementary components of the

problem in x. This means an important reduction in the computational effort. This

efficient average computation has been recently used to propose new search methods

and operators (as we saw in Section 5) and it can be used in the future for the same

purpose. Furthermore, the decomposition can be used to provide closed-form formulas

of the expected objective value of a solution after the application of a given stochastic

operation. Sutton et al (2011) propose such a closed-form formula for the traditional

bit-flip mutation operator.

Thanks to the elementary landscape decomposition we are able to provide an ef-

ficient (polynomial time) exact closed-form formula for the autocorrelation coefficient

and the autocorrelation length of the UQO. These autocorrelation measures can be

used to understand why a local search method is better than another one for the

problem.

Once we have established the theoretical analysis, our future work is to study the

practical applications of all the theoretical results presented here. The improvement of

search methods and the explanation of the behaviour of some search algorithms are

just two examples of possible applications of the theoretical results. Our study serves

also as a guide for new problems, in order to analyze their landscape decomposition in

a similar way as we did with UQO in this paper.
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